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Abstract  The purpose of the study was to compare the power and accuracy of the Kornbrot rank difference test to 
classical parametric and nonparametric alternatives when the assumption of normality is not met, the data are ordinal, 
and the sample size is small. Although the procedure is robust, there was no evidence the rank difference test had 
power advantages over Wilcoxon Signed-Ranks test. 
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1. Introduction 
The underlying assumptions of nonparametric, or 

distribution free tests, are “fewer and weaker than those 
associated with parametric tests” [1]. However, it is 
incorrect to assume that if the underlying assumptions are 
easier to meet, or are weaker, that the hypotheses are of 
less importance or that nonparametric tests are in any way 
less powerful than their parametric counterparts [2,3,4]. 

For example, the Wilcoxon Signed-Ranks test (WSR) is 
the nonparametric alternative to the parametric paired 
sample t-test when the assumption of normality is not met. 
The t-test is a test of the difference between the means of 
dependent samples (i.e., pretest – posttest), whereas the 
Wilcoxon Signed-Ranks test is a more generic test of f(x) 
= g(x), which pertains to all parameters including the 
mean. Prior research has demonstrated that the Wilcoxon 
Signed-Ranks test is more efficient than the paired 
samples t-test when data are sampled from nonnormally 
distributed populations [5]. Thus, this nonparametric test 
should be used in place of its parametric counterpart when 
the assumption of population normality has been violated, 
regardless of if the underlying assumption is easier to 
meet or is weaker. 

In addition to this nonparametric test being robust with 
regard to Type I error and being more powerful than its 
parametric alternative when the data are sampled form 
non-normal populations, the same is true for many rank-
based statistics as compared with their normal curve 
counterparts for treatment models of shift in location 
[2,3,6,7]. 

2. Alternative to the WSR 
A distribution free inferential procedure for comparing 

paired observations, called the rank difference test, was 

developed by Kornbrot for situations where the Wilcoxon 
Signed-Ranks test is applicable, meaning the data are 
ordinal and were not sampled from a normal distribution 
[8]. The test is conducted as follows: Assume there are n 
pairs of ordinal observations ap [x(i), x(j)] with values x(i); 
i=1,2,…2n, and pair indices, a; a=1,2,…,n. 

1. Rank all the 2n observations, so that r(i) is the rank 
of observation x(i) 

2. Perform the Wilcoxon test in the normal way on the 
r(i) rather than the x(i). 

For each pair of measures, define a rank difference 
measure at (i, j)=r(i)-r(j); The statistic, D, is obtained by 
finding the rank, ar (i, j) of ( , )at i j  for each pair of 
observations, and calculating: 

R – = sum of all ranks corresponding to negative at  
R + = sum of all ranks corresponding to positive at  
1. D is then smaller of R + and R – 
2. Tabulated values of the D statistic, or a normal 

approximation corrected for continuity may be used 
to calculate the probability that any given value of D 
would have occurred under the null hypothesis of no 
difference between the treatments. 

The assumption of rankability of the differences is 
normally not met with operational measures. Kornbrot 
discussed this in detail with reference to operational 
measures of times, rates, and counts. These are common 
operational measures in psychology and education, such 
as, for example, time as an index of information 
processing or when counts are used to determine errors on 
tasks [8]. 

Both exact sampling distributions and large sample 
approximations for the sample statistic D were given by 
Kornbrot. Kornbrot claimed, “for non-normally distributed 
internal data the Wilcoxon Signed-Ranks test is a useful 
and legitimate procedure, although other, perhaps less 
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familiar, robust procedures might have substantial 
advantages for small samples” [8]. Kornbrot argued that 
the Wilcoxon Signed-Ranks test is not meaningful in these 
situations because the procedure entails the subtraction of 
ordinal scale values. Hence, the rank difference test was 
proposed as a more suitable alternative to the Wilcoxon 
Signed-Ranks test, when dealing with ordinal data and 
small samples. It was claimed that “in all paired 
comparison designs where the data are not both of internal 
scale type and of known distribution time” [8]. 

