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Abstract  The models used to examine the processes of the solid-state fermentation bioreactors can be improved 
using the heat and mass transfer models compared to empirical models. This study examines the oxygen balance 
equations, water balance and energy balance equations for solid-state fermentation bioreactors. For the precise study 
of these important transport problems some advanced ingredients of applied mathematics such as sobolev spaces, 
weak solutions, Galerkin method, Gronwall's inequality and Harnack's inequality has been used. Based upon these 
concepts, the solutions of the balance equations for bioreactors is presented. By the proposed method, the uniqueness 
of the solutions of the balance equations has been proved. This procedure leads to a general methodology for 
reducing these initial/boundary partial differential equations to a system of ordinary differential equations which 
easily can be solved. It is also shown in this structure that the solution is the best answer since it supports the infinite 
diffusion speed of disturbances. 

Keywords: heat and mass transfer model, solid state fermentation bioreactor, balance-transport models, parabolic 
boundary value problem, weak solution 

Cite This Article: Atefeh Hasan-Zadeh, “Solutions of Balance-Transport Models for (Solid-State Fermentation) 
Bioreactors with Infinite Diffusion.” International Journal of Partial Differential Equations and Applications,  
vol. 9, no. 1 (2022): 1-6. doi: 10.12691/ijpdea-9-1-1. 

1. Introduction 

Transport phenomena, especially heat transfer and mass 
transfer are significant issues in the study of various 
biology and chemistry problems. Especially, in biology, 
some of the kinetic models used to describe the growth 
kinetics of solid fermentation (SSF) can predict many 
important parameters such as specific growth rates, 
process performance, process efficiency, generated heat, 
process control measures, strategy for the production of 
specific products and industrial scale considerations.  

Models that consider both temperature and moisture in 
examining the effect of environmental conditions on 
microbial growth can be used in studies on heat transfer 
and mass transfer in SSF processes. 

 In general, it can be assumed that stoichiometric 
models with a focus on microbial pathways can predict the 
behavior of microorganisms and can be suitable for simple 
experimental models in SSF processes. These models can 
be improved with heat and mass transfer models compared 
to empirical models, and further studies on SSF are 
needed in this regard. For this purpose, mathematical 
modelling based on heat transfer and mass transfer 
problems can be used to investigate such problems, [1-5]. 

On the other hand, despite the greater interest in the 
production of microbial products by solid-state 
fermentation (SSF), using this large-scale culturing 

method, due to the relatively poor heat and mass transfer 
in the solid particle bed, there are great challenges against 
it in the SSF bioreactors.  

Mathematical models and computational simulations 
are useful tools to make operational and control strategies 
to overcome these challenges and can be applied to the 
simulation of oxygen consumption, heat production and 
cell growth in a fermentation state (SSF).  

Not only do these models direct the design and function 
of the bioreactors, but they can also combine their insights 
on how different phenomena within the fermentation 
system control the overall process performance. Also, the 
extent of the limitation will be analyzed due to the 
phenomenon of heat transfer and/or mass at different 
stages of fermentation, ([6-12]). 

As mentioned above, various mathematical modelling 
has been performed to optimize the design and operation 
of solid-state fermentation bioreactors (SSF). These 
models are designed to partially describe the transport 
phenomena in the bed and the exchange of mass and 
energy between the bed and the bioreactor subsystems, 
such as the bioreactor wall and headspace gases.  

What is being discussed in this paper is the study of the 
existence and uniqueness of the answer to the models of 
various transport phenomena. The method chosen for 
solving is one that is superior to numerical and 
approximate methods such as Galerkin's method and 
others in terms of mathematical technique and in line with 
the insights obtained through modelling.  
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The proposed method can be used as a more powerful 
tool in optimizing the performance of the bioreactor and it 
also can be applied to the other complex nonlinear 
problems, [13-16]. 

After the statement of the problem in Section 2, the 
main result expressed and proved in Section 3. Also, the 
proposed methodology that is proving the existence and 
uniqueness of the weak solution of the general problem 
results in the reduction of the general initial/boundary 
PDE to a system of an ODE which easily can be solved. 

