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Abstract  Localization, navigation, and mapping using vision-based algorithms are an active topic in underwater 
robotic applications. Although many algorithms developed in recent years, especially in the ground and areal robotic 
communities, directly applying those methods in underwater navigation remain challenging due to the visual 
degradation induced by the medium. In this paper, we proposed UW-SLAM (Underwater SLAM), a new monocular 
visual SLAM algorithm focused on the underwater environment which addresses the turbidity and dynamism. The 
proposed method was evaluated with several underwater datasets with comparison to the state of the art monocular 
SLAM methods. 
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1. Introduction 

Exploration of the oceans and shallow waters is 
attracting the interest of many industries and institutions 
all over the world, because of the valuable resources, the 
knowledge that it houses for scientists, and also for rescue 
purposes. For the past decades, remotely operated vehicles 
(ROV) are the widely used method for the exploration of 
the underwater environment. ROVs operated using a 
wired connection between the operator and the vehicle 
which limits usability and maneuverability. Due to these 
limitations, ROVs are now replaced by Autonomous 
Underwater Vehicles (AUVs). Although AUVs offers 
unique advantages over ROV and also present a  
uniquely challenging navigational problem as they operate 
autonomously in a highly unstructured environment where 
satellite-based navigation isn’t directly available [1]. 
Navigation plays a significant role in the operation  
of AUVs and consists of two fundamental aspects 
localization and mapping [2]. Currently used methods  
for AUV navigation can be grouped into three categories 
[1]. 

1.  Inertial / Dead Reckoning 
2.  Acoustic transponders and modems techniques 
3.  Geophysical navigation 
An inertial navigation system (INS) is navigation that 

uses a processing unit, motion sensors (accelerometers), 
rotational sensors (gyroscopes), and magnetic sensors 
(magnetometers) to continuously calculate the dead 
reckoning the velocity, orientation, and the position of the  
 

moving object without any need for external references. 
All of the methods in this category have position error 
growing with time and need to be corrected by an external 
reference. Acoustic transponders and modems are used to 
measure the time-of-flight (TOF) of the sound signals 
underwater. Different types of acoustic-based sensors such 
as Doppler Velocity Log (DVL), Mechanically Scanning 
Imaging Sonar (MSIS), Underwater Acoustic Positioning 
System (UAPS), bathymetric sonars, Side scan, etc  
have been developed. On the other hand, geophysical 
navigation techniques need external environmental 
information as references for navigation. This is achieved 
by detecting, identifying, and classifying of environmental 
features by using various kinds of sensors such  
as Cameras, Laser range finders, magnetic sensors, 
pressure/depth sensors, and processing those sensor data 
with effective fusion algorithms [1]. 

Sonar-based (Acoustic Navigation) methods are the 
most extended approach in the underwater robotics 
community, because of the good properties of sound 
propagation in the water. However, these are more suited 
for long distances underwater missions and not for  
short-range missions (below 1 m) [1]. The high cost of the 
acoustic sensors and the infrastructure required for 
acoustic-based sensing limit their usability in small-scale 
AUVs and bio-inspired vehicles such as Robotic fish  
[2]. Further, most of the underwater missions are used  
for inspection purposes that require sub metric  
accuracy, which is difficult and expensive to achieve  
with acoustic type sensors. However, when navigating 
close to the seabed or the inspection structures,  
visual information becomes available and cameras  
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can be used as an inexpensive alternative to sonar based 
sensors. 

Underwater vision navigation systems are already 
implemented in many applications including underwater 
infrastructure inspection and maintenance, power or gas 
line inspection, transmission or communications cable 
monitoring, marine life monitoring, military missions, 
deep underwater seabed reconstruction, inspection of 
sunken old ships, ship hull inspection, etc. Vision is 
essential for all these applications, either as a main 
navigation sensor or as a supplement for other navigation 
systems such as sonar. Therefore there is a high 
motivation to improve the vision-based underwater 
navigation techniques by expanding its independence, 
capabilities, and utility [3]. 

One of the main objectives of this research is to develop 
a vision based Simultaneous Localization and Mapping 
(SLAM) navigation algorithm as the main navigational 
method. Several recent investigation in to this can be 
found in [1,4,5,6,7]. Currently, vision based navigation is 
an Active research area specially in ground robotic 
communities. These systems can be categorized according 
to the type of sensors that they used as mono vision,  
stereo vision, RGB-D, and Lidar. Even though  
many solutions are available, most of them have failed  
in underwater. These failures occur due to many reasons 
such as decrease of operating range dramatically  
in muddy or turbid waters, light scattering, light wave 
attenuation in the medium, image poorly contrast and hazy, 
and image blur etc. Therefore, the images need extensive 
correction before using them in a navigational algorithm. 
There have been many researches published regarding the 
underwater image correction and enhancement. It has been 
observed though out the literature that most of the image 
correction and enhancement methods are targeted at 
improvement of the visible quality of the standalone 
images, whereas very few of them looked at the 
improvement for visual navigation, such as detection and 
tracking quality of the feature on the entire images 
[8,9,10]. 

