Article citationsMore >>

Salcedo, A., Valle, A.D., Sanchez, B., Ocasio, V., Ortiz, A., Marquez, P., and Siritunga, D. (2010). Comparative evaluation of physiological post-harvest root deterioration of 25 cassava (Manihot esculenta) accessions: visual vs. hydroxycoumarins fluorescent accumulation analysis. African Journal of Agricultural Research 5: 3138-3144.

has been cited by the following article:

Article

Proximate, Functional and Pasting Properties of Cassava Starch and Mushroom (Pleurotus Pulmonarius) Flour Blends

1Department of Food Science and Technology, University of Mkar P.M.B. 017 Gboko, Nigeria

2Department of Food Science and Technology, University of Agriculture P.M.B. 2373 Makurdi, Nigeria

3Department of Food Science and Nutrition, Federal University of Technology P.M.B. 65 Minna, Nigeria


American Journal of Food Science and Technology. 2017, Vol. 5 No. 1, 11-18
DOI: 10.12691/ajfst-5-1-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Ojo M.O., Ariahu C.C., Chinma E.C.. Proximate, Functional and Pasting Properties of Cassava Starch and Mushroom (Pleurotus Pulmonarius) Flour Blends. American Journal of Food Science and Technology. 2017; 5(1):11-18. doi: 10.12691/ajfst-5-1-3.

Correspondence to: Ojo  M.O., Department of Food Science and Technology, University of Mkar P.M.B. 017 Gboko, Nigeria. Email: ojofoluso52@gmail.com

Abstract

Our interest in this study is the production of cassava starch and mushroom (Pleurotus pulmonaris) composite blends for the purpose of edible film production. Therefore the determination of the proximate, functional and pasting properties is points of interest. Composite flour blends was prepared from Cassava starch (CS) and mushroom Pleurotus pulmonarius (MS) to obtain flour blends of cassava starch: mushroom (P. pulmonarius) flour; CS:MS 100:00, 90:10, 80:20, 70:30 and 60:40. The proximate, functional and pasting properties were determined using standard procedures and 100% cassava starch was used as control. The proximate analysis ranged from 8.79 to 9.35%, 0.55 to 26.23%, 0.34 to 2.01%, 0.32 to 8.24% and 0.10 to 17.86% for moisture, protein, fat and ash respectively while Carbohydrate ranged from 36.31 to 89.62%, amylose contents 18.47 to 25.35% and energy value ranged from 268.23 to 363.73Kcal. There were significant (p≤ 0.05) differences in the water absorption capacity, swelling power and solubility measured at various temperatures. The peak and trough viscosity ranged from 161.95 to 244.91RVU and 100.36 to 175.61 with the lowest value at CS:MS 60:40% and CS:MS100:00% as the highest. Final viscosity ranged from 227.32(CS:MS 60:40) to 315.10RVU (CS100%) while the pasting temperature and time ranged from 81.43 to 83.29 °C and 4.79 (CS:MS 80:20) to 5.75 (CS:MS 60:40%). These results suggest an improvement in the nutritional properties of the composite blends and strong dependence of the pasting and functional properties of the flours on the composition.

Keywords