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Abstract  The present paper is devoted for the following goals: To develop an algorithm for model analysis of 
observational data in the sense of the least –squares criterion with full error analysis.. By this algorithm one 
computes, all the solutions with their variances, the variance of the fit, the average square distance between the least 
square solution and the exact solution, and graphical representation between the row and the fitted data. 
Mathematica module of the algorithm was established, through five points, its purpose –input - output –needed 
procedures and the list of the module. By this paper we have been tried to produce an error controlled algorithm of 
the least squares method for observational data. 
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1. Introduction 
One of the hallmarks of modern astrophysics is the 

extreme rise in the amount of data available and the 
prevalence of images and other data in electronic form 
particularly that available to the public via the Internet. 
The present situation is in marked contrast to the view 
given by Kolb and Turner [1] more than 25 years ago who 
lamented that in cosmology at that time there was a 
paucity of data. There are now so many people involved 
with data reduction and analysis that in the last decadal 
survey there was a call for the formation of a new area of 
astronomy and astrophysics called astroinformatics [3]. 
Latest information on this rapidly emerging discipline can 
be found with listings on the Internet through a Google or 
similar search under that name. 

Astronomers and astrophysicists have always shared 
data and it is even truer today than ever before. The 
electronic data revolution for astrophysics and astronomy 
took real hold in the pre-Hubble spacecraft days with the 
establishment of the NASA/ADC (Astronomical Data 
Center) when catalogs listing data about a number of stars 
and other objects were digitized, recorded on CDs, and 
distributed at national and international meetings for free.  

Although the least-squares method is the most powerful 
techniques that has been devised for the problems of data 
analysis, it is at the same time exceedingly critical. This is 
because the least-squares method suffers from the 
deficiency that, its estimation procedure does not have 
detecting and controlling techniques for the sensitivity of 
the solution to the optimization criterion of the variance 

2σ  is minimum. As a result, there may exist a situation in 
which there are many significantly different solutions that 

reduce the variance 2σ  to an acceptable small value. At 
this stage we should point out that (1) the accuracy of the 
estimators and the accuracy of the fitted curve are to 
distinct problems; and (2) an accurate estimator will 
always produce small variance, but small variance does 
not guarantee an accurate estimator. This could be seen 
from property 3 (Section 3) of the least square solution by 
noting that the lower bounds for the average square 
distance between the exact and the least-squares values is 

2
minσ / λ  which may be large even if 2σ  is very small, 

depending on the magnitude of the minimum eigenvalue, 
minλ , of the coefficient matrix of the least-squares normal 

equations. 
Unless detecting and controlling the above mentioned 

situation, it is not possible to make a well-defined diction 
about the analysis of the observational data. Due to this 
difficulty and the importance of least squares for treating 
the nowadays incredible numbers of the available data, the 
present paper is devoted for the following goals :To 
develop an algorithm for model analysis of observational 
data in the sense of the least –squares criterion with error 
analysis.. By this algorithm one computes, all the 
solutions with their variances, the variance o the fit, the 
average square distance between the least square solution 
an the exact solution an graphical representation between 
the row and the fitted data. Mathematica module of the 
algorithm is also given. 

2. Observational Data 

Let k{x };k 1,2,....,m,=  be a sequences of observational 
data points assumed free from errors. Corresponding to 
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each kx  we have a number kf  of some function f(x)  at 

kx  which generally will be in error. Denote kf(x ) , the 
true value at kx , by kf and define: 

 k k kδ f f ; k 1,2,....,m= − =  (1) 

as the observational errors at different data points. 
The problem in the analysis of the observational data is 

to approximate or fit the data kf  by some function p̂(x)  
in such a way that p̂(x)  contains or represents most (if not 
all) the information about f(x) contained in the data and 
little (if any) of the errors. This is accomplished in 
practice by selecting a function 

 (n) (n) (n)
n1 2p(x) p(x;c ,c , ,c ),=   (2) 

which depends on the parameters (n) (n) (n)
n1 2;c ,c , ,c . (The 

superscript n  on (n)
ic  denotes the fact that they will 

(generally depend on n ). The function p(x)  may be 

linear or non-linear in the parameters (n)
ic . 