It is noted that the mono SLAM system is more 
challenging compare to other systems and fairly easy and 
cost-effective to implement [11]. The camera used as a 
way of observation in most of the underwater vehicles can 
be used for navigation purposes. On the other hand, Stereo 
cameras are way more expensive compared to the mono 
cameras and stereo 3D observation fails when the scene of 
observation is far away from the baseline. In such a 
situation, stereo systems are meant to work as a mono 
system. RGB depth cameras are a good sensor to observe 
the depth information of the scene and a frequent choice 
for ground robotic navigation [12,13]. However, in 
underwater conditions RGB-D camera range decreases 
drastically as the IR wavelength absorbs by the water. It 
has experimented that RGB-D camera works effectively 
only up to 20cm in underwater [14,15]. To navigate using 
depth cameras, AUV needs to be very closer to the ocean 
bottom (lower than the 20 cm) and it is not recommended 
as the ocean floor is highly unstructured. Further, many 
other factors are affecting the quality of the observed data 
from depth sensors and need extensive corrective actions 
for effective use. 

Several articles on the use of laser sensors, such as 
Light Detection and Ranging (LIDAR) in use for the 
underwater SLAM are reported in the literature. LIDAR 
uses a laser beam projection by emitting a very powerful 
laser beam that can hardly be weakened by water. 
Therefore, a vision with laser can recover more accurate 
localization than a single camera [2]. Despite the cost, 
LIDAR is a good choice for observing 3D metric 
measurement of the environment. They are a very popular 
choice on ground robotic navigation. Even though low-
cost LIDAR are available, they are not meant to use 
underwater, as those LIDAR need extensive calibration to 
operate underwater. There are specifically designed 
underwater LIDARs which mainly used for underwater 
structure inspection purposes. As far as the cost is 
concerned, LIDAR solutions are expensive for small scale 
underwater vehicles. As such this research focuses on the 
development of a mono camera-based navigation system 
for the AUV. 

Mono camera navigation is a well rich research topic in 
the ground and areal robotic communities. A few attempts 
of mono camera navigation in underwater robots are 
reported in the literature and will be discussed in the 
review, in section 2. There are three main types of  
mono camera-based navigation systems: Direct method, 
Feature-based method, and hybrid method. In the direct 
method the intensity values of each and every pixel match 
with the other image pixel intensity values on an epipolar 
line. In the feature-based method, a set of defined feature 
points, that are matched across the image frames. The 
third category is a hybrid method where a combination of 
both was taken in to action. In this research, more focus is 
given on feature point-based methods as almost all  
of the vision-based underwater navigation systems were 
designed using feature point-based methods and direct 
methods have a tendency to frequent failing in underwater 
conditions [16]. In underwater conditions, most of the 
scenes can be observed by a down-looking camera, and 
most of the cases, observe scene is flat. Due to low light 
conditions and the use of artificial light in the low texture 
underwater environment, the observed scene has nearly 
the same level of intensities in most of the pixels, which 
makes a lot of false positives in direct based methods. As 
a result, many direct based methods tend to fail in 
underwater.  

In this research, a feature point-based method is used to 
build up the navigation algorithm. AUVs are slow-moving 
vehicles and it is obvious that the scene will not move 
drastically between each successive frame. This fact 
motivates us to use Kanade-Lucas-Tomasi (KLT) [17] 
point tracker for the frame to frame tracking. Corner 
points were detected using Harris detector [18]. This 
combination of detection and tracking resulted in  
a low computational load compared to the descriptor 
based tracking method. Also, it is observed that the 
descriptor-based tracking method fails in underwater 
conditions with increase turbidity levels as described  
by Maxime Ferrera et al [16]. Further, they showed  
Harris corner detector combined with KLT point tracker 
gives a better result in high turbidity environments.  
The feature detector evaluation for underwater images 
presented in [19] and [20] also stated the robustness of the 
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Harris corner detector and KTL for different turbidity 
images. 

