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Abstract  We show abundant simply periodic solutions, trigonometric solutions, hyperbolic function solutions and 
Weierstrass elliptic solutions of the reduction of the cubic nonlinear Schrödinger equation by the complex method 
with Painlevé analysis, and some solutions appear to be new. At last, we give some computer simulations to illustrate 
our main results. 
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1. Introduction 

In this paper, we consider the cubic nonlinear 
Schrödinger equation (NLSE) 
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where ( , )w w x t=  is a complex envelop amplitude, t  is 
time, x  is distance, ,a b  are velocity dispersions, c  is the 
coefficient of the cubic nonlinearity. Eq.(1) has been 
discussed in [1,2,3] by using the tanh method and the  
sine-cosine method, in [4] by using exp-function method, 
in [5] by several integration tools. In [6], Hong et al. 
researched on the general perturbed nonlinear Schrödinger 
equation by using the homotopy perturbation method.  
In [7], some analytical solutions were derived for  
the relevant case of 1α =  of the time-dependent 
Schrödinger equation with the Riesz space-fractional 
derivative. 

Recently, W. Yuan et al. [8] studied meromorphic 
solutions for some nonlinear differential equations  
based on the complex method and the Nevanlinna  
value distribution theory. Therefore, it is of interest to 
know whether the complex method can be applied to 
NLSEs. By using the traveling wave transformation 

2( , ) ( ) ( 1)i tw x t u x e iα= = − , Eq.(1) reduces to 

 (4) 3 0.bu au u cuα′′− + − =  (2) 
We study the meromorphic solutions of Eq.(2) on the 

complex plane, therefore, let : ( ),u u z z= ∈ . 

2. Preliminaries 

Consider the following algebraic ordinary differential 
equation 

 ( )( , , , ) 0,mP w w w′ =  (3) 

where P  is a polynomial in ( )w z  and its derivatives with 
constant coefficients. 

If there are exactly p  distinct formal meromorphic 
Laurent series 
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k q

k q
w z c z q c
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−
=−
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satisfies Eq.(3), we say Eq.(3) satisfies ,p q〈 〉  condition 
[8]. 

If we only determine p  distinct principle parts 
1

( ) ( 0, 0)k
k q

k q
w z c z q c

−

−
=−

= > ≠∑ , we say Eq.(3) satisfies 

weak ,p q〈 〉  condition. 
Weierstrass elliptic function 2 3( ) : ( , , )z z g g℘ =℘  satisfies 

2 3
2 3( ( )) 4 ( ) ( )z z g z g′℘ = ℘ − ℘ −  where the invariants 

2 460 ,g s=  3 6140g s=  and discriminant 2 3( , )g g∆ =  
3 2
2 327 0.g g− ≠  Furthermore, ( ) ( )z z′ ′℘ − = −℘ , 2 ( )z′′℘ =  

2
212 ( ) ,z g℘ −  ( ) 12 ( ) ( )z z z′′′ ′℘ = ℘ ℘ ,   , any k th 

derivatives of ℘  can be deduced by these identities, and 
℘  has the Laurent series expansion 
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Defined ( )f z W∈  [9] if ( )f z  is an elliptic function, 

or a rational function of ( )zeα α ∈ , or a rational 
function of z . 
Lemma 2.1. [10] Let , , , , ,p q l m n∈  ( )deg ( , , , ) .mP w w w n′ <  
Suppose that equation (3) satisfies the ,p q〈 〉  condition, 
then all meromorphic solutions w  belong to the class W . 
Furthermore, each elliptic solution with pole at 0z =  can 
be written as 
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where ijc−  are given by (4), 2 3
2 34i i iB A g A g= − − and 

1 0
1

0, .
l

i
i

c c−
=

= ∈∑   

Each rational function solution : ( )w R z=  is of the form 
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with ( )l p≤  distinct poles of multiplicity q . 
Each simply periodic solution is a rational function 
( )R ξ  of (zeαξ α= ∈ . ( )R ξ  has ( )l p≤  distinct poles 

of multiplicity q , and is of the form 

 0
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( ) .
( )

ql ij
j
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c
R cξ

ξ ξ= =
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−
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Definition 2.2. [10] Let w  be a meromorphic solution of 
a m -th order algebraic differential equation ( , ) 0E z w = . 
We call the involved term of ( , ) 0E z w =  which 
determining the multiplicity q  in w  as the dominant term. 
The dominant part of ( , ) 0E z w =  is consists of all 

dominant terms, and is denoted by ˆ ˆ ( , )E E z w= . The 

multiplicity of pole of each term in ˆ ( , ( ))E z w z  is the same 
integer denoted by ( )D q . The multiplicity of pole of each 

monomial [ ]rM z  in ˆ( , ) ( , )E z w E z w−  is denoted by 
( )rD q . 

