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1. Motivation 

Special functions and special polynomials possess a lot 
of significance in numerous fields of physics, mathematics, 
applied sciences, engineering and other related research 
areas including, functional analysis, differential equations, 
quantum mechanics, mathematical analysis, mathematical 
physics, and so on. Especially, the family of special 
polynomials is one of the most applicable, widespread and 
useful family of special functions. Some of the most 
considerable polynomials in the theory of special 
polynomials are the generalized Hermite-Kampé de Fériet 
(or Gould-Hopper) polynomials (see [1]) and the Bell 
polynomials (see [2]). 

The Bell polynomials considered by Bell [2] appear as 
a standard mathematical tool and arise in combinatorial 
analysis. In recent years, the usual Bell polynomials and 
the familiar central Bell polynomials have been 
extensively investigated by several mathematicians, cf.  
[2-11] and see also the references cited therein. 

In the theory of special functions and special 
polynomials, the degenerate forms for polynomials and 
functions have been worked and developed by several 

mathematicians cf. [5,6,8,9,10,12-23] and see also the 
references cited therein. For example, Carlitz [12] 
considered the degenerate Euler polynomials of higher 
order and presented diverse properties. Carlitz [13] 
introduced the degenerate Staudt-Clausen theorem and 
also illustrated it for the degenerate Bernoulli numbers. 
Kim et al. [17] introduced the degenerate Bernstein 
polynomials and examined recurrence relations, their 
generating function, symmetric identities and various 
connections with the earlier polynomials. Kim et al. [8] 
considered the degenerate central Bell numbers and 
polynomials and provided several properties, identities, 
and recurrence relations. Kim et al. [9] worked on 
degenerate Bell numbers and polynomials and gave 
diverse new formulas for those numbers and polynomials. 
Kim et al. [18] handled multifarious explicit formulas and 
recurrence relationships for the degenerate Mittag-Leffler 
polynomials and investigated diverse relationships 
between Mittag-Leffler polynomials and other known 
families of polynomials. Kim et al. [19] introduced the 
degenerate gamma function and degenerate Laplace 
transform and proved some interesting and novel formulas. 

Throughout this paper, the familiar symbols  ,  ,  , 
  and 0  are referred to the set of all complex numbers, 
the set of all real numbers, the set of all integers, the set of 
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all natural numbers and the set of all non-negative integers, 
respectively. 

The rest of this paper is structured as follows: Section 2 
provides the definition of the generalized degenerate 
Gould-Hopper polynomials by means of the degenerate 
exponential functions and also includes various relations 
and formulas for these polynomials. Section 3 deals with 
the generalized Gould-Hopper based degenerate central 
factorial numbers of the second kind and covers several 
identities and relationships. Section 4 considers the 
generalized Gould-Hopper based fully degenerate central 
Bell polynomials and presents multifarious correlations 
and formulas associated with the degenerate Bernstein 
polynomials and the Gould-Hopper based fully degenerate 
Bernoulli, Euler and Genocchi polynomials for the 
mentioned Bell polynomials. The last section of this paper 
examines the results derived in this paper. 

2. Introduction and Preliminaries 

In this section, we consider the generalized degenerate 
Gould-Hopper polynomials via the degenerate exponential 
functions. Before defining these polynomials, we provide 
some information that we need. 

The Gould-Hopper polynomials are given by means of 
the following Taylor series expansion at 0t =  (see 
[1,14,24]): 

 ( ) ( )
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n jj xt yt
n

n

tH x y e
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∞
+

=
=∑  (2.1) 

with 2.j ≥  For the special case 1,j =  the Gould-Hopper 
polynomials reduce to the representation of the Newton 
binomial formula. When 2j =  in (2.1), we get the usual 
Hermite polynomials denoted by ( ),nH x y  that have been 
utilized to generalize several special numbers and 
polynomials, for instance, Bell, Euler and Bernoulli 
polynomials and numbers (see [25]). 

Here are several basic notations and definitions in  
order to define the generalized degenerate Gould-Hopper 
polynomials. 