Since our study is the linear model analysis of the 
observational data, the function p(x)  will be selected as 
linear combinations of the parameters so that it takes the 
form: 

 
n

(n)
i i

i 1
p(x) c Φ (x).

=
= ∑  (3) 

The { }iΦ  may, for example, be the set of monomials, 
exponentials, trigonometric polynomials, or indeed any 
arbitrary set of sufficiently defined functional values, 
provided only that they are linearly independent of the m 
values of x. Normally, n is small compared with the 
number, m of data points. In fact, the number n is 
unknown but for the most appropriate approximation to a 
given data the number n should be : 

1-large enough so that the information about f(x)  in the 
data can well be represented by a proper choice of the 
parameters (n)

ic , while at the same time n should be, 
2-too small to avoid the fitting of the observed data too 

closely in the sense that the errors in the observed data are 
retained in the approximation.  

Now the problem is to find the best estimate p̂  of the 
function p  i.e, to determine particular values 

(n) (n) (n)
1 2 nˆ ˆ ˆc ,c ,....,c  for the parameters (n)

ic  to obtain the 
best approximation: 

 (n) (n) (n)
n1 2ˆ ˆ ˆ ˆp p(x,c ,c , ,c )=   (4) 

Although there is agreement that the best estimate 
should give small deviations of the given data from the 
fitted curve- i.e., that the modulus of the quantity : 

 ( )(n) (n), (n)
k k 1 2 n kε p x ,c ,c ,......,c f ; k 1,2,...,m= − =  (5) 

should be small at each of the m points- there are 
differences of opinion as to how this to be achieved. 

Let ε denote an error vector composed of the m 
deviations kε . Since kx  and kf  are regarded as fixed, the 
vector ε depends only on the parameters 

(n) (n) (n)
1 2 nc ,c ,.....,c . Each common method for dealing 

with the competing requirements that kε  are small, 
corresponds to the selection of a norm ε  for the vector 
ε.Some examples of norms in the real m- dimensional 
space are : 

(i)  
m

k1
k 1

ε ε
=

≡ ∑  (6) 

(ii) 
1/2m

2
k2

k 1
ε ε

=

 
≡   
 
∑  (7) 

(iii) max
1 k m kε ε .≤ ≤∞ ≡  (8) 

The norm 1•  is called Gershgorin norm, 2•  the 

Euclidean norm and ∞•  themaximum normor, 
occasionally, the uniform norm. For any choice 
norm ε ,the best estimate is one satisfying the 
requirement: 

 || || minimum.=ε  (9) 

Assuming one of the above norms, say the Q norm is 
chosen, then we can determine (by solving certain system 
of equations) the estimators (n)

iĉ  of the best estimate p̂  of 
p that satisfies Equation (9), i.e., for the linear model 
analysis we have the best approximation: 

 
n

(n)
ii

i 1
ˆ ˆp(x) c Φ (x),

=
= ∑  (10) 

to be the true function f(x)  over { }kx  in the sense of the 
Q norm fitting for the given (x).iΦ Our best assumption is 
that for some unknown value of n, say N, the true function 
f(x)  can be expressed as a finite linear combination of the 
selected set of functions { }iΦ  in the sense of the Q–norm 
fitting ;that is, we assume  

 
N

(n)
ii

i 1
ˆf(x) c Φ (x)

=
= ∑  (11) 

such that the Q norm of  

 
n

(n)
i ki

i 1
ˆf c Φ (x ) minimum,  k 1,2, ,m;m n

=
− ≡ =∑   (12) 

for some n =N and for a given ( )i xΦ . Equation (11),with 
the condition of Equation (12), are the formulation of the 
linear model analysis of the observational data in the sense 
of Q-norm fitting. 

