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Abstract  In the present paper using S.L. Sobolev’s method interpolation splines minimizing the semi-norm in 
2 2( )K P  space are constructed. Explicit formulas for coefficients of interpolation splines are obtained. The obtained 

interpolation spline is exact for the functions 
1
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x
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1
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x
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. Also we give some numerical 

results where we showed connection between optimal quadrature formula and obtained interpolation spline in the 
space 2 2( )K P . 
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1. Introduction 
In order to find an approximate representation of a 

function ϕ  by elements of a certain finite dimensional 
space, it is possible to use values of this function at some 
finite set of points xβ , = 0,1,..., Nβ . The corresponding 
problem is called the interpolation problem, and the points 
xβ  the interpolation nodes. 

There are polynomial and spline interpolations. Now 
the theory of spline interpolation is fast developing. Many 
books are devoted to the theory of splines, for example, 
Ahlberg et al [1], Arcangeli et al [2], Attea [3], Berlinet 
and Thomas-Agnan [4], Bojanov et al [5], de Boor [7], 
Eubank [9], Green and Silverman [12], Ignatov and 
Pevniy [17], Korneichuk et al [18], Laurent [19], 
Mastroianni and Milovanovic [20], Nürnberger [21], 
Schumaker [23], Stechkin and Subbotin [29], Vasilenko 
[30], Wahba [32] and others. 

Suppose the functions ϕ  belong to the Hilbert space 
(see [[1], Chapter 3]) 
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here each ( )ja x  ( = 0,1,...,j m ) is in [ , ]jC a b  and 

( )ma x  does not vanish on [ , ]a b . Let *L  be a formal 
adjoint of L  and  
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The equality (1.1) is semi-norm and = 0ϕ   only for a 
solution of the equation = 0Lϕ . We give definition of 
generalized splines following [1, Chapter 6]. If 

0 1: = < < ... < =Na x x x b∆  is a mesh on [ , ]a b , then a 
generalized spline (or L -spline) of deficiency k  
( 0 k m≤ ≤ ) with respect to ∆  is a function ( )S x∆  which 

is in 2 ( , )m kK a b−  and satisfies the differential equation  

 * = 0L LS∆  

on each open mesh interval of ∆ . The ordinary spline 
(deficiency one) allows discontinuities in the (2 1)m − th 
derivative, but only at mesh points. 

If the exact values ( )xβϕ  of an unknown smooth 

function ( )xϕ  at the set of points { , = 0,1,..., }x Nβ β  in 
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an interval [ , ]a b  are known, it is usual to approximate ϕ  
by minimizing  

 ( ) 2( ( ))
b m
a

g x dx∫  (1.3) 

in the set of interpolating functions (i.e., ( ) = ( )g x xβ βϕ , 

= 0,1,..., Nβ ) of the Sobolev space ( )
2 ( , )mL a b . Here 

( )
2 ( , )mL a b  is the Sobolev space of functions with a square 

integrable m -th generalized derivative. It turns out that 
the solution is a natural polynomial spline of degree 
2 1m −  with knots 0 1, ,..., Nx x x  called the interpolating 

mD  spline for the points ( , ( ))x xβ βϕ . In non periodic 
case first this problem was investigated by Holladay [16] 
for = 2m  and the result of Holladay was generalized by 

de Boor [6] for any m . In the Sobolev space ( )
2
mL  of 

periodic functions the minimization problem of integrals 
of type (1.3) was investigated by I.J.Schoenberg [22], 
M.Golomb [13], W.Freeden [10,11] and others.  

We consider the Hilbert space  
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The equality (1.4) is semi-norm and = 0ϕ   if and 
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Consider the following interpolation problem: 
Problem 1. Find the function 2 2( ) ( )S x K P∈  which 

gives minimum to the norm (1.4) and satisfies the 
interpolation condition  

 ( ) = ( ), = 0,1,...,S x x Nβ βϕ β  (1.5) 

for any 2 2( )K Pϕ ∈ , where [0,1]xβ ∈  are the nodes of 
interpolation.  

Following [[30], p.45, Theorem 2.2] we get the analytic 
representation of the interpolation spline ( )S x   
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where Cγ , = 0,1,..., Nγ , 1d , 2d  are real numbers,  
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and ( )G x  is a fundamental solution of the operator 
4 2

4 2
d d 1
d dx x

+ + , i.e., is a solution of the equation  

 (4) (2)( ) ( ) ( ) = ( ),G x G x G x xδ+ +  

here ( )xδ  is Dirac’s delta function. It should be noted that 
the rule for finding a fundamental solution of a linear 
differential operator  
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where ja  are real numbers, is given in [31, p.88]. Using 

this rule, it is found the function ( )G x  which is a 

fundamental solution of the operator 
4 2

4 2
d d 1
d dx x

+ +  and 

has the form (1.7). 
Furthermore from [30, p.45-47] it follows that the 

solution ( )S x  of the form (1.6) of Problem 1 is exists, 
unique when = 1,2,...N  and coefficients Cγ , 

= 0,1,2,..., Nγ , 1d , 2d  of ( )S x  are defined by the 
following system of 3N +  linear equations  
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where 2 2( )K Pϕ ∈ . 

