Article citationsMore >>

J.Yang, M.D. Anderson, “Tracing the flow of power in transmission networks for use-of-transmission-system changes and congestion management”, Proceedings of IEEE PES, Winter meeting, Vol.1, January 31-Feb 4, 1999, pp.399-405.

has been cited by the following article:

Article

Analytical Review of Power Flow Tracing in Deregulated Power System

1Department of Electrical Engineering, Veer Surendra Sai University of Technology (VSSUT), Burla, India

2Department of Electrical Engineering, Bhadrak Institute of Engineering and Technology, Bhadrak, India


American Journal of Electrical and Electronic Engineering. 2016, Vol. 4 No. 3, 92-101
DOI: 10.12691/ajeee-4-3-4
Copyright © 2016 Science and Education Publishing

Cite this paper:
P. K. Hota, A. P. Naik. Analytical Review of Power Flow Tracing in Deregulated Power System. American Journal of Electrical and Electronic Engineering. 2016; 4(3):92-101. doi: 10.12691/ajeee-4-3-4.

Correspondence to: P.  K. Hota, Department of Electrical Engineering, Veer Surendra Sai University of Technology (VSSUT), Burla, India. Email: p_hota@rediffmail.com

Abstract

Electric Power starts flowing when there is a Source and Sink gets connected. Transmission corridor facilitates that power to flow. The problem arises in the analysis of individual power through a common transmission corridor of a larger system which is called power flow tracing. In the pre-deregulated system, due to the monopolistic nature of governance, the consumer was nothing to say about the tariff or choosing its service provider. But in the free-market or deregulated market system, the price to be charged must be based on fair and transparent manner. So analysis of individual customer’s power in a common supply corridor is a major contribution towards the fair and transparent analysis of price. Efficient power flow tracing would make it possible to charge the generators and/or consumers on the basis of actual transmission facility used. This paper deals with the detailed procedure for obtaining active and reactive power tracing for the actual active and reactive power transmitted through a common corridor between generators and loads. Initially, from the Newton-Raphson based load flows, the line flows are computed and then the multiplying factors of the lossy lines are calculated using proportional sharing method. Finally, based on the multiplying factors, the contributions of each line to concerned loads are obtained for both active and reactive power flow tracing. The method is used elaborately in a Six-bus system and subsequently applied to standard IEEE-14 and IEEE-30 Bus test systems and the results are presented.

Keywords