Now it remains to decide what is the most efficient 
norm that should be used in the analysis of observational 
data. This decision constitutes very serious difficultly 
because: 
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1- The l  norm || ||lε  depends greatly on the 
distributions of the observational errors kδ . 

2- There is a large variation in the effectiveness of 
various norms and no single norm is good (or even 
mediocre). 

3- The distributions of the observational errors cannot 
be determined with any precision. 

It is undoubtedly true that the Euclidean norm is the 
most efficient when kδ . are normally distributed, and in 
this case the estimators are the maximum likelihood 
estimators. It is natural therefore, to consider in our study 
the assumption that kδ .are normally distributed and 
analyzed the linear –model representation of the 
observational data in the sense of the Euclidean norm-i.e., 
in the least –squares criterion. 

Before starting the analysis, however, we introduce 
additional conditions concerning the character of the 
errors kδ  and assume that 1 2 kδ ,δ , ,δ  are unbiased 
(without systematic error),independent and normally 
distributed with zero mean and variance 2σ . These 
conditions indicate that: 

 k p q p qE(δ ) 0,E(δ δ ) E(δ )E(δ );= =  

 2 2 2
k k kδ ε N(0,σ);σ E(δ ) σ= =   

E(z) being the expectations of z and 2σ  the unknown 
variance. 
In the case of weighted observations, Equation (16) is 
replaced by: 

 
2

2 2
k k

k

σσ E(δ ) ,
ω

= =
  (13)  

where kω  are the weights of the observations 
( kω = kω(x )) . Therefore the problem of this section is the 
application of the least-squares method for the linear 
model representation of the observational data. 

3. Least-squares Approximation 
Below is a list of vectors and matrices used in the 

present section: 

Symbol Order Element 

F  m 1×  kf  

F  m 1×  kf  

δ  m 1×  kδ  

Ĉ  n 1×  (n)
iĉ  

C  n 1×  (n)
ic  

Φ  n m×  ik i kΦ Φ (x )=  

ω  m m×  kk kω ω= ; qlω 0;q l.= ≠  

The transpose of a vector or a matrix will be indicated 
by the superscript 'T'. 

3.1. Derivation of the Normal Equations 
In matrix notation, the problem of the weighted least-

squares approximation is to determine the estimators Ĉ  
such that  

 T
n

ˆe ( )  minimum,= =C v ω v  (14) 

where the vector of the residuals v  is defined as 

 T ˆ .= −v F Φ C  (15) 
From Equations (14) and (15) we have ; 

 

T T T
n

T T T

T T T

ˆ ˆ ˆe ( ) ( )  ( )
ˆ ˆ( )  ( )

ˆ ˆ( ) ( )

= − −

= − −

= − −

C F Φ C ω F Φ C

F C Φ ω F Φ C

F ω C Φω F Φ C

 

that is 
T T T T T T

n
ˆ ˆ ˆ ˆ ˆe ( )  .= − − +C F ωF C ΦωF F ωΦ C C ΦωΦ C (16) 

Since T T ˆF ωΦ C is scalar then, 

 T T T T T T T T Tˆ ˆ ˆ( ) [( ) .( ) ]= =F ωΦ C F ωΦ C Φ C F ω  

that is: 

 T T T Tˆ ˆ ,=F ωΦ C C Φω F  (17) 
since 

 T ,=ω ω  (18) 
then 

 T T Tˆ ˆ=F ωΦ C C ΦωF  (19) 
From Equations (16) and (19) we get ; 

 T T T T
n

ˆ ˆ ˆ ˆe ( ) 2  .= − +C F ωF C ΦωF C ΦωΦ C  (20) 

Equation (20) could be written as: 

 T T
n

ˆ ˆ ˆ ˆe ( ) constant 2 .= − +C C b C G C  (21) 

 

T

T

constant                  
                            

                          

≡
≡ 


≡ 

F ωF
b ΦωF

G ΦωΦ

 (22) 

The necessary conditions for the minimum are 

 n
ˆe ( )

.ˆ
∂

=
∂

C 0
C

 

