Journal of Food and Nutrition Research
ISSN (Print): 2333-1119 ISSN (Online): 2333-1240 Website: Editor-in-chief: Prabhat Kumar Mandal
Open Access
Journal Browser
Journal of Food and Nutrition Research. 2022, 10(11), 735-747
DOI: 10.12691/jfnr-10-11-1
Open AccessArticle

Quinoa (Chenopodium quinoa) Purification of CqMSRA5.1 Prokaryotic Protein, Sulfoxide Reductase (MSR) Gene CqMSR5.1 in Osmotic Stress Response

Pengcheng Ding1, 2, Hafeez Noor1, 2, Xiaofen Li1, 2, Kaiyuan Cui1, 2, Xiangyun Wu3, Min Sun1, 2 and Zhiqiang Gao1, 2,

1College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China

2Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-quality and Efficiency in Loess Plateau, Taigu 030801, China, Shanxi Agricultural University, Shanxi, Taiyuan 030031, China

3Shanxi Jiaqi Agri-Tech Co., Ltd., Taiyuan 030006, China

Pub. Date: November 01, 2022

Cite this paper:
Pengcheng Ding, Hafeez Noor, Xiaofen Li, Kaiyuan Cui, Xiangyun Wu, Min Sun and Zhiqiang Gao. Quinoa (Chenopodium quinoa) Purification of CqMSRA5.1 Prokaryotic Protein, Sulfoxide Reductase (MSR) Gene CqMSR5.1 in Osmotic Stress Response. Journal of Food and Nutrition Research. 2022; 10(11):735-747. doi: 10.12691/jfnr-10-11-1


Located in chloroplast. The vitro enzymatic property verification CqMSRA5.1 can specifically reduce type methionine sulfoxide and belongs to MSRA family. Arabidopsis wild type Col 0, CqMSRA5.1 transformed Arabidopsis overexpression line and msra5 Arabidopsis mutant were used as materials to carryout phenotypic experiments of simulated osmotic stress treatment and soil drought treatment. The above results showed CqMSRA5.1. Enhance the resistance of Arabidopsis to osmotic stress by regulatcan enhance the resistance of Arabidopsis to osmotic stress by regulating the balance of the balance of ROS. The interaction protein of MSRA5 was predicted and analyzed by bioinformatics technology. Glutathione synthase 2 (GSH2) was predicted as the potential interaction protein of MSRA5. Yeast two hybrid experiment and two molecule fluorescence complementary experiment confirmed that quinoa glutathione synthase 2 gene (GSH2) and CqMSRA5.1 was interacted with each other. Through protein simulation binding analysis, it is found that the specific region of interaction is met residue 193 of CqGSH2. The pharmacological phenotype experiment with GSH specific inhibitor BSO showed that BSO could significantly inhibit CqMSRA5.1. The above CqMSRA5.1and CqGSH2 interact structurally.