It should be noted that systems for coefficients of mD  
splines similar to the system (1.8)-(1.10) were investigated, 
for example, in [2,8,17,19,30]. 

The main aim of the present paper is to solve Problem 1, 
i.e., to solve the system (8)-(10) for equal spaced nodes 

=x hβ β , = 0,1,..., ,Nβ  = 1/h N , = 1,2,...N  and to 

find analytic formula for coefficients Cγ , γ=0,1,...,N , 1d  

and 2d  of ( )S x . 
The rest of the paper is organized as follows: in section 

2 we give the algorithm for solution of system (1.8)-(2.10) 
when the nodes xβ  are equal spaced. Using this algorithm 

coefficients of the interpolation spline ( )S x  are computed 
in section 3. In section 4 some numerical results are 
presented. 
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2. The Algorithm for Computation of 
Coefficients of Interpolation Splines 

In the present section we give the algorithm for solution 
of system (1.8)-(1.10) when the nodes xβ  are equal 
spaced. Here we use similar method suggested by S.L. 
Sobolev [26,28] for finding the coefficients of optimal 
quadrature formulas in the space ( )

2
mL . Below mainly is 

used the concept of discrete argument functions and 
operations on them. The theory of discrete argument 
functions is given in [27,28]. For completeness we give 
some definitions about functions of discrete argument. 

Assume that the nodes xβ  are equal spaced, i.e., 

= ,x hβ β  1=h
N

, = 1,2,...N . 

Definition 2.1. The function ( )hϕ β  is a function of 
discrete argument if it is given on some set of integer 
values of β . 
Definition 2.2. The inner product of two discrete 
functions ( )hϕ β  and ( )hψ β  is given by  

 [ ]
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∞
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if the series on the right hand side of the last equality 
converges absolutely. 
Definition 2.3. The convolution of two functions ( )hϕ β  
and ( )hψ β  is the inner product  
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Now we turn to our problem. 
Suppose that = 0Cβ  when < 0β  and > Nβ . Using 

above mentioned definitions, we rewrite the system (1.8)-
(1.10) in the convolution form  
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Thus we have the following problem. 
Problem 2. Find the discrete function Cβ , = 0,1,..., Nβ  

and unknown constants 1d , 2d  which satisfy the system 
(2.1)-(2.3).  

Further we investigate Problem 2 which is equivalent to 
Problem 1. Instead of Cβ  we introduce the following 
functions  

 ( ) = ( )* ,v h G h Cββ β  (2.4) 
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In such statement it is necessary to express the 
coefficients Cβ  by the function ( )u hβ . For this we have 

to construct such operator ( )D hβ  which satisfies the 
equality  

 ( )* ( ) = ( ),D h G h hβ β δ β  (2.6) 

where ( )hδ β  is equal to 0 when 0β ≠  and is equal to 1 
when = 0β , i.e., ( )hδ β  is the discrete delta-function. In 
connection with this the discrete analogue ( )D hβ  of the 

operator 
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d d 1
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+ + , which satisfies equation (2.6) is 

constructed in [14] and its some properties were 
investigated. Following in [14] we have: 
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is a zero of the polynomial  

 2
2 ( ) = 1,Q pλ λ λ− +  

and 1| |< 1λ  and h  is a small parameter. 
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corresponding to the function ( )G x  defined by (1.7) and 
( )hδ β  is the discrete delta function.  
Then taking into account (2.5), (2.6) and Theorems 2.1 

and  2.2, for the coefficients we have  
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Thus if we find the function ( )u hβ  then the 
coefficients Cβ  can be obtained from equality (10). In 
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we have the following problem: 
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where 1d− , 2d− , 1d+ , 2d+  are unknown coefficients.  
It is clear that  
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These unknowns 1d− , 2d− , 1d+ , 2d+  can be found from 
equation (2.11), using the function ( )D hβ . Then the 
explicit form of the function ( )u hβ  and coefficients Cβ , 

1d , 2d  can be found. Thus Problem 3 and respectively 
Problems 2 and 1 can be solved. 

In the next section we realize this algorithm for 
computation of coefficients Cβ , = 0,1,..., Nβ , 1d  and 

2d  of the interpolation spline (1.6)  for any = 1,2,...N . 

3. Computation of Coefficients of 
Interpolation Spline (1.6) 

In this section using the algorithm which is given in 
Section 2 we obtain explicit formulas for coefficients of 
interpolation spline (1.6) which is the solution of Problem 
1. 

