Article citationsMore >>

Nwoye, C. I. (2008). C-NIKBRAN-Data Analytical Memory (Software).

has been cited by the following article:

Article

Reliability Level of Smelting Gross Energy Requirement (SGER) Dependence on Direct Fuel Input and Process Free Energy Change

1Department of Metallurgical and Materials Engineering, NnamdiAzikiwe University, Awka, Nigeria

2Department of Industrial Physics, Ebonyi State University, Abakiliki, Nigeria

3Department of Metallurgical and Materials Engineering, Enugu State University of Science & Technology, Enugu, Nigeria

4Metallurgical Training Institute, Onitsha, Nigeria


American Journal of Industrial Engineering. 2014, Vol. 2 No. 2, 21-28
DOI: 10.12691/ajie-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
C. I. Nwoye, M. O. Nwankwo, E. M. Ameh, N. E. Idenyi, L. C. Oshionwu, S. A. Abella. Reliability Level of Smelting Gross Energy Requirement (SGER) Dependence on Direct Fuel Input and Process Free Energy Change. American Journal of Industrial Engineering. 2014; 2(2):21-28. doi: 10.12691/ajie-2-2-1.

Correspondence to: C.  I. Nwoye, Department of Metallurgical and Materials Engineering, NnamdiAzikiwe University, Awka, Nigeria. Email: nwoyennike@gmail.com

Abstract

This paper presents an assessment of the reliability level of Smelting Gross Energy Requirement (SGER) dependence on the direct fuel input and free energy change during industrial processing of engineering materials and minerals. A two-factorial polynomial-logarithmic model was derived and validated for empirical analysis of the dependent-independent variable relationship, which invariably aided reliability level evaluation. The validity of the model; ζ = - 0.071 ϑ 3 + 1.9885 ϑ 2 + 9.3181 ϑ - 0.0035 ɤ + 0.006 ln ɤ + 15.586 was rooted on the core model expression ζ - 15.586 = - 0.071ϑ 3 + 1.9885ϑ2 + 9.3181ϑ - 0.0035 ɤ + 0.006 ln ɤ where both sides of the expression were correspondingly nearly equal. The derived model was used to generate results of SGER, and its trend of distribution was compared with that from experimental results as a means of verifying its validity. The results of this verification translated into very close alignment of curves and significantly similar trend of data point’s distribution for experimental and derived model-predicted results. Evaluations from generated results indicated that SGER per unit direct fuel input & free energy change as obtained from experiment and derived model were 8.9260 and 9.0471 & 15.7474 and 15.9609 respectively. The evaluated measure of variability in experimental and model-predicted data sets relative to direct fuel input and free energy change were 121.6667 and 119.7662 as well as 123.1929 and 120.6838 respectively. Deviational analysis indicated that the maximum deviation of model-predicted SGER from the experimental results was less than 9.6%. This translated into over 90% operational confidence and reliability level for the derived model as well as 0.9 reliability coefficient for the SGER dependence on direct fuel input and free energy change accompanying the smelting process.

Keywords