Article citationsMore >>

IAEA, Radiation and Society: Comprehending Radiation Risk, Proceeding Series, Vol.1, Prepared by the Swedish Risk Academy, International Atomic Energy Agency, Vienna, 1994.

has been cited by the following article:


Characterization of Environmental Radioactivity Level in Al-Basrah City (Iraq)

1Ministry of Higher Education and Scientific Researches, Al-Mustansiriyh University, College of Basic Education, Baghdad, Iraq

2Ministry of Science and Technology, Radiation & Nuclear Safety Directorate, Baghdad, Iraq

International Journal of Physics. 2016, Vol. 4 No. 6, 176-180
DOI: 10.12691/ijp-4-6-4
Copyright © 2016 Science and Education Publishing

Cite this paper:
Muhannad Kh. Mohammed, Nabeel H. Ameen, Mohammad Sh. Naji. Characterization of Environmental Radioactivity Level in Al-Basrah City (Iraq). International Journal of Physics. 2016; 4(6):176-180. doi: 10.12691/ijp-4-6-4.

Correspondence to: Nabeel  H. Ameen, Ministry of Science and Technology, Radiation & Nuclear Safety Directorate, Baghdad, Iraq. Email:


Soils and earth-derived building materials contain radioactive materials provide external exposure to nearby individuals and result in detrimental health effects including cancer. The risk of cancer incidence (morbidity) and mortality to individuals in Al-Basrah’s population (south of Iraq) related to external exposure to ambient gamma radiation is evaluated in this study. The risk estimations include delayed radiation effects (cancer morbidity, mortality and hereditary genetic damages). Radiation exposure rates were measured using BGS-4 gamma-ray scintillation (Scintrex, Canada) for the period 2012-2013. Absorbed dose rates in air and in human tissues are determined by applying typical conversion factors available in the literature. Age-dependent radiation dose is calculated for infants, children, and adults. Dose-to-risk conversion factors are applied to estimate potential risk to various body organs and tissues as a result of exposure to ambient gamma radiation. The findings of this study report that about 0.26% of Al-Basrah population are expected to be diagnosed with radiation-induced cancer over there lifetime. The lifetime fatal cancer probability (mortality) is found to be occurs at a rate of 0.19%. The risk of developing fatal stomach cancer is found to be occurs at a largest extent in comparison with other exposed body organs and tissues. Children and infants are found to be at a greater radiation risk than adults due to lower body weight. Other consequences of radiation injury such as genetic effects transmitted to succeeding generations are expected to occur at a rate of 0.03% in the offspring of Al-Basrah population as a result of changes transmitted via the genetic mechanisms due to irradiation of gonads.