protein quinoa gene Abiotic stress reactive oxygen species osmotic stress

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this license, visit


[1]  Zhu, J.K. Abiotic stress signaling and responses in plants. Cell. 167(2), 313-324. 2016.
[2]  Vieira Dos Santos, C., Cuiné, S., Rouhier, N., Rey, P. “The Arabidopsis plastidic methionine sulfoxide reductase B proteins. Sequence and activity characteristics, comparison of the expression with plastidic methionine sulfoxide reductase A, and induction by photooxidative stress”. Plant Physiol. 138. 909-922, 2005.
[3]  Ozturk, M., Turkyilmaz, B., García-Caparrós, P., Khursheed, A., Gul, A., Hasanuzzaman, M “Osmoregulation and its actions during the drought stress in plants”. Physiol Plant. 172, 1321-1335. 2021.
[4]  Beckman, K.B., Ames, B.N “Oxidative decay of DNA”. J Biol Chem. 272, 19633-19636, 1997.
[5]  Moskovitz, J. “Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases”. Biochim Biophys Acta. 2005, 1703, 213-219.
[6]  Rouhier, N., Vieira Dos Santos, C., Tarrago, L., Rey, P. “Plant methionine sulfoxide reductase A and B multigenic familie” Photosynth Res. 89, 247-262, 2006.
[7]  Tarrago, L., Laugier, E., Zaffagnini, M., Marchand, C., Le, M.P., Rouhier, N., Lemaire, S.D., Rey, P. “Regeneration mechanisms of Arabidopsis thaliana methionine sulfoxide reductases B by glutaredoxins and thioredoxins”. J Biol Chem, 284, 18963-18971, 2009.
[8]  Guo, X., Wu, Y., Wang, Y., Chen, Y., Chu, C. “OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses”. Planta. 230, 227-238, 2009.
[9]  Li, C.W., Lee, S.H., Chieh, P.S., Lin, C.S.;Wang, Y.C., Chan, M.T. “Arabidopsis root-abundant cytosolic methionine sulfoxide reductase B genes MsrB7 and MsrB8 are involved in tolerance to oxidative stress”. Plant Cell Physiol. 53, 1707-1719, 2012.
[10]  Lee, S.H., Li, C.W., Koh, K.W., Chuang, H.Y., Chen, Y.R., Lin, C.S., Chan, M.T. “MSRB7 reverses oxidation of GSTF2/3 to confer tolerance of Arabidopsis thaliana to oxidative stress. J Exp Bot. 65, 5049-5062, 2014.
[11]  Zhu, J., Ding, P., Li, Q., Gao, Y., Chen, F., Xia, G. “Molecular characterization and expression profile of methionine sulfoxide reductase gene family in maize under abiotic stresses”. Gene. 562, 159-168, 2015.
[12]  Sun, X., Sun, M., Jia, B., Qin, Z., Yang, K., Chen, C., Yu, Q., Zhu, Y. “A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca2+/CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress”. Plant J. 86. 514-529, 2016.
[13]  Ding, P., Gao, Y., Zhu, J., Chen, F., Xia, G. “Wheat methionine sulfoxide reductase genes and their response to abiotic stress”. Mol Breeding. 36, 169, 2016.
[14]  Ding, P., Fang, L., Wang, G., Li, X., Huang, S., Gao, Y., Zhu, J., Xiao, L., Tong, J., Chen, F., Xia, G. “Wheat methionine sulfoxide reductase A4.1 interacts with heme oxygenase 1 to enhance seedling tolerance to salinity or drought stress”. Plant Mol Biol., 101, 203-220, 2019.
[15]  Oh, S.K., Baek, K.H., Seong, E.S., Joung, Y.H., Choi, G.J. “CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol. 154. 245-261, 2010.
[16]  Zhao, L., Chen, M., Cheng, D., Yang, H., Sun, Y., Zhou, H., Huang, F. “Different Btype methionine sulfoxide reductases in Chlamydomonas may protect the algaagainst high-light, sulfur-depletion, or oxidative stress”. J. Integr. Plant Biol. 55, 1054–1068, 2013.
[17]  Cui, Y., Xu, G., Wang, M., Yu, Y., Li, M., da Rocha, P.S.C.F., Xia, X. “Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress”. Plant Cell, Tissue Organ Cult. 113, 331–340, 2012.