In this paper, we proposed UW-SLAM (Underwater 
SLAM), a new monocular visual SLAM algorithm with 
loop closing capabilities dedicated to the underwater 
environment with all the major components of a complete 
visual SLAM [21], which include visual initialization, 
data association, pose estimation, map generation, 
BA/PGO/map maintenance, failure recovery, and loop 
closure. In addition, an image preprocessing functionality 
is introduced to overcome the visual degradations, 
mentioned above. The proposed system consists of three 
threads and works on a key frame-based method with 
optimization to correct the non-linear error. A hybrid 
model using both descriptor and non-descriptor based 
feature points were proposed that effectively incorporate 
the advantages of both methods. Harris corner detector 
and KTL tracker are used as the frame to frame feature 
tracking purpose and SURF feature to detect the loop 
closer. The front end of our system consists of image 
acquisition, image preprocessing (enhancement), and 
feature point detection and tracking. The back end of the 
algorithm consists of Bundle adjustment Loop closer 
detection and pose graph optimization to ensure minimal 
drift. 

This paper contributions are as follows: 
  Development of hybrid tracking method based on 

descriptors and non-descriptor based feature points 
for underwater visual SLAM. 

  Development of UW-SLAM: a monocular Visual 
SLAM with loop closer robust to turbidity and short 
occlusions. 

  Modified bag of feature loop closer detection 
system for underwater navigation match between 
groups of keyframes with clustering. 

  Large scale operation using submap with scale 
correction during the loop closer. 

  Comparison of the Proposed UW-SLAM with state-
of-the-art open-source monocular Visual odometry 
and Visual-SLAM algorithms on two underwater 
datasets. 

The rest of the paper is organized as follows. A review 
of recent research work related to underwater visual 
navigation is reported in section 2. In Section 3, the 
development of the UW-SLAM is described and section 4 
describes the modified loop closer method. Finally,  
the evaluation of the UW-SLAM with two publically 
available data sets, one with syntactically made and one 
with real data from an underwater mission is described in 
section 5. 

2. Related Work 

The localization of robots from the output of a single 
camera system has been an active topic of research for  
the last fifteen years. Generally, visual SLAM can be 
categorized into two sections: filter-based and non-filter 
based. Filter based solutions are more common before 
2010 and non-filter based methods attracted attention 
thereafter [21]. Strasdat et. al stated that key frame-based 
techniques are more accurate than filtering based  
 

techniques for the same computational cost [22]. Several 
surveys for the general SLAM reported in the literature, 
but only a few of them address the monocular SLAM 
extensively. More recent surveys can be found in 
[21,23,24] where [23] describes a complete mono SLAM 
problem, [21] describes non-filter keyframe based  
SLAM and [24] describes filter-based visual SLAM 
extensively. Most of the SLAM problems were developed 
based on mobile robot and ground vehicles but later 
extended to underwater robot communities with extended 
difficulties.  

The earliest system developed based on the most 
characteristic of a keyframes SLAM is probably PTAM by 
Klein and Murray [25]. They introduce the idea of 
splitting tracking and mapping in separate threads. This 
was the first attempt in using bundle adjustment in  
real-time. After that, many techniques were developed 
based on PTAM. Strasdat et al. [26] added a loop  
closer with pose graph optimization using similarity 
constraints (7DoF). 7DoF can correct scale drift in 
monocular SLAM. Pirker et al. [27] The proposed  
CD-SLAM is a complete system, including loop closure, 
repositioning, large-scale activation, and efforts to  
work on dynamic environment. Ra´ul Mur-Artal et al. [28] 
develop Orb SLAM, which uses Orb features for all the 
SLAM tasks. Further, recently published dense and  
semi-dense methods such as DTAM [29] and LSD-SLAM 
[30] are also getting attraction, especially in UAV 
navigation. 