Definition 2.3. [11] For any meromorphic function v , the 
derivative operator of dominant part ˆ ( , ( ))E z w z  with 
respect to w  is defined by 

 
0

ˆ ˆ( , ) ( , )ˆ ( , ) : lim .E z w v E z wE z w v
λ
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The roots of the following equation 
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0

ˆ( ) lim ( , ) 0i D q q i q
qP i E c

χ
χ χ χ χ− + − −

−
→

′= =  (9) 

is called the Fuchs index of ( , ) 0E z w = . 
The complex method [8] can be presented in the 

following five steps: 
1)  Substituting the transform  

: ( , , ) ( ), ( , , )T u x y t w z x y t z→ →  into a given  
PDE. 
2)  Substituting (4) into Eq.(3) to determine the (weak) 

,p q〈 〉  condition holds. 
3)  By indeterminant relations (5-7) we find the elliptic, 

rational and simply periodic solutions ( )w z  of 
Eq.(3) with pole at 0z = , respectively. 

4)  By Lemma 2.1 we obtain all meromorphic solutions 
0( )w z z− . 

5)  Substituting the inverse transform 1T −  into these 
meromorphic solutions 0( )w z z− , then we get the 
exact traveling solutions ( , )u x t  of the original 
given PDE. 

3. Main Results 

Let ( )u z  be a meromorphic solution of Eq.(2), and 
suppose that ( )u z  has a movable pole at 0z = , then in a 
neighborhood of zero, the Laurent series of w  is of the 

form of  ( 0, 0)k
k q

k q
c z q c

∞

−
=−

> ≠∑ . Substituting this 

Laurent series into Eq.(2), then 
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vanishing the coefficients of the lowest power 
4 3q qz z− − = , we have 2, 2p q= = , and  

 2 2( ) (2 30 )
30

b au z z z
c b c

−= ± − +… . 

From (2), we know that (4) 3Ê bu cu= − , therefore, for 
any meromorphic function v , 
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Hence, the Fuchs index equation of Eq.(2) reads 
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It is easily to know that (8) 0P = . By the Painlevé 
analysis [11] we know that there is an arbitrary coefficient 
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ic  for some i  in the Laurent series 
2

k
k

k
c z

∞

=−
∑ . Therefore, 

Eq.(2) satisfies the weak , 2, 2p q〈 〉 = 〈 〉  condition, and 
then we will build meromorphic solutions for Eq.(2) by 
Lemma 2.1. 

By (6), we infer the indeterminant rational solutions of 
Eq.(2): 

 2 1
02

00
( ) .
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r
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Substituting ( )ru z  into Eq.(2), combining similar terms, 
then vanishing all coefficients to zero, we build the 
following rational solutions: 
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r
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−
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where 0a = , 0α = , and 0z  is an arbitrary number. 
Noting that 1 0c− = , by Lemma 2.1, we infer that the 

indeterminant of elliptic solution of Eq.(2) with pole at 
zero: 

 2 2 3 0( ) ( , , ) .eu z c z g g c−= ℘ +  

Substituting ( )eu z  into Eq.(2), combining similar terms, 
then vanishing all coefficients to zero, then we build the 
following system of algebraic equations: 
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Solving (13), we have 
2

2 2 18180
ag
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α

= − + , 
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3 3 2 .
5400 1080

a ag
b b

α
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Therefore, we obtain the following elliptic function 
solutions of Eq.(2) with pole at 0z z= ∈ : 

 0 2 360 ( , , )
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where 
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and 0z ∈  is an arbitrary number. 
Assuming that 0∆ = , we have  

