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Abstract  The paper deals with determination of modal parameters by two software applications. Experimental 
modal analysis was performed by the commercial system Pulse® designed for vibration analysis of mechanical 
structures. The system was used to obtain excitation signals and corresponding response signals. The measurement 
data were subsequently processed in Pulse ReflexTM software and Matlab 2017, of which the signal processing 
toolbox provides the new functionalities specially aimed for modal analysis. The toolbox contains functions to 
calculate frequency response functions and to estimate modal parameters. The aim of the article is to compare the 
results achieved by both softwares when the first approach realized using commercial system is considered as 
reference. The subject of this work is to evaluate the validity of the obtained results and to point out the possibilities 
that the new Matlab toolbox provides. 
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1. Introduction 

Modal analysis has a wide application in solving the 
problems of engineering practice. Its application is mainly 
found in the automotive and aerospace industries or in the 
manufacture of domestic appliances. 

Modal analysis is a process of determining modal 
parameters of mechanical systems. Modal parameters describe 
their dynamic behavior. In general, modal analysis can be 
theoretical or numerical and experimental. Theoretical 
approach deals with mathematical model of mechanical 
system and solves the eigenvalue problem. When the 
modal parameters are determined by measurement it is 
called experimental approach [1,2,3]. 

The basis of experimental modal analysis is to record 
the time histories of excitation force and corresponding 
response of an investigated object. Its dynamic behavior 
can be described in frequency domain by the frequency 
response function FRF or in time domain by impulse 
response function IRF. These functions are calculated 
from measurement data. The relation between FRF and 
IRF is defined by inverse Fourier Transform 
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Frequency response function is defined as the ratio of 
output signal to input signal 
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There are three basic forms of FRFs depending on  
the type of response parameter, which can be either 
displacement or velocity or acceleration, see Table 1. Set 
of all FRFs is called frequency response function matrix. 
Definition of one element of FRF matrix for receptance is 
as follows 

 2 2
1

( ) ,
r rNj j k

jk
k r r

x
F

ϕ ϕ
α ω

λ ω=
= =

−
∑     (3) 

where rλ  is eigenvalue of the r-th mode (natural 

frequency + modal damping), r
jϕ  is he j-th element of the 

r-th natural shapes' vector {Φ}, i.e. relative displacement 
at the j-th point as vibrating with the r-th shape, N is 
number of modes. [2] 

Table 1. Various Types of FRFs According to Response Parameter 

Response parameter Type of FRF 

Displacement Receptance 

Velocity Mobility 

Acceleration Inertance 

 
The vibration modes are determined from FRF or IRF 

by applying special estimation procedures. Each mode is 
characterized by natural frequency, damping ratio and 
mode shape. These characteristics are commonly called 
moda parameters. 
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2. Experimental Modal Analysis with 
Pulse® 

Modal analysis was performed by Pulse® system. The 
investigated object was a steel rod with diameter 22 mm 
and length 800 mm (Figure 1). The responses were 
measured by piezoelectric uniaxial accerelerometer Brüel 
& Kjær type B4507 and object was excited by Brüel & 
Kjær impact hammer type 8206.  

 
Figure 1. Investigated object 

The geometric model consisting of 18 excitation points 
(marked by black-green hammer) and one response point 
(marked by red arrow) is shown in Figure 2. These points 
are referred as degrees of freedom (DOF). The SIMO 
measurement was performed. The rod was freely 
supported using soft foam. Frequency range was set up to 
10 kHz with length of 6400 samples and sampling 
frequency 25.6 kHz. Only bening modes in the direction 
of measurement were considered.  

 
Figure 2 Geometry with DOFs 

The measurement was evaluated in commercial Pulse 
ReflexTM software. The obtained FRFs in the form of 
inertance are shown in Figure 3. 

 
Figure 3. FRFs obtained by Pulse ReflexTM 

The Rational Fraction Polynomial method was used to 
estimate modal parameters. The natural frequencies and 
damping ratios for each identified mode are listed in Table 2. 
Figure 4 – Figure 15 show the corresponding mode shapes. 
It is clear that the mode shapes are more complicated as 
the natural frequency increases. Therefore, more DOFs are 
needed for a better shape representation of higher modes. 

Table 2. Modal parameters estimated by Pulse Reflex® 

Mode Frequency [Hz] Damping ratio [%] 
1 164.80 1.7536 

2 435.91 0.3313 

3 845.64 0.1356 

4 1388.00 0.1183 

5 2055.03 0.1065 

6 2849.16 0.1208 

7 3749.44 0.0619 

8 4753.31 0.0520 

9 5859.11 0.0454 

10 7054.13 0.0436 

11 8333.33 0.0640 

12 9685.42 0.0995 

 
Figure 4. First mode shape 

 
Figure 5. Second mode shape  

 
Figure 6. Third mode shape 

 
Figure 7. Fourth mode shape 

 
Figure 8. Fifth mode shape 

 
Figure 9. Sixth mode shape 
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Figure 10. Seventh mode shape 

 
Figure 11. Eighth mode shape 

 

Figure 12. Ninth mode shape 

 
Figure 13. Tenth mode shape 

 
Figure 14. Eleventh mode shape 

 
Figure 15. Twelfth mode shape 

The above results were considered to be references. The 
excitation time signals and response time signals were 
subsequently exported to wav format. The exported data 
was then imported to Matlab 2017. 

3. Modal Analysis Using Matlab 2017 

Singal Proccesissing Toolbox availabled in Matlab 2017 
includes modal analysis functions that have been used to 
process the data exported from Pulse.  