Consequently, from Equation (21) we get  

 ˆ2 2 ,− + =b GC 0  (23) 

therefore 

 ˆ =GC b  (24) 
where the general elements are given by 

 
m

ij k ik jk
k 1

g ω Φ Φ
=

= ∑  (25) 

and 
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m

i k ik k
k 1

b ω Φ f .
=

= ∑  (26) 

Equations (24) are called the normal equations of the 
weighted least-squares approximations for the linear –
model representations of the observational data. These 
equations represent a set of n linear equations in n 
unknowns nĉ ; 1, 2, , n( )

i i =  .The coefficient matrix G is 
symmetric and is positive definite (i.e., all eigen values 

iλ ; 1, 2, , ni =   are positive) if all the fundamental 
functions (x)iΦ are linearly independent for the arguments 

kx ; that is, if the rows of Φ  are linearly independent. It 

should be noted that the normal Equations (24) represent a 
relation between two exact quantities in the sense that if 
the matrix G and the right-hand side b represent the 
observational data exactly, then there is a vector Ĉ  which 
satisfies exactly the least –squares criterion. Of course, in 
practice such an exact situation no longer exists. In the 
following section, some important properties of Ĉ (in the 
sense described above) will be given. 

3.2. Some Properties of Ĉ  
According to the conditions of Equations (13)and (17) 

it was proved [1] the following properties of Ĉ : 

ne

 

  Property 2

 
2- The estimators Ĉ by the parameters C, obtained by the  method of  least-squares are 

unbiased; i.e. 

.)ˆ(E CC =                                                                          
 

  Property 3

 
3-The variance –covariance matrix )ˆ(Var C of the unbiased estimators Ĉ is given by 

 12~)ˆ(Var −= GC σ .                                                                                                          

 

  Property 4

 
4-The  average squared distance between Ĉ and C  is 

∑
=

=
n

1i i

22

λ
1~)L(E σ                                                                           

 

  Property 5

 
5-The  average squared Euclidean norm of Ĉ  is 

∑
=

+=
n

1 i

2TT

λ
1~)ˆˆE(

i
σCCCC                                                                                         
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Also it should be noted that: 
If H(u) is a function of a measured quantity u, then 

the standard error Hσ  then 

 Hσ = u
dH σ
du
  (27) 

where uσ  is the standard error of u 
 If the precision is measured by the probable error e, 

then  

 e 0.6745 .σ=   (28) 

4. Mathematica Simulation  

4.1. Mathematica Module: Linear Model 
● Purpose 
To fit observational data (x,y)(say) to the linear model 

i iy c Φ (x)= ∑ in the sense of least-squares criterion with 
its error analysis. 
● Input 

x1: List of the independet varibles of the data. 
y1: List of the dependet varibles of the data. 
f : List of the basic functions used for the linear model 
representation of the data.  
I1 ,I2 ,I3 : Positive numbers each ε[0,1]  used to disply 
color drawing according to the built in function 

→Backgroung RGBColor[I1,I2,I3] . 
ind : A charcter indecating the name of the independent 
variable, (x for example). 
dep: A charcter indecating the name of the dependent 
variable, (y for example). 
● Output 
The c’s coefficients and their probable errors. 

The probable error of the fit. 
The average square distance between the exact and the 

least squares solutions. 
Graphical representations  
● Needed procedures 
None 
● List of the Module 
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We applied this module for many problems for galactic 

structure, the results are very satisfactory and will be 
published soon in astronomical journals  

In concluding the present paper, an algorithm for model 
analysis of observational data was deloped in the sense of 
the least –squares criterion with full error analysis.. By 
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this algorithm one computes, all the solutions with their 
variances, the variance of the fit, the average square 
distance between the least square solution and the exact 
solution, and graphical representation between the row 
and the fitted data. Mathematica module of the algorithm 
was established, through five points, its purpose –input - 
output - needed procedures and the list of the module. By 
this paper we have been tried to produce an error 
controlled algorithm of the least squares method for 
observational data. 
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