 ( )( )2 4 2 2 24 25 8 55 200 =0a b a a b bα α α− − + ,  

then 
24
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2

2

2 2

3

3 3

4 ,
25

,
300

,
27000

a
b
ag

b
ag

b

α


=

 =


 = −


 (16) 

then the elliptic solutions (14) can be degenerated to the 
following trigonometric function solutions: 
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where 
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By (7), we infer the indeterminant simply periodic 
solutions of Eq.(2): 
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Put ( )su ξ  into Eq.(2), vanishing all coefficients to zero, 
we build following simply periodic solutions: 
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If 0a = , then 0β = , (19) will be reduce to a constant. 
Furthermore, we investigate the special cases of (19) 

with poles at 0( 0)z ξ= =  and ( 1)iz π ξ
α

= = − . By ( )su z  
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and (19), we can obtain the following hyperbolic function 
solutions: 

 

5

25

2

2 30( )
5

( 1)

1 30 1( ),
10 2 5

a z
b

a z
b

a eu z
bc

e

a acsch z
bc b

=

−

=

 (20) 

 

5

25

2

2 30( )
5

( 1)

1 30 1( ),
10 2 5

a z
b

a z
b

a eu z
bc

e

a asech z
bc b

=

+

=

 (21) 

 

5

25

2

2 30( )
5

( 1)

1 30 1( ),
10 2 5

a z
b

a z
b

a eu z
bc

e

a acsch z
bc b

−

−
=

−

= −

 (22) 

 

5

25

2

2 30( )
5

( 1)

1 30 1( ),
10 2 5

a z
b

a z
b

a eu z
bc

e

a asech z
bc b

−

−
=

+

= −

 (23) 

where 
24

25
a

b
α = , and z  can be replaced by 0z z− , 

0z ∈  is an arbitrary number. 
It follows easily that the solitons (22) (23) can be 

reduced to real functions with initial condition 0ab <  and 
z x= ∈  as follows: 

 21 30 1( ) csc ( ),
10 2 5

a au z x
bbc

= −  (24) 

 21 30 1( ) sec ( ).
10 2 5

a au z x
bbc

= −  (25) 

Noting that Eq.(2), if ( )u z  is a solution, then ( )u z−  is 
also. 
Remark 1. ( , ) ( ) i tw x t u x e α=  are the traveling wave 
solutions satisfy Eq.(1). The solutions (20)-(25) are also 
appear in [2] and [3].p690, and solutions (12) (14) (16) 
(17) (18) (19) are appear to be new comparing to [1,2] and 
other open literatures. 

4. Computer Simulations 

In this section, we give some computer simulations to 
illustrate the main results. If ,b c  are fixed, the amplitude 

and the width of the solitons (21) (25) can be manipulated 
using the dispersion coefficients a . We fix 

1, 1, [ 8,8]b c x= = ∈ −  in the solitons (21) (25), see Figure 1 
and Figure 2 for the values of 1, 5, 10, 15a a a a= = = =  
for bright solitons and 1, 5, 10, 15a a a a= − = − = − = −  for 
dark solitons. If bc is big the amplitude are small, and if 
b  is small the solitons are thin, while increasing the 
dispersion coefficient a  , their widths are also increasing 
if the solitons spread. The figure of Weierstrass function 
solution (14) be shown as Figure 3 for the values of 

1, 1, 1a b c= = =  and 1, 5, 10α α α= = = . 

 
Figure 1. Bright solitons for Eq.(2) with 1, 1b c= = (continuous 
curves) when solitons propagate 

 
Figure 2. Dark solitons for Eq.(2) with 1, 1b c= = (continuous curves) 
when solitons propagate. 

5. Conclusions 

This work is a successive application of the complex 
method for constructing exact solutions on the cubic 
nonlinear Schrödinger equation, elliptic function solutions, 
simply periodic solutions, trigonometric function solutions 
and hyperbolic function solutions were investigated. The 
results show that the complex method is a powerful and 
systematic tool for constructing meromorphic solutions 
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for some certain complex ordinary differential equations, 
especially for solitons and periodic solutions. 

 
Figure 3. 2D plot of Weierstrass function solution (14) for Eq.(2) with 

1, 1, 1a b c= = = (continuous curves) when wave propagate 
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