Article citationsMore >>

ISA, ISA Standards, Recommend Practice and Technical Reports. 1999. Control Valves -Vol. 3.

has been cited by the following article:

Article

The Accuracy Degree of CFD Turbulence Models for Butterfly Valve Flow Coefficient Prediction

1GUPCO - Gulf of Suez Petroleum Co., 270 Palestine St. 4th Sector, New Maadi, Cairo, Egypt

2Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, El-Mansoura 35516, Egypt


American Journal of Industrial Engineering. 2016, Vol. 4 No. 1, 14-20
DOI: 10.12691/ajie-4-1-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Mohammed M. Said, Hossam S.S. AbdelMeguid, Lotfy H. Rabie. The Accuracy Degree of CFD Turbulence Models for Butterfly Valve Flow Coefficient Prediction. American Journal of Industrial Engineering. 2016; 4(1):14-20. doi: 10.12691/ajie-4-1-3.

Correspondence to: Mohammed  M. Said, GUPCO - Gulf of Suez Petroleum Co., 270 Palestine St. 4th Sector, New Maadi, Cairo, Egypt. Email: saidmm@gupco.net

Abstract

Although engineers are mainly interested in the prediction of mean flow behavior, the turbulence cannot be ignored, because the fluctuations give rise to the extra Reynolds stresses on the mean flow. These extra stresses must be modeled in commercial CFD by selecting convenient turbulence model. The flow inside the control valve is complex and the control valves performance is precisely evaluated by determining the valve coefficient named, flow coefficient. Hence, aim of the present study is to investigate the effect of turbulence model type on the solution accuracy for the valve disk angles 40° and 60° as well as to implement the degree of agreement between experimental and numerical results. The numerical verification has been investigated by FLUENT 6.3 and the valve is meshed by GAMBIT 2. The mesh independent test has been carried out only by standard k-ε to evaluate the mesh effectiveness and attain the best accuracy. Among from these several turbulence models which have been studied here are standard k-ε, realized k-ε, k-ω, and RSM. Butterfly valve, STC model and (DN 50) diameter is chosen to be the test specimen in this research. The results showed that, there is no general turbulent model that can deal successfully with all cases. Numerical and experimental results are in general in good agreement, however are different in details, and showed that, RSM model is the most efficient numerical solver when applied to butterfly valve flow coefficient evaluation. For the future, a significant amount of work still needs to be undertaken in experimental unsteady butterfly valve flow analysis with RSM numerical model.

Keywords