Article citationsMore >>

Baabereyir, A. (2009). Urban environmental problems in Ghana: case study of social and environmental injustice in solid waste management in Accra and Sekondi-Takoradi. Thesis submitted to the Department of Geography, University of Nottingham for the Degree of Doctor of Philosophy, UK, 97.

has been cited by the following article:

Article

Accuracy Assessment of Cartesian (X, Y, Z) to Geodetic Coordinates (φ, λ, h) Transformation Procedures in Precise 3D Coordinate Transformation – A Case Study of Ghana Geodetic Reference Network

1Department of Geomatic Engineering, University of Mines and Technology, Tarkwa, Ghana

2Department of Surveying and Mapping, China University of Geosciences, Wuhan, P.R. China


Journal of Geosciences and Geomatics. 2016, Vol. 4 No. 1, 1-7
DOI: 10.12691/jgg-4-1-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Bernard Kumi-Boateng, Yao Yevenyo Ziggah. Accuracy Assessment of Cartesian (X, Y, Z) to Geodetic Coordinates (φ, λ, h) Transformation Procedures in Precise 3D Coordinate Transformation – A Case Study of Ghana Geodetic Reference Network. Journal of Geosciences and Geomatics. 2016; 4(1):1-7. doi: 10.12691/jgg-4-1-1.

Correspondence to: Bernard  Kumi-Boateng, Department of Geomatic Engineering, University of Mines and Technology, Tarkwa, Ghana. Email: kumi@umat.edu.gh

Abstract

Ghana a developing country still adopt the non-geocentric ellipsoid known as the War Office 1926 as its horizontal datum for all surveying and mapping activities. Currently, the Survey and Mapping Division of Lands Commission in Ghana has adopted the satellite positioning technology such as Global Positioning System based on a geocentric ellipsoid (World Geodetic System 1984 (WGS84)) for its geodetic surveys. It is therefore necessary to establish a functional relationship between these two different reference frames. To accomplish this task, the Bursa-Wolf transformation model was applied in this study to obtain seven transformation parameters namely; three translations, three rotations and a scale factor. These parameters were then used to transform the WGS84 data into the War office system. However, Ghana’s national coordinate system is a projected grid coordinate and thus the new War Office coordinates (X, Y, Z) obtained are not applicable. There is therefore the need to project these coordinates onto the transverse Mercator of Ghana. To do this, the new war office data (X, Y, Z) attained must first be transformed into geodetic coordinates. The reverse conversion from cartesian (X, Y, Z) to its corresponding geodetic coordinate (φ, λ, h) is computation intensive with respect to the estimation of geodetic latitude and height. This study aimed at evaluating the performance of seven methods in transforming from cartesian coordinates to geodetic coordinates within the Ghana Geodetic Reference Network. The seven reverse techniques considered are Simple Iteration, Bowring Inverse equation, method of successive substitution, Paul’s method, Lin and Wang, Newton Raphson and Borkowski’s method. The obtained results were then projected onto the transverse Mercator projection to get the new projected grid coordinates in the Ghana national coordinate system. These results were compared with the existing coordinates to assess their performance. The authors proposed the Paul’s method to be a better fit for the Ghana geodetic reference network based on statistical indicators used to evaluate the reverse methods performance.

Keywords