[18]  Romero, H.M., Berlett, B.S., Jensen, P.J., Pell, E.J., Tien, M. “Investigations into the role of the plastidial peptide methionine sulfoxide reductase in response to oxidative stress in Arabidopsis”. Plant Physiol. 136, 3784–3794, 2004.
[19]  Kumar, A., Smith, B., Novotny, D.D. “Biomedical informatics and granularity”. Comp Funct Genomics. 5, 501-508, 2004.
[20]  Bouchenak, F., Henri, P., Benrebiha, F.Z., Rey, P. “Differential responses to salinity of two Atriplex halimus populations in relation to organic solutes and antioxidant systems involving thiol reductases”. J. Plant Physiol. 169, 1445–1453, 2012.
[21]  Stadtman, E.R., Moskovitz, J., Levine, R.L. “Oxidation of methionine residues of proteins: biological consequences”. Antioxid. Redox Signal. 5, 577-582, 2003.
[22]  Gustavsson, N., Kokke, B.P., Harndahl, U., Silow, M., Bechtold, U., Poghosyan, Z., Murphy, D., Boelens, W.C., Sundby, C. “A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast localized small heat shock protein”. Plant J. 29. 545-553, 2002.
[23]  Jiang, G., Xiao, L., Yan, H., Zhang, D., Wu, F., Liu, X., Su, X., Dong, X., Wang, J., Duan, X., Jiang, Y. “Redox regulation of methionine in calmodulin affects the activity levels of senescence-related transcription factors in litchi”. Biochim. Biophy.s Acta. 1861, 1140-1151, 2017.
[24]  Zhao, W., Ding, P., Guo, Q., Hu, D., Fu, X., Chen, F., Xia, G. “Interaction of wheat methionine sulfoxide reductase TaMSRB5.2 with glutathione S-transferase TaGSTF3-A contributes to seedling osmotic stress resistance”. Environmental and Experimental Botany. 194, 104731, 2021.
[25]  Jarvis, D.E., Ho, Y.S., Lightfoot, D.J., Schmöckel, S.M., Li, B., Borm; T.J., Ohyanagi, H., Mineta, K.; Michell, C.T., Saber, N. “The genome of Chenopodium quinoa”. Nature. 542, 307-312, 2017.
[26]  Jacobsen, S.E., Monteros, C., Christiansen, J.L., Bravo, L.A., Corcuera, L.J., Mujica, A. “Plant responses of quinoa (Chenopodium quinoa Willd.) to frost at various phenological stages. European Journal of Agronomy. 22, 131-139, 2005.
[27]  Jacobsen, S.E., Monteros, C., Corcuera, L.J., Bravo, L.A., Christiansen, J.L., Mujica, A. “Frost resistance mechanisms in quinoa (Chenopodium quinoa Willd.)”. European Journal of Agronomy. 26, 471-475, 2007.
[28]  Ruiz, K.B., Biondi, S., Oses, R. “Quinoa biodiversity and sustain-ability for food security under climate change”. Agronomy for Sustainable Development. 34, 349-359, 2014.
[29]  Nowak, V., J, Du., and UR Charrondière. “Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.)”. Food Chemistry 193. 2, 47-54, 2016.
[30]  Graf, B.L., Rojas Silva, P., Rojo, L.E., Delatorre Herrera, J., Baldeón, M.E., Raskin, I. “Innovations in health value and functional food development of quinoa (Chenopodium quinoa Willd.)”. Compr. Rev. Food Sci. Food Safety.14, 431-445, 2015.
[31]  Li, F., Guo, X.H., Liu, J.X., Zhou, F., Liu, W.Y., Wu, J., Zhang, H.L., Cao, H.F., Su, H.Z., Wen, R.Y. “Genome-Wide Identification, Characterization, and Expression Analysis of the NAC Transcription Factor in Chenopodium quinoa”. Genes. 30, 500, 2019.
[32]  Molina-Montenegro, M.A., Oses, R., Torres-Díaz, C., Atala, C., Zurita-Silva, A., Ruiz-Lara, S. “Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition”. AoB Plants. 8, plw062, 2016.
[33]  Liu, J.X., Wang R.M., Liu, W.Y., Zhang, H.L., Guo, Y.D., Wen, R.Y., “Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress”. Genes (Basel). 9, 35, 2018.