The use of visual odometry for underwater navigation 
goes back to 2003 when Gracias proposed an approach  
for vision-based navigation of underwater vehicles that 
relies on the use of large-scale video mosaics of the sea 
bottom as environmental representations for navigation 
[16]. Their work relies solely upon the vision to provide 
information for all the relevant degrees of freedom as 
heading, pitch, and yaw information. Authors have used 
Harris corner detection method to extract point features 
and the matching was conducted using KTL tracker. 
Authors have proved accurate navigation on large areas 
using previously acquired mosaics for large periods, 
without the use of any additional sensory information. 
Eustice, Pizarro, and Singh in 2008, developed a visual 
navigation method called, visually augmented navigation 
(VAN) to improve the precision of near-seafloor 
navigation. This is a multi-sensory based approach that 
combines the benefits of optical and inertial navigation 
using an extended Kalman filter. This uses a camera as an 
accurate and inexpensive perceptual sensor to collect near-
seafloor images and to match directly the overlapping 
image pairs from a calibrated camera [23]. In 2012 the 
same authors proposed an algorithm to overcomes some of 
the specific challenges in feature-poor regions with 
underwater visual SLAM [24]. Kim and Eustice in 2009 
use the same VAN method to ship hull inspection. They 
mount a calibrated monocular camera on a tilt actuator so 
that the camera approximately maintains a nadir view  
to the hull. A combination of scale-invariant feature 
transform (SIFT) and Harris features detectors are used 
within a pairwise image registration [25]. Inspired by the 
VAN several stereo camera navigations were developed 
[26,27,28] which can obtain a metric scale of the map. 
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More recently, mono camera based navigation , a work 
related to the work reported in this research, was  
presented by Maxima et al. [16]. This monocular 
navigation techniques developed using Harris detector  
and KTL tracker found to be robust to the short  
occasion and high turbidity water. Authors also evaluate 
different feature tracking methods for different turbidity 
levels. This system runs in real time up to the frame  
rate of 30Hz. However this system is a visual odometry 
and loop closer and failure recovery systems need  
to be implemented. Another similar work presented in [29] 
includes loop closer with SIFT features. This work  
also an extended version of VAN navigation with  
mono vision but runs only low frame rate (1-2Hz).  
Work presented in [30] and [31] are more suitable for  
high frame rate (10-20Hz). Both of these are stereo 
systems that used stereo mapped point clouds to generate 
camera poses. Bundle adjustment or any of the 
optimization methods have not been used in this  
study. Another Stereo SLAM is presented as Stereo 
Graph-SLAM [32] by Pep Lluis el al. works 10 Hz with 
pose graph optimization.  

3. The Visual SLAM Framework 

The proposed system consists of three threads  
and works on a key frame-based method with an 
optimization routine to accommodate nonliner error. A 
hybrid method is suggested for tracking by incorporating 
the strength of both descriptor and non-descriptor based 
feature points. The front end of the system consists of 
image acquisition, image enhancement, feature point 
detection, and tracking and camera pose estimation.  
Image enhancement is performed by the haze removal 
method proposed by Kaiming et al. [33], followed  
by a contrast stretching. Haze removing is based  
on Dark Channel Prior and can perform a real-time 
enhancement. This enhancement makes the proposed 
system robust to different turbidity levels. After 
enhancement, Harris corner detector is applied to detect 
feature points. Points were selected in the strongest order 
concerning an evenly distributed manner. 2000 points 
were selected in the detection algorithm. As the Harris 
corner is applied, that respective frame is made as  
a keyframe. Creation of keyframe discussed in a  
separate paragraph in the paper. After the acquisition of 
feature points, successive frames were tracked using  
the Kanade-Lucas-Tomasi (KLT) method in a pyramidal 
implementation. The tracking algorithm also equipped 
with a backtrack feature that calculates the forward and 
backward optical flow and keeps the points tracked 
accurately and forwards them to the next tracking cycle. A 
dynamic tracking window is used in this study to avoid 
tracking of fast-moving features such as aquatic lifeforms 
and suspended debris that comes into the field of view. 
This technique makes the navigation algorithm robust to 
short occlusions. The algorithm assumes a perspective 
pin-hole projection system. The mapping from the 3-D 
space to a 2-D image is given with respect to the first 
person’s perspective is expressed in the projection 
equation (1). 
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Where 𝑋𝑋𝑖𝑖 = [𝑥𝑥 𝑦𝑦 𝑧𝑧]𝑇𝑇  be a scene point in the camera 
reference frame and 𝑃𝑃 = [𝑢𝑢 𝑣𝑣]𝑇𝑇 its projection on the 
image plane measured in pixels, 𝜆𝜆 is the depth factor, 𝛼𝛼𝑢𝑢  
and 𝛼𝛼𝑣𝑣  the focal lengths, and 𝑢𝑢0, 𝑣𝑣0 the image coordinates 
of the projection center. Visual odometry can be expressed 
in technical terms as follows: At each frame j, the state of 
the system is estimated through the pose of the camera as 
given in the equation (2). 

 T
j j jp qξ  =    (2) 

Where 𝑝𝑝𝑗𝑗 ∈  ℝ3  is the position of the camera in the 3D 
world coordinate frame and 𝑞𝑞𝑗𝑗 ∈  𝑆𝑆𝑆𝑆(3) is the orientation 
of the camera. Furthermore, for each newly added key 
frame k, we want to estimate new landmarks  𝜆𝜆𝑖𝑖  ∈  ℝ3 are 
estimated and then a subset of keyframes pose with the 
respective observed landmarks is optimized. This set is 
denoted by equation (3) 

 { }1Φ , , , , , , .k k k n i i mξ ξ ξ λ λ− − −= … …  (3)  

