Article citationsMore >>

Lugo, A.E. 1980. Mangrove ecosystems: successional or steady state, Tropical succession, Biotropica supplement, 12: 65-72.

has been cited by the following article:

Article

Vegetation Structure and Species Distribution of Mangroves along a Soil Salinity Gradient in a Micro Tidal Estuary on the North-western Coast of Sri Lanka

1Department of Botany, University of Kelaniya, Kelaniya, Sri Lanka

2The Open University of Sri Lanka, Nawala, Nugegoda, Sri Lanka


American Journal of Marine Science. 2013, Vol. 1 No. 1, 7-15
DOI: 10.12691/marine-1-1-2
Copyright © 2013 Science and Education Publishing

Cite this paper:
K. A. R. S Perera, M. D. Amarasinghe, S. Somaratna. Vegetation Structure and Species Distribution of Mangroves along a Soil Salinity Gradient in a Micro Tidal Estuary on the North-western Coast of Sri Lanka. American Journal of Marine Science. 2013; 1(1):7-15. doi: 10.12691/marine-1-1-2.

Correspondence to: K. A. R. S Perera, Department of Botany, University of Kelaniya, Kelaniya, Sri Lanka. Email: roshanperera@yahoo.com

Abstract

Soil salinity in both coastal and inland, is known to affect vegetation structure and functions. Mangrove vegetation at Kala Oya estuary on the north western coast of Sri Lanka was selected to study the effect of soil salinity on structure, potential gross primary productivity and plant biomass of the ecosystems. Five belt-transects were laid perpendicular to the shoreline, covering 3.5 km upstream and approximately at 750 m intervals to collect data for the purpose. Vegetation structure was determined using data collected on plant species diversity, density, basal area, leaf area index and tree height. Biomass (total of above and below ground) of mangrove trees was estimated by allometric methods and potential gross primary productivity was calculated using leaf area index measured with terrestrial radiation sensor. Total of eight (8) true mangrove species were encountered in the area and highest density was recorded for Rhizophora mucronata (528 trees/ha), followed by Excoecaria agallocha (447 trees/ha) and Lumnitzera racemosa (405 trees/ha). Vegetation complexity index (CI), basal area, total tree biomass leaf area index and potential gross primary productivity measurements revealed an inverse correlation with soil salinity. Mangrove species were observed to possess varying salinity tolerance levels and Avicennia marina was the most salinity tolerant species, followed by Rhizophora mucronata, Ceriops tagal and Lumnitzera racemosa. Excoecaria agallocha was the least salt tolerant species in the area. Mangrove areas located around 2 km from the estuary mouth, where the soil salinity ranged from 8-12 mg/l, was observed to be with the highest species richness and diversity, indicating its’ ecological and conservation significance that may be considered in mangrove management decision-making for the area. Presence of a few species of terrestrial and freshwater plants among the mangroves indicates salinity changes that would have taken place due to trans-basin diversion of water to the area for irrigation purposes.

Keywords