The function modalfrf was used to compile FRF matrix. 
Its syntax is as follows: 
 
[frf,f,coh] =  modalfrf(x, y, fs, window,... 
   noverlap, 'Estimator', 'H1', 'Measurement',...        
   ' rovinginput', 'Sensor','acc'); 

 
The function modalfrf calulates a FRF matrix from the 

excitation signals (x) and the response signals (y), all 
sampled at a rate fs. The data of signal x and signal y must 

have the same number of rows. If x or y is a matrix, each 
column represents a signal. The signals can be multiplied 
by weighting window function (window). Matlab has a 
wide offer of window functions.  

The output, frf, is an H1 estimate computed using 
Welch's method. Available are other method to estimate 
FRF, H2 and Hv. H1 method is used when there is noise at 
the input signal. H2 method is used when there is noise at 
the output signal. Hv method is used when there is noise at 
the input and output signal. The estimate method is 
determined by a comma-separated pair‚ 'Estimator', 'H1' or 
'H2' or 'Hv'. The defaut is H1 method. The comma-
separated pair 'Sensor', 'acc' or 'vel' or 'dis' is used to 
specifie the response parameter [1,4]. 

The function modalfit is used for the estimation of 
modal parameters from FRFs. Its syntax is as follows 
 
[fn,dr,ms] = modalfit(frf,f,fs,mnum,...  
   'FitMethod', 'lsce', ... 
   'FreqRange', '[100 200]',... 
   'DriveIndex', '[2,3]'); 

 
The function modalfit estimates the natural frequencies, 

damping ratios and mode shapes vectors of modes (mnum 
= number of modes expected in the frequency range) of a 
system having measured frequency response functions  
(frf) defined at frequencies (f) and for a sample rate (fs). 
Least-Square Complex Exponential Methods and Peak 
Picking Methods are available to estimate modal 
parameters. The estimation method is determined by a 
comma-separated pair 'FitMethod', 'lsce' or 'pp'. The 
estimation in a specific frequency range, e.g. from 100 to 
200 Hz, is adjust by a comma-separated pair 'FreqRange', 
'[100 200]'. [4] 

The modalfrf function was used to create a frequency 
response function for all measured combination 
excitation/response. The obtained FRFs are shown in 
Figure 16. 

 
Figure 16. FRFs obtained from measured signals using modalfrf 
function 

As can be seen, the functions are different from the 
references. Therefore, the function tfestimate that uses 
Welch's averaged periodogram method was used to 
compute new FRFs from measured data. Its syntax is as 
follows: 

 



 American Journal of Mechanical Engineering 315 

[frf, f] = tfestimate(x, y, window,... 
noverlap, nfft, fs); 

 
where (nfft) defines the number of sampling points to 
calculate the discrete Fourier transform. The FRFs 
obtained such way are shown in Figure 17. An increased 
noise level may be observed, but sufficient match is 
achieved in the resonance areas. 

 
Figure 17. FRFs obtained from measured signals by the standard 
procedure using Fast Fourier Transform (FFT) algorithm 

The estimation of modal parameters in Matlab was 
carried out by the function modalfit which was applied to 
four frequency ranges 0 ÷ 1 kHz, 1 ÷ 3 kHz, 3 ÷ 5 kHz,  
5 ÷ 7.5 kHz, 7.5 ÷ 10 kHz, respectively. In this case, the 
PP method provides better estimation than the LSCE 
method, especially in terms of damping values. The 
estimated modal parameters are shown in Table 3.  

Table 3. Modal parameters estimated by Matlab functions 

 Peak Picking method LSCE method 

Mode Frequency 
[Hz] 

Damping 
ratio [%] 

Frequency 
[Hz] 

Damping 
ratio [%] 

1. 164.99 1.409 160.65 5.942 

2. 435.90 0.232 436.56 0.485 

3. 845.59 0.086 846.33 0.087 

4. 1387.9 0.070 1389.4 0.099 

5. 2054.6 0.098 2056.2 0.160 

6. 2849.2 0.143 2849.7 2.133 

7. 3749.6 0.078 3752.2 0.162 

8. 4754.0 0.068 4754.6 0.037 

9. 5858.6 0.036 5863.9 0.054 

10. 7053.6 0.033 7054.8 0.060 

11. 8333.4 0.059 8337.7 0.074 

12. 9685.9 0.096 9679.3 0.120 

 
The comparison of the results listed in Table 2 and 

Table 3 shows the sufficient match in natural frequencies 
and damping ratios. Mode shapes identified by modalfit 
function are shown in Figure 18 and Figure 19.  

 
Figure 18. Mode shapes (1-6) estimated by Matlab functions 

 
Figure 19. Mode shapes (7-12) estimated by Matlab functions. 

4. Conclusion 

In the paper, the experimental modal analysis of the 
free supported steel rod was performed for the purpose of 
the assessment the accuracy of the results obtained by 
using the new Matlab functions aimed to estimation of 
modal parameters. The function modalfrf was used to 
calculate frequency response functions, i.e. to built FRF 
matrix from time signals of excitation and response. FRFs 
obtained using these function were not correct compared 
to the references. Therefore, the older function tfestimate 
had to be used instead. It is necessary to note that the 
change of parameter 'Sensor' to 'dis' solved the problem, 
but this setting did not correspond to reality. The function 
modalfit was used for the estimation of modal parameters 
from FRF matrix. The function uses two methods (PP, 
LSCE) for the estimation. Since the both methods have its 
advantages and disadvantages, the emphasis must be 
placed on their use and interpretation of the results. 
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