Equation no (1) stated above can be rewritten with 
respect to third-person perspective as follows. where  
𝑇𝑇𝑗𝑗  the projective matrix computed from the state  𝜉𝜉𝑗𝑗 . 
𝑇𝑇𝑗𝑗 ∈  𝑆𝑆𝑆𝑆(3), 𝑅𝑅𝑗𝑗 ∈  𝑆𝑆𝑆𝑆(3), 𝑡𝑡𝑗𝑗 ∈  ℝ3 
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3.1. Key Frame Creation 
Keyframe creation is initiated with the triggering one of 

the three criteria. 1. number of active tracking points 2. the 
parallax, 3. the number of frames passes. First criteria 
trigger when the half of the defined number of points lost 
in the tracking process, Second criteria triggers when the 
parallax of the tracked point is larger than 35 pixels, and 
the final criteria trigger when the number of frames exceeds 
45 between the current frame and the last known keyframe. 
The algorithm also calculates the parallax between each 
successive frame and if the parallax is less than a certain 
threshold, those frames were ignored. Parallex is computed 
after unrotating the images. These techniques avoid 
unnecessary computation of very slow motion and 
hovering situations of the UAV. In a new keyframe, the 
algorithm detects new feature points and the system continues.  

3.2. Camera Pose Estimation 
Algorithm is developed to track 2D feature points on 

successive frames and triangulate them to create 3D 
landmarks. Triangulation of 3D landmarks only takes 
place in keyframes. Landmarks and their correspondences 
of 2d feature points were used to estimate the camera 
poses. Algorithm follows the implementation from 
[16,34,35]. Outline of the system represented in Figure 1. 
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Figure 1. Outline of the proposed system 

3.3. Initialization 
In the beginning, the system creates the first keyframe 

with the very first image frame that can acquire a certain 
number of corner points using the Harris detector. Then 
the location and orientation of the first keyframe were 
defined and stored. This location is taken as the origin of 
the creation of the feature map. Then the successive 
frames were tracked by the KLT and when the keyframe 
creation triggers, the system creates the second keyframe 
attach to the current frame. Then the 2D-2D correspondences 
were extracted. Feature point correspondences for both 
keyframes were undergone a thorough outlier removal 
process by checking the epipolar consistency in a 
RANSAC scheme [36]. Then the Essential matrix (E) was 
estimated using the five-point algorithm expressed by 
Nister [37]. The essential matrix was used to estimate the 
relative pose of the second keyframe. The geometric 
relations between two images 𝐼𝐼𝑘𝑘  and 𝐼𝐼𝑘𝑘−1  of a calibrated 
camera are described by the essential matrix Ej. Essential 
matrix contains the camera motion parameters up to an 
unknown scale factor for the translation in the following 
form, where 𝑡𝑡𝑗𝑗  represent a skew symmetric matrix of 
𝑡𝑡𝑗𝑗 ∈  ℝ3. 

 .j j jE t R=  (5) 

It is noted that the pose of the second keyframe  
was estimated up to an unknown scale. Finding this 
unknown scale need to be done with a fusion of additional 
sensors such as DVL, inertial measurement unit(IMU), 
and Pressure sensors, and will be addressed in future 
works. 

3.4. Pose from 2D-3D Correspondence 
Once the two initial keyframes were established, 2D 

correspondence of the feature points were triangulated to 
generate 3D points. Those 3D points with 2D-3D 
correspondence were then used to estimate the next camera 
pose in the upcoming frames. The pose is estimated with 
the Perspective-from-3-Points (P3P) formula, using the 
method expressed by Gao et al [38]. This calculation also 
eliminates spurious correspondences using the M-estimator 
sample consensus (MSAC) algorithm [39]. The pose is 
then further refined by minimizing the global re-projection 
error using nonlinear least-squares optimization, a variant 
of the Levenberg-Marquardt algorithm [40]. It is worth 
noting that this algorithm is not designed to estimate the 
camera pose of each and every frame, but only in 
keyframes. Further, the estimating camera poses of each 
frame are not required as the UAVs are low-speed vehicles. 
Estimation of the poses between two keyframes can be 
carried out by the integration of an IMU with minimum 
computational resources, which will be the focus of future 
work. This technique saves computational resources which 
can be used with other tasks such as motion planning and 
UAV controlling. After refinement of the pose new 3D 
points were triangulated and used with the next iteration. 
Calculated camera pose with the 2D feature point and 3D 
structure points were then saved in a data structure for 
further refinement with the windowed bundle adjustment. 

3.5. Re-tracking 
Unlike the descriptor-based algorithm, UW-SLAM 

does not scan every frame but scans at keyframes. The rest 
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of the frames are tracked using KTL. However, this causes 
an additional problem as the loss of a point will become 
permanent unless it scans in the next keyframe. To void 
this problem a re-tracking mechanism is added as per the 
method proposed by Maxime [16]. The system keeps a 
track of loss points in the last few consecutive frames and 
adds those points to the tracking of the next frames. 