[34]  Larkin, E.K., Morris, N.J., Li, Y., Nock, N.L., Stein, C.M. “Comparison of affected sibling-pair linkage methods to identify gene x gene interaction in GAW15 simulated data” BMC Proc. 1, S66, 2007.
[35]  Kumar, A., Smith, B., Novotny, D.D. “Biomedical informatics and granularity. Comp Funct Genomics. 5, 501-508, 2004.
[36]  Chen, H., Huang, R., Zhang, Y.P. “Systematic comparison of co-expression of multiple recombinant thermophilic enzymes in E. coli BL21 (DE3)”. Appl Microbiol Biotechnol. 101, 4481-4493. 2017.
[37]  Clough, S.J., Bent, A.F. “Floral dip, a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana”. Plant J. 16. 735-743, 1998.
[38]  Murashige, T. Skoog F “A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plan. 15, 473-497, 1962.
[39]  Asselbergh, B., Curvers, K., S. C., Audenaert, K., Resistance to botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis”. Plant Physiolog. 144(4), 1863-1877, 2007.
[40]  Pan, J., Zhang, M., Kong, X., Xing, X., Liu, Y., Zhou, Y., Liu, Y., Sun, L.; Li, D. “ZmMPK17, a novel maize group D MAP kinase gene, is involved in multiple stress responses”. Planta. 235, 661-676, 2012.
[41]  Bechtold, U.; Murphy, D.J.; Mullineaux, P.M. “Arabidopsis peptide methionine sulfoxide reductase 2 prevents cellular oxidative damage in long nights”. Plant Cell. 16, 908-919. 2004.
[42]  Acharya, B.R.., Jeon, B.W... Zhang, W., Assmann, S.M. “Open stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. N”. Phytol. 4, 1049–1063. 2013.
[43]  Meyer, A.J. “The integration of glutathione homeostasis and redox signaling.Plant Physiol. 165, 1390-1403, 2008.
[44]  Chatelain, E., Satour, P., Laugier, E., Payet, N., Rey, P., Montrichard, F. “Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity”. Proc Nat Acad of Sci. 110, 3633-3638, 2013.
[45]  Ding, P., Fang, L., Huang, S., Zhu, J.,Wang, G., Xia, G., Chen, F. Wheat plastidial methionine sulfoxide reductase MSRB3.1 interacts with haem oxygenase 1 to improve osmotic stress tolerance in wheat seedlings”. Environ Exp Bot. 188,104528, 2021.
[46]  Bartels, D.; Sunkar, R. “Drought and Salt Tolerance in Plants”. Critical Rev in Plant Sci. 24, 23-58, 2005.
[47]  Gong, Z., Xiong, L., Shi, H., Yang, S., Herrera-Estrella, L., Xu, G., Chao, D., Li, J., Zhu, J.K. “Plant abiotic stress response and nutrient use efficiency”. Sci China Life Sci. 63, 635-674, 2020.
[48]  Mahmood, T., Khalid, S., Abdullah, M., Ahmed, Z.; Shah, Ghafoor, A., Du, X. “Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance”. Cells. 9, 105, 2019.
[49]  Mittler, R. “Oxidative stress, antioxidants and stress tolerance”. Trends Plant Sci. 7, 405-410, 2002.
[50]  Xu, W., Jia, H.; Zhang, L., Wang, H., Tang, H., Zhang, L. “Effects of GSH1 and GSH2 Gene Mutation on Glutathione Synthetases Activity of Saccharomyces cerevisiae”. Protein J. 36, 270-277, 2017.
[51]  Wachter, A., Wolf, S., Steininger, H., Bogs, J., Rausch, T. “Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation: implications for the compartmentation of glutathione biosynthesis in the Brassicaceae”. Plant J. 41. 15-30, 2005.
[52]  Adams, E., Miyazaki, T., Watanabe, S., Ohkama-Ohtsu, N., Seo, M., Shin, R. “Glutathione and Its Biosynthetic Intermediates Alleviate Cesium Stress in Arabidopsis”. Front Plant Sci. 10, 1711, 2020.
[53]  Foyer, C.H. and Noctor, G. “Ascorbate and glutathione: the heart of the redox hub”. Plant Physiol. 155. 2-18, 2011.
[54]  Alamuri, P., Mehta, N., Burk, A., Maier, R.J. “Regulation of the helicobacter pylori fe-s cluster synthesis protein nifs by iron, oxidative stress conditions, and fur”. Journal of Bacteriology. 188(14), 5325-30, 2006.