3. The Current Study 
The purpose of this study is to compare the robustness 

and power of rank difference test to the t-test and the 
Wilcoxon Signed-Ranks tests when the assumption of 
normality is not met, the data are ordinal, and the sample 
size is small. 

4. Methodology 
A Monte Carlo study was conducted using Compaq 

6.6c Fortran to compare the comparative robustness (Type 
I error rate) and power of the three tests. Data were sampled 
form various theoretical distributions using IMSL (2007) 
and real data sets using the normb1 subroutine in Rangen 
2.0 [7]. Sample sizes were (n1, n2) = (10,10), (15,15), (20,20). 
Nominal alpha was set at 0.01 and 0.05. One hundred 
thousand repetitions were conducting per experiment. 

The robustness of each statistical test with respect to 
Type I error was addressed via the simulation. The 
Bradley liberal criterion test was used to assess the 
robustness with respect to Type I error. According to 
Bradley’s liberal criterion of robustness, a test can be 
considered robust if its empirical rate of Type I error, α , 
is within the interval 0.5α  < α  < 1.5α . Thus, if the 
nominal level is α = 0.05, the empirical Type I error rate 
should be within the interval .025 < α < .075. Similarly, if 
the nominal level is α = 0.01, the empirical Type I error 
rate should be within interval .005 < α  < .015 [9]. 

Five mathematical populations were selected: Gaussian 
(Normal), Chi-square, df = 1, 3, Chi-square, df = 2, Chi-
square, df = 8, and t, df = 3. In determining the correlation 
between the pretest and posttest, algorithms presented by 
Headrick and Sawilowsky for creating correlated 
univariate and multivariate data for normal and nonnormal 
distributions were used [10]. This procedure is based on 
solving constants of the Fleishman power method [11]. 
The algorithms were used to populate matrices of 
correlated data for different types of distributions, 
presented in the Table 1 below (Normal, Chi-square df = 1, 
Chi-square df = 2, Chi-square df = 8, t (df = 3): 

Table 1. Solutions To The Fleishman Equation For Selected 
Distributions 

Distribution 1γ  2γ  
a b d 

Normal 0 0 0 1 0 

Chi-square (df =1) 8  12 -.5207 .6146 .02007 
Chi-square (df=2) 

(Exponential) 2 6 .3137 .8263 .02271 

Chi-square (df =8) 1 1.5 -.1632 .9531 .0060 

t (df = 3) 0 17 0 .3938 .1713 

The Headrick and Sawilowsky method for creating 
correlated data preserve skew and kurtosis to match the 
originating population [10]. The first step is to solve the 
Fleishman equation for the constants a, b, -a, and d. After 
the constants are identified, r can be found using the 
formula: 

 2 2 2 2 2 2 4( 6 9 2 6 )xyr r b bd d a r d r= + + + +  (1) 

where xyr = 0, .70, .80, and .90. This equation was solved 
using the TI-83 calculator’s graphing functionality. The 
correlation of 0 was only considered for data sampled 
from the normal distribution for the purposing of verifying 
the veracity of the coding. 

Next, the r values obtained are used to create 
intermediate standard normal variates, as shown in Table 
2. Using three standard normal z scores ( 1 2 3, ,z z z ) from 
normb1.f90 in Rangen 2.0, the intermediate standard 
normal variates were computed using the formula below [7]: 

 2 2
1 ( 1 )ix rz r z= + −  (2) 

 2 3
1 ( 1 )iy rz r z= + −  (3) 

After the ix and iy were found, they are inputted into 
the Fleishman equations, along with the constants 

, , ,a b a− and d [7]. 

  2 2( )i i iX a bx a x dx= + + − +  (4) 

 2 2( )i i iY a by a y dy= + + − +  (5) 

Table 2. Intermediate r Values for Various Distributions at 
Correlations 0.70, 0.80, and 0.90 

*[12] 
A shift in location was introduced to the scores in the 

intervention group, represented by, by adding a percentage 
of the mean which corresponds to the preferred effected 
size. The effect size for shift in location was conducted by 
using Cohen’s description of common effect sizes, which 
included small (0.2), medium (0.5), large (0.8). 
Sawilowsky added descriptors for very large (1.2), and 
huge (2.0). Nominal α was set at 0.05 and 0.01. For every 
instance, an effect size was added to the location of the 
intervention sample [13].  