3.6. New Point Detection at A Key-Point 
At every new keyframe, the strongest corner points are 

detected in a distributed manner across the image. Corner 
points that are identical or very closer to the previous 
successive tracked, are identified and rejected using 
scattered data interpolation [41]. Then the remaining new 
points with the previous successive tracked points were 
added to the tracking cycle in a distributed manner up to a 
certain threshold. This takes place on every keyframe 
creation and makes the successive tracked points remained 
in the tracking window until they out of the field of view. 

3.7. Windowed Bundle Adjustment 
After calculating the new camera pose, a windowed 

bundle adjustment is performed in a parallel thread. The 
size of the window kept as five keyframes to seed up the 
process. The first two poses of the window kept as freeze 
poses to minimize the scale drift of the mono system. 
Bundle adjustment runs in two stages as pose only bundle 
adjustment and full bundle adjustment. For full bundle 
adjustment, only the last two keyframes were used. 
Refined 3D structure points were filtered according to 
their re-projection errors and the map was updated 
accordingly. 

4. Loop Closer 

Loop closure detection is an crucial task for any SLAM 
problem. Monocular SLAM loop closer can divide in 
three broad categories: 

I. map-to-map,  
II. image- to-image and  
III. image-to-map. 
A comparison of the above loop closing systems can be 

found in [42,43,44]. In this research, loop closer was 
designed with an image to image mapping techniques 
using the Bag of Feature(BoF) method [45]. Surf features 
were used to create the visual vocabulary from images 
which randomly selected from the data set. Vocabulary 
creation reduces the number of features through the 
quantization of feature space using K-means clustering. At 
each keyframe, the keyframe vectors were stored in an 
inverted index data store. At the same time algorithm 
looks for similar vectors inside the data store. If a match is 
found and the matching score is above a certain threshold, 
the system triggers a loop closer and poses within the loop 
are recalculated and optimized. 

In the classical visual SLAM systems, the loop closing 
detection is performed between two key frames [34]. In 
underwater scenarios, feature matching between pairs of 
keyframes may be insufficient due to low-quality features 
and a poor number of feature points [46]. The loop  

closing algorithm used in this research matches features 
between two groups of keyframes, inspired by the method 
proposed by Lluis Negre et al. [46]. However, we still use 
BoF in the loop closing algorithm. In practice, three 
consecutive keyframes are kept as a group. Feature points 
in a group undergo density-based clustering method 
DBSCAN and the algorithm removes feature points that 
are not included in any of the clusters [47]. This provides 
a larger area with filtered keyframes of very distingue 
scenes of the seabed to be recognized when revisited. In 
practice, this makes more efficient loop closure compared 
with keyframe to keyframe loop closing. 

 
Figure 2. Outline of the Loop Closer 

5. Pose Graph Optimization 

When a Loop closer detected, camera poses and the  
3D point correspondences to those particular poses  
were recalculated. Accumulated drift by the system is 
distributed with the detected loop using g2o optimization 
[48]. Then the algorithm runs a global bundle adjustment 
within the detected loop to further refine the poses  
re-estimate the 3D points. This pose optimization runs on 
a separate thread without affecting the main functions.  

5.1. Sub Map and Failure Recovery System 
It is obvious that mono SLAM tracking can fail  

due to many reasons, such as moving to a non-feature 
terrain, short occlusions, debris and livestock interference 
between the camera and the scene, etc. In order  
to re-initialized tracking, concept of sub mapping is 
introduced. This concept is named as the Hierarchical 
SLAM usually with large scale maps [49]. The submap 
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techniques developed in this research initiates a sub map 
staring from the last known locations when the system 
unable to track the point in the previous submap. Sub 
maps generated by a mono SLAM system are of different 
scales and thus scaling is required to align with other 
submaps. Sub map scaling is an extended version of  
the loop closer where a single loop close position is  
not adequate to retrieve the difference in scale. One 
interesting work on submap scaling and loop closer was 
presented by Williams et al. [50]. Further, comparison of 
the different algorithms was presented in [42]. 

In this research, two types of scenarios were 
investigated as short term and long term solutions for 
tracking failures. Short term solution is proposed when the 
scene is being interfered with the livestock or suspended 
debris and loss of track is for a short time period.  
When the interference cleared, part of the last keyframe 
observations is still visible. In those scenarios, the 
algorithm tries to match the correspondence of the current 
feature points with the last known keyframe images. If 
enough correspondence found, pose and the scale is 
calculated by the P3P algorithm. If the tracking failure in a 
long term, such as moving to a non-feature area, the 
algorithm starts a new submap. 