The other advantage of the new approach is that the 
maximum of the function in some interior of the 
bioreactor at a positive time can be estimated by the 

minimum of it in the same region at a later time. This fact 
supports the infinite diffusion speed of disturbances. Then 
can be suitable for heat and mass–transfer models in 
(semi-infinite) SSF bioreactors with more diffusion. 

2. Statement of the Problem 

The balance-transport models listed in Table 1. These 
models describe mass and heat transfer in different phases 
of the bioreactor in order to predict how the flow rate, 
humidity and inlet air temperature affect the temperature 
and water content of the substrate. 

Table 1. Description of balance-transport models 

Equation Description 
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Oxygen balances for tray bioreactors 
(Indicates the conditions for 2O  diffusion within pores and 
uptake by microorganisms.) 
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Water balances for tray bioreactors 
(Describes the water balance in the substrate bed within the 
tray) 
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Energy balances for tray bioreactors 
(Takes into account conduction and metabolic heat 
production) 

Table 2. Description of the parameters of Table 1 

Parameters Description 
t  time 

2
b
OC  concentration of 2O  per unit volume of the bed 

z  vertical coordinate 

2Or  rate of 2O  

2
b
OD  diffusion of 2O  

ε  porosity of the bed 

aK  mass transfer coefficient for 2O  at the air/biofilm interface 

xa  area of the air/biofilm interface per unit volume of the bioreactor 

H  Henry’s law constant 

2
f

OC  concentration of 2O  within the biofilm 

WC  liquid water concentration per unit volume of bed 

VAPC  water vapor concentration per unit volume of bed 

VAPD∗  effective diffusion coefficient of water vapor within the bed 

2H Or  metabolic rate of water production 

sρ  density of the bed 

spC  heat capacity of the bed 

T  bed temperature 

bK  thermal conductivity of the bed 

Qr  rate of metabolic heat production by the microorganism 
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3. Solution of the Balance Equations for 
Bioreactors 

Theorem. The (weak) solution of oxygen balance 
equations, water balance and energy balance equations for 
bioreactors exists and is unique. Also, the obtained 
solution supports infinite diffusion speed of disturbances. 
Then can be suitable for heat and mass–transfer models in 
(semi-infinite) SSF bioreactors with more diffusion. 

Proof. Consider an open, bounded subset U  of .nR  
Consider the initial/boundary-value such as 
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Where (0, ]TU U T= ×  for some fixed time 0,T >  

: Tf U → R  and :g U → R  are given, and : Tu U → R  
is the unknown; ( , ).u u x t=  The letter P  denotes a 
second–order partial differential operator for each time t  
with the nondivergence form 
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For 1
0, ( ),u v H U∈  0 t T≤ ≤  almost everywhere.  

Let ( , )u x t  is a smooth solution of the parabolic 
problem (1). To change the point of view,  associate with 
u  a mapping, 1

0: [0, ] ( )u T H U→  defined by 
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Returning to problem (1), similarly define 
2: [0, ] ( )f T L U→  such that  
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Fixing a function 1
0 ( )v H U∈ and integrating by parts 
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for each 0 ,t T≤ ≤  the pairing (, )  in equation (4) 

denoting inner product in 2 ( )L U  and F  is defined as the 
equation (3). Then 
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Thus the right hand side of (5) lies 1( ).H U−  This 
estimate suggests it may be reasonable to look for a weak 
solution with 1( )H U−′∈u  for almost everywhere time 
0 .t T≤ ≤  

Then, reformulate the equations of Table 1 as Table 3: 

Table 3. Description of balance-transport models 

Balance Equation Substitution Heat Equation 
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The initial/boundary value problem (1) covers all of the 

models which expressed in Table 3 and they can be 
reformulated to the form of (2). Therefore, the only 
remaining work is to examine the existence and 
uniqueness of their answer. 