5. Results 
Tables 3-7 are presented below to illustrate the results 

for data sampled from the Normal, Chi-squared df = 1, 
Chi-squared df = 2, Chi-squared df = 8 and, t (df = 3) 
distributions for various samples sizes and magnitudes of 
correlations of .7, .8, and .9. These results exemplify the 
results obtained across the results. A complete set of 
tabled results are available from the first author. 

Distribution Intermediate r Values at Correlations: 

 0.70 0.80 0.90 
Chi-square (df = 1) .88909 .92960 .96633 

Chi-square (df = 2) .85998 .91319 .95973 
Chi-square (df = 8) .84466 .90058 .95271 

Normal .83666 .89443 .94868 
t (df = 3) .86665 .91814 .96118 
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Table 3. Robustness and Power for (n1 = n2) = (15,15), Normal, rxy 
= .8 

Effect Size α level t 
Wilcoxon 

Signed-Ranks 
Test 

Rank 
Difference 

Test 

ES (d) = 0 
.05 0.0491 0.0469 0.0469 

.01 0.0095 0.0063 0.0079 

ES (d) = .2 
.05 0.2067 0.1957 0.1958 

.01 0.0691 0.0501 0.0587 

ES (d) = .5 
.05 0.8112 0.7896 0.7897 

.01 0.5477 0.4611 0.4990 

ES (d) = .8 
.05 0.9951 0.9932 0.9932 

.01 0.9576 0.9250 0.9391 

ES (d) = 1.2 
.05 1.0000 1.0000 1.0000 

.01 0.9999 0.9996 0.9997 

ES (d) = 2.0 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

Table 4. Robustness and Power for (n1 = n2) = (10,10), Chi-squared 
df = 1, rxy = .7 

Effect Size α level t 
Wilcoxon 

Signed-Ranks 
Test 

Rank 
Difference 

Test 

ES (d) = 0 
.05 0.0492 0.0474 0.0474 

.01 0.0097 0.0055 0.0093 

ES (d) = .2 
.05 0.1797 0.1732 0.1732 

.01 0.0528 0.0323 0.0493 

ES (d) = .5 
.05 0.7298 0.7109 0.7110 

.01 0.4176 0.2950 0.3883 

ES (d) = .8 
.05 0.9825 0.9778 0.9778 

.01 0.8793 0.7545 0.8451 

ES (d) = 1.2 
.05 1.0000 0.9999 0.9999 

.01 0.9983 0.9862 0.9960 

ES (d) = 2.0 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

Table 5. Robustness and Power for (n1 = n2), Chi-squared df = 2, rxy 
= .8 

Effect Size α level t 
Wilcoxon 

Signed-Ranks 
Test 

Rank 
Difference 

Test 

ES (d) = 0 
.05 0.0502 0.0485 0.0485 

.01 0.0100 0.0054 0.0095 

ES (d) = .2 
.05 0.2361 0.2284 0.2285 

.01 0.0769 0.0478 0.0720 

ES (d) = .5 
.05 0.8715 0.8551 0.8551 

.01 0.6028 0.4543 0.5643 

ES (d) = .8 
.05 0.9984 0.9974 0.9974 

.01 0.9707 0.9068 0.9540 

ES (d) = 1.2 
.05 1.0000 1.0000 1.0000 

.01 1.0000 0.9989 0.9998 

ES (d) = 2.0 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

Table 6. Robustness and Power for (n1 = n2)= (15,15), Chi-squared df 
= 8, rxy = .7 