When a submap initiation triggers, the algorithm moves 
to a constant velocity motion model to predict the last 
pose of the current submap with the initiation of a 
keyframe. The algorithm continues to observe feature 
points from the upcoming images and ones enough points 
are found, it initiates the first pose of the new submap 
with the motion model predictions. Then the rest of the 
poses of the new submap are estimated, as usual using 
five-point algorithm and P3P algorithm. Sub map scaling 
was performed as an image to map comparison with the 
extended version suggested by Reid et al. and Williams et 
al. [42,50]. However, according to the Williams et al. 
scale was observed after finding two-loop closers within  
 

the same set of submap. Moreover in the proposed method 
scale is retrieved after making the first loop closer. Loop 
closer detection function which runs on a separate thread 
is responsible to find the already visited places across the 
different sub-maps. When a loop closer detected as 
described in the loop closer section, 2D to 2D feature 
points are matched using SURF features, and the 
corresponding 3D to 3D points are found accordingly. It is 
noted that these 3D correspondences are on a different 
scale and direct matching is not possible. 2D points 
already matched are then thoroughly checked for epipolar 
constrain under the RANSAC scheme. Outliers are 
removed and 2D to 3D correspondences were generated 
between the current frame and loop detected pose. The 
new pose is calculated with P3P algorithm. Then the 
relative distances between matched 3D points are used to 
calculate the relative scale between two submaps. It is 
worth noting that, theoretically ratio of any relative 
distance between matching 3D points of the two submaps 
should be equal. However, in practice due to non-linear 
error, relative scale consists of many values and the 
median value is obtained as the correct scale factor.  
The estimated scale factor is used to scale the poses and 
the 3D space coordinate points in the pose graph 
optimization thread. Theoretically, if the algorithm finds n 

correspondences, ( )1
2
n n −  sale factors can be derived and 

median gives reasonably accurate results. To demonstrate 
the submap creation, the data set was synthetically 
modified with blank frame to create three submaps. Figure 
3a shows submap with a different scale. The scale 
between first and second sub maps is clearly visible and 
second and third is not visible. That is due to the reason 
that second and third submaps are on the same scale as the 
way the data set is made. (i.e. constant velocity movement 
on camera). Figure 3b shows the corrected pose after the 
scaling of the submaps with the loop closer. 

 
Figure 3. 

Table 1. Drift of The Last Pose Compare To First Pose (* means frequent failures) 

Sequence Turbidity Level UW-SLAM-without Loop Closer UW-SLAM-with Loop Closer OpenVSLAM OpenVSLAM with Loop Closer 

1 None 1.44 0.32 5.91 0.46 

2 Low 1.46 0.38 5.99 0.36 

3 Medium 1.54 0.4 6.04 0.46 

4 High 1.64 0.45 *6.02 *0.55 
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6. Experiment Results 

6.1. Experiment Results in a Simulated 
Underwater Dataset 

An open collection of simulated datasets produced by 
Duarte et al. using an underwater simulator was used to 
test the proposed development [51]. Datasets contain few 
shape of trajectories with four levels of turbidity. To test 
the developed system a triangular trajectory is selected 
with different levels of noises. The resolution of these 
sequences is 320 × 240 pixels. In each sequence, 
trajectory is formed twice and it starts and ends at the 
same place. These four sequences have been used to 
evaluate the robustness of the proposed underwater SLAM 
algorithm against different turbidity levels. However, as 
the initial stage, the lowest turbidly level is used to 

demonstrate the functionality and accuracy of the 
proposed underwater SLAM algorithm. Trajectories with 
and without loop closer for turbidity level 3 and 4 is 
presented in Figure 4. Latest visual SLAM method 
OpenVSLAM is used for comparison [34]. 

6.2. Experiment Results in a Real Underwater 
Dataset 

Newly developed UW-SLAM is compared with the 
dataset presented by Maxime et al [16]. The latest visual 
SLAM methods OpenVSLAM and DSO are used in this 
experiment for comparison [34,52]. OpenVSLAM uses 
ORB features and works similarly to the ORB SLAM [34]. 
DSO is a direct SLAM method. Datasets presented by 
Maxime consist of five sequences with different turbidity 
levels and different short occlusion levels (short occlusion 
due to livestock interference).  