It should be noted that the interpolation spline (1.6) 
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The following holds 
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which minimizes the norm (1.4) with equal spaced nodes 
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1d+ , 1d− , 2d+ , 2d−  are defined by (3.3), (3.7).  

Proof. First we find the expressions for 2d−  and 2d+ . 
From (2.12) when = 0β  and = Nβ  we get  
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Now we have 2  unknowns 1d− , 1d+ . These unknowns we 
find from (2.11) when = 1β −  and = 1Nβ + . 

Taking into account (2.12) and Definition 2.3 from 
(2.11) we have  
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where < 0β  and > Nβ . 
Hence for = 1β − , = 1Nβ + , taking into account (3.3) 
and (2.7), after some calculations we obtain  
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where  
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(3.5) 
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Hence we get  
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Combaining (2.13), (3.3) and (3.7) we obtain 1d  and 

2d  which are given in the statement of  Theorem 3.1. 
Now we calculate the coefficients Cβ , = 0,1,..., Nβ . 

Taking into account (2.12) from (2.10) for Cβ  we have  
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From here using (2.7), taking into account notations (3.1), 
(3.2) when = 0,1,..., Nβ  for Cβ  we get expressions 
which are given in the statemant of Theorem 3.1. 

Theorem 3.1 is proved.  

4. Numerical Results 
As numerical examples we consider the following 

functions  

 1 2 3 2
1( ) = , ( ) = tan( ), ( ) = .

1
xx e x x x

x
ϕ ϕ ϕ

+
 

Applying the interpolation spline (1.6) to the functions 
1 2, ,ϕ ϕ  and 3ϕ , using Theorem 3.1 with = 5, 10N  we 

get corresponding interpolation splines denoted by 
1( , )S xϕ , 2( , )S xϕ  and 3( , )S xϕ . Graphs of absolute 

errors between functions and corresponding interpolation 
splines are displayed in the Figure 4.1 and Figure 4.2. 

 

Figure 4.1. Graphs of the absolute errors for = 5N : a) 1 1| ( , ) |S xϕ ϕ− , 
b) 2 2| ( , ) |S xϕ ϕ− , c) 3 3| ( , ) |S xϕ ϕ− . 

 

Figure 4.2. Graphs of the absolute errors for = 10N : a) 
1 1| ( , ) |S xϕ ϕ− , b) 2 2| ( , ) |S xϕ ϕ− , c) 3 3| ( , ) |S xϕ ϕ−  

In Figure 4.1, Figure 4.2 one can see that by increasing 
values of N  the absolute errors between interpolation 
splines and given functions are decreasing. 

It should be noted that in [15] the optimal quadrature 
formula of the following form  
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0
=0

( )d ( ),
N

x x C xβ β
β

ϕ ϕ≅ ∑∫  (4.1) 

was constructed in the space 2 2( )K P  and the following 
was proved 
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Theorem 4.1 (Theorem 7 of [15]). The coefficients of 
the optimal quadrature formulas in the sense of Sard of 
the form (4.1) in the space 2 2( )K P  are  
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where 1λ  is given in Theorem 2.1 and 1| |< 1λ .  
In [15] in numerical results were considered the 

functions 1 2 3( ), ( ), ( )x x xϕ ϕ ϕ  and corresponding 
integrals  
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Applying the optimal quadrature formula (4.1), with 
= 10,100,1000N , to the previous integrals were obtained 

their approximate values denoted by NI , NJ , and NK , 
respectively. The corresponding absolute errors are 
displayed in Table 4.1 (Table 4.1 of [15]). Numbers in 
parentheses indicate decimal exponents. Now applying the 
interpolation spline (1.6), with = 10, 100, 1000N  to the 
functions 1 2 3( ), ( ), ( )x x xϕ ϕ ϕ  using Theorem 3.1 we get 
corresponding interpolation splines 1( , )S xϕ , 2( , )S xϕ  and 

3( , )S xϕ . Further integrating of the differences  

 1 1 2 2 3 3( ) ( , ), ( ) ( , ), ( ) ( , )x S x x S x x S xϕ ϕ ϕ ϕ ϕ ϕ− − −  

Table 4.1. Absolute errors of quadrature approximations NI , NJ , NK  

N  NI I−  | |NJ J−  | |NK K−  

10 2.642(-4) 3.767(-4) 1.356(-5) 

100 2.679(-7) 3.987(-7) 1.214(-8) 

1000 2.683(-10) 4.004(-10) 1.201(-11) 

and taking their absolute values we get the results of the 
Table 4.1, i.e.  
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Thus, we conclude that by integrating the interpolation 
spline of the form (1.6) which minimize the norm (1.4) in 
the space 2 2( )K P  we obtain optimal quadrature formula 
in the sense of Sard of the form (4.1) in the same space. 
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