Assume the functions 

 ( )( 1,..., )k k x k mϕ ϕ= =  

are smooth, and { } 1k kϕ ∞
=  is an orthogonal basis of 

1
0 ( )H U  and is an orthonormal basis of 2 ( ).L U  Fix a 

positive integer .m  In this way, a function 
1
0: [0, ] ( )m T H U→u  of the form 

 
1

( ) : ( )
m

k
m m k

k
t tρ ϕ

=
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can be found with the coefficients 

 ( )(0 , 1,..., )k
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 (0) ( , ),k
m kgρ ϕ=  (7) 
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for ( 1,..., )k m=  and satisfies the equation 

 ( ) [ ], , ; ( , )
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 (8) 

where, (, )  denotes the inner product in 2 ( ).L U  
In this way, the problem converts to the Finding a 

function mu  of the form (6) which satisfies the projection 
(7) of problem (1) onto the finite dimensional subspace 

spanned by { } 1k kϕ ∞
= .  

For this purpose, assume that mu  has the structure (6), 
then 
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 [ ] [ ]
1

, ; ( ) ( ), ( ) , ; .
m

kl l kl
m k m l k

l
F t e t t e t F tϕ ρ ϕ ϕ

=
= =∑u  

Let 

 ( ) : ( ( ), )( 1,..., ),k
kf t f t k mϕ= =  

then (8) becomes the linear system of ODE 
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subject to the initial conditions (7). There exists a unique 
absolutely continuous function 
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satisfying (7) and (8) for almost everywhere 0 .t T≤ ≤   
It will be shown a subsequence of the solutions mu  of 

approximate problems (8), (9) converges to a weak 
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coefficients of ,L  such that 
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Next fix an integer N  and choose a function 
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respectively, choose ,m N≥  multiply (8) by ( ),ke t  sum 
on 1,..., ,k N=  and then integrate with respect to t . This 
process results to 
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weak limits that 
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Set lm m=  and once again employ (11) to find 
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Also a weak solution of (1) is unique. For this purpose, 
it suffices to check that the only weak solution of (1) with 
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0f g= =  is 0.≡u  To this, observe that by setting =v u  
in identity (15) (for 0f = ), 
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For the last assertion of the theorem, suppose 

V V U⊂ ⊂  and V  is compact and connected. Then there 
exists a constant c  such that the Harnak's inequality 

1 2Sup (., ) inf (., )
VV
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The constant c  depends only on 1 2, ,V t t  and the 

coefficient of P  (of course, if the coefficients are 
continuous or bounded, it is manageable, too).  

In this way, Harnack's inequality states that if u  is a 
nonnegative solution of the parabolic PDE (1), then the 
maximum of u  in some interior at a positive time can be 
estimated by the minimum of u  in the same region at a 
later time. 

Of course, SSF bioreactors have these features 
geometrically and all the equations in Table 1 have these 
conditions, therefore, their diffusion will be controlled by 
this method. 

The steps of the proof steps can be summarized in 
Figure 1. 

 
Figure 1. Structure of the Proof of Theorem 

4. Conclusions 

In this paper, a new method for obtaining the solution 
of oxygen balance equations, water balance and energy 
balance equations for bioreactors are presented. The 
proposed approach was based on the advanced concepts of 
functional analysis, such as the Sobolev spaces and weak 
solutions which led to the simplification of the problem 
and the reduction of partial differential equations into 
ordinary differential equations. In fact, Galerkin method 
convert the differential equation, in a weak formulation, to 
a discrete problem by applying linear constraints 
determined by finite sets of basis functions. The proof-of-
process also lead to show that the approach offered was of 
the best kind and the weak solution is the best one in this 
structure. 

One of the advantages of the proposed method can be 
well outlined in its superiority to the numerical methods 
used for these important problems of mass and heat 
transfer. The other benefit is that it supports infinite 
diffusion speed of disturbances. Then can be suitable for 
heat and mass–transfer models in (semi-infinite) SSF 
bioreactors with more diffusion. 
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