Effect Size α level t 
Wilcoxon 

Signed-Ranks 
Test 

Rank 
Difference 

Test 

ES (d) = 0 
.05 0.0494 0.0472 0.0473 

.01 0.0098 0.0066 0.0084 

ES (d) = .2 
.05 0.2189 0.2065 0.2066 

.01 0.0735 0.0534 0.0629 

ES (d) = .5 
.05 0.8365 0.8153 0.8154 

.01 0.05839 0.4976 0.5346 

ES (d) = .8 
.05 0.9967 0.9953 0.9953 

.01 0.09678 0.9407 0.9523 

ES (d) = 1.2 
.05 1.0000 1.0000 1.0000 

.01 1.0000 0.9989 0.9999 

ES (d) = 2.0 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

Table 7. Robustness and Power for (n1 = n2)= (20,20), t (df = 3), rxy 
= .7 

Effect Size α level t 
Wilcoxon 

Signed-Ranks 
Test 

Rank 
Difference 

Test 

ES (d) = 0 
.05 0.0504 0.0491 0.0491 
.01 0.7999 .0080 0.0092 

ES (d) = .2 
.05 0.8247 0.8044 0.8044 

.01 0.5818 0.5344 0.5552 

ES (d) = .5 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

ES (d) = .8 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

ES (d) = 1.2 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

ES (d) = 2.0 
.05 1.0000 1.0000 1.0000 

.01 1.0000 1.0000 1.0000 

It is clear from these tables that the rank difference test 
is robust to departures from population normality. At first 
glance, the power results appear to favor the classical t-
test over both the Wilcoxon Signed-Ranks and Kornbrot 
Rank Difference tests, even though it is known that t-test 
is uniformly less powerful that the Wilcoxon test for the 
two independent samples layout [5]. This is because the 
tests are not operating on data obtained from the non-
normal distribution per se. Instead, it is applied to the 
difference distribution of the posttest and pretest score. 
Taking differences is a normalizing procedure, and the 
resulting distribution shape tends toward a uniform 
distribution, for which the t-test is known to be more 
competitive. It is more competitive because the uniform 
distribution is symmetric with light tails, just as is the 
normal curve. 

Another explanation for the power results favoring the 
t-test is that it is being conducted at precisely the 0.05 and 
0.01 alpha levels, whereas both of the non-parametric tests 
are conducted at slightly reduced alpha levels. As 
explained by Gibbons & Chakraborti, critical values for 
rank-based nonparametric tests are obtained from the 
sampling distribution of discrete variables, thus constraining 
the possible significance levels [14]. For example, a two 
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tailed test with α = 0.05 for sample size n1 = n2 = 5 and n1 
= n2 = 6 both have critical values of zero. Hence, the 
Wilcoxon Signed-Ranks test and the rank difference test, 
due to their discrete sampling distributions, have a 
disadvantage when samples are very small. 

Gibbons & Chakraborti recommended setting the alpha 
level of the t-test to match the limitations of the 
nonparametric tests to obtain a fair comparison [14]. An 
argument could be raised against their approach, because 
in practice if a worker has selected α = 0.05 or 0.01 that 
standard should not be modified by this limitation of the 
statistical test. Whereas that argument was reasonable 
during the time period when statistical tests were 
conducted via obtaining critical values from tabled values, 
currently available statistical software makes it easy to 
compute statistical tests at any given nominal alpha level. 

6. Discussion 
The purpose of this study was investigate Kornbrot’s 

claim that the rank difference test was superior to the 
Wilcoxon Signed-Ranks test. Although the procedure was 
shown to be equally robust to departures from 
nonnormality, the results do not support Kornbrot’s claim 
the rank difference test is superior to the Wilcoxon 
Signed-Rank, although it is difficult to compare the two 
tests, because their nominal alpha levels are not able to be 
set to the same level. For example, for certain sample sizes, 
the closest nominal alpha to 0.05 for the Wilcoxon 
Signed-Ranks is 0.046, whereas the rank difference test’s 
sampling distribution permitted setting alpha at 0.048 for 
that sample size, placing the Wilcoxon Signed-Ranks test 
at a slight disadvantage. Nevertheless, based on this 
Monte Carlo study, there is no evidence Kornbrot’s rank 
difference test is more powerful than the Wilcoxon 
Signed-Ranks test. 
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