 
Figure 4a. Trajectory with UW-SLAM, row 1 and 2 Turbidity sequence 3 and 4, column 1 without loop closer, column 2 with loop closer 
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Figure 4b. Trajectory with OpenVSLAM, row 1 and 2 Turbidity sequence 3 and 4, column 1 without loop closer, column 2 with loop closer 

 
Figure 5. Drift of the last pose compare to first pose 

Authors of the dataset, already tested the sequence with 
ORB SLAM, LSD SLAM [53], and SVO [16], and stated 
that ORB SLAM fails on sequence no 3, LSD SLAM fails 
on all sequence and SVO on sequences 4 and 5. No loop 
closers recorded in any of the trials [16]. In this research, 
the video sequences were executed with openVSLAM and 
DSO in comparison with UW-SLAM. The results were 

tabulated in Table 2. Results were averaged over five runs. 
UW_SLAM ran with and without a loop closer option and 
the number of loop closers were recorded. UW-SLAM+LC 
means UW-SLAM ran with a loop closer enabled. 

OpenVSLAM fails to run sequence no 3 and 5 and 
DSO on all the sequences. UW-SLAM ran all the 
sequences and recorded successive loop closed for 
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sequence no 1, 2, and 4. Sequence no. 3 is very short run 
and no potential loop closers can be found. Sequence no. 5 
does have one or two potential loop closers but the 
algorithm fails to identify such cases. On the other hand, 
OpenVSLAM is not been able to detect any loop closer 
and either the Orb SLAM and SVO. In contrast, this 
dataset was tested with several visual SLAM and visual 
odometry proposed by the community such as ORB 

SLAM, LSD SLAM, SVO, OpenVSLAM, DSO and none 
of them were successful in completing all five sequence 
and none of them were able to make a loop closer. Only 
the Proposed UW-SLAM and the visual odometry 
proposed by Maxime et al. were able to complete all five 
sequences [16]. Moreover, the proposed method was able 
to loop close in three sequences. Trajectories are shown in 
Figure 6. 

Table 2. Trajectory Evaluation With Different SLAM Methods 

    Absolute Trajectory Error RMSE (%)  
Sequence no Duration Turbidity level Disturbance OpenVSLAM DSO UW-SLAM UW-SLAM+LC # of Loop Closers 

1 4' Low Few 1 X 1.37 1.28 2 
2 2' 22" Medium Some 1.34 X 1.24 1.12 2 
3 22" High Many X X 1.10 1.10 0 
4 4' 30" Low Many 1.37 X 1.21 1.08 2 
5 3' 15" Medium Many X X 1.81 1.81 0 

 
Figure 6. Trajectories of UW-SLAM, UW-SLAM+LC, OpenVSLAM 
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Figure 7. Trajectories of UW-SLAM, UW-SLAM+LC, OpenVSLAM 

6.3. Result of Loop Closer 

The proposed loop close method in the UW-SLAM is 
able to close the loop and estimate the pose successively 
in a few times in sequence no 1,2 and 4. However, these 
values seem to be low as there are more potential 
possibilities for loop closers. However, loop closing 
threads were able to detect many possibilities for loop 
closing which consists of both false positives and true 
positives. Figure 7(a) and 7(b) shows a true negative and a 
false positive match. True positives were filtered out by 
checking epipoler constraint in a RANSAC scheme and 
the poses were estimated using a P3P algorithm in the  
M-estimator scheme [38]. High constraints were set to 
estimate the pose and epipoler constraint as wrong pose 
will shift the trajectory unwantedly. It is often experienced 
that even a true positive match may fail to estimate a 
correct pose in the P3P algorithm. Also noted that for a 
successive loop closer, very distinguished features should 
be observed such as artificial objects or rocks. Figure 7 (c) 
and (d) illustrate two of the loop closer matches proposed 
by the algorithm. Even though the loop closer algorithm 
outperforms the existing bag of feature loop closer method, 
more improvements are needed. Those are being currently 
investigated. 

7. Conclusion 

This research is dedicated to development of a 
keyframe-based monocular SLAM for dynamic underwater 
environment. Descriptor and non-descriptor based feature 
points were studied for tracking and loop closing 
respectively. Proposed algorithm consists of following 
special functionalities that are required in underwater 
vision navigation and not included in popular vison based 
SLAM such as Orb SLAM.  
  Image Preprocessing for high turbidity image 

enhancement.  

  Tracking conducted by Harris detector and KTL 
tracker which robust to turbidity.  

  Re-tracking and adaptive track window selection 
for the robustness of short occlusions.  

  Cluster-based multi keyframe BoF loop closer 
system.  

  Large scale operation with sub maps with failure 
recovery.  

The new algorithm was tested using two different 
datasets and the obtained result shows proposed system 
outperformed the existing underwater monocular SLAM 
method. The proposed method improved the accuracy of the 
trajectory by 5-10%. The developed system runs in real 
time on average 5-8Hz on a commercial laptop of intel i7 
8gb of ram tracking 2000 points on 640 x 480 images. 
Developmet of the algorithm in Mathlab environment is 
available on https://github.com/chintha/UW-SLAM  
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