For ,r∈  the r -falling factorial ( ) ,n rx  is defined by 

[26] 
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The r -rising factorial ( , )n rx  is given by (see [26]) 
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(2.3) 

In the case r = 1, the r-falling factorial reduces to the 
familiar falling factorial (see [26]) 

 ( ) ( ),1 ( 1) ( 1)n nx x x x x n= = − − +  

and r-rising factorial becomes the usual rising factorial 
[25,26,27] 

The Stirling numbers of the first kind ( )1 ,S n m  are 
defined by means of the falling factorial as follows 

 ( ) ( )1
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m
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m
x S n m x

=
= ∑  (2.4) 

cf. [2-11,26,27] and see also references cited therein. 
The r-falling factorial and the r-rising factorial satisfy 

the following relation 

 ( , )
,( 1) ( ) .n r n

n rx x= − −  (2.5) 

The r∆  difference operator is defined by (see [25]) 

 1( ) ( ( ) ( )), 0.r f x f x r f x r
r

∆ = + − ≠  (2.6) 

Proposition 1. (cf. [25]) The following difference rule 
holds true: 
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The following Lemma will be useful in the derivation 
of several results. 
Lemma 1. (cf. [14]) The following elementary series 
manipulations hold: 
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The degenerate exponential function ( )xe tλ  for a real 
number λ  is given by (cf. [5,6,8,9,10,12-23]): 

 ( ) ( ) ( ) ( )1
%1  and : .

x
xe t t e t e tλλ λ λλ= + =  (2.9) 

It is readily seen that ( )
0

lim x xte t eλ
λ→

= . From (2.2) and 

(2.9), we obtain the following relation 

 ( ) ( ) ,
0

,
!

n
x

n
n

te t x
nλ λ

∞

=
= ∑  (2.10) 

satisfying 

 ( ) ( ).x xe t te tλ λ λ∆ =  (2.11) 

We now give our definition as follows. 
Definition 1. Let j∈  with 0,j >  and let { }, \ 0 .β γ ∈  
We define the generalized degenerate Gould-Hopper 

polynomials ( ) ( ), , ,j
nH rβ γ ρ  by the following generating 

function to be 
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We now examine some special cases of the generalized 
degenerate Gould-Hopper polynomials as follows. 
Remark 1.  

(1) When ,β γ=  we get the fully degenerate  

Gould-Hopper polynomials denoted by ( ) ( ), ,j
nH rβ ρ  (see 

[14]). 
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(2) Setting β γ=  and 2,j =  we get the fully 
degenerate Hermite polynomials denoted by ( ), ,nH rβ ρ  
(cf. [16]). 

(3) When 0β →  and 0γ → , we have the Gould-

Hopper polynomials denoted by ( ) ( ),j
nH r ρ  (cf. [1,14,28]). 

(4) When 0β → , 0γ →  and 2j = , we reach the 
classical Hermite polynomials denoted by ( ),nH r ρ   
(see [1,16,24,28,29,30,31,35]). 

We now give four Theorems follow from  
Definition 1 and the transformation formula (2.8) without 
proofs. 
Theorem 1. The generalized degenerate Gould-Hopper 

polynomials ( ) ( ), , ,j
nH rβ γ ρ  satisfy the following explicit 

formula 
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where ⋅    is the Gauss notation, and represents the 
maximum integer which does not exceed the number in 
the square brackets. 

Here is the inversion formula for the generalized 

degenerate Gould-Hopper polynomials ( ) ( ), , ,j
nH rβ γ ρ . 

Theorem 2. The following inversion formula holds  
true. 
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Theorem 3. The following addition formula is valid. 

 

( ) ( )

( ) ( ) ( ) ( )

1 2 1 2, ,

1 1 2 2, , , ,
0

,

, , .

j
n

n j j
n k k

k

H r r

n
H r H r

k

β γ

β γ β γ

ρ ρ

ρ ρ−
=

 

+




+

= 


∑
 (2.15) 

Theorem 4. For { }\ 0 ,θ ∈  the following equation holds 
true 

 ( ) ( ) ( ) ( ), , , / , /
, , .j jj n

n jn
H r H rβ γ β θ γ θ

θ θ ρ θ ρ=  (2.16) 

3. The Generalized Gould-Hopper  
Based Degenerate Central Factorial 
Numbers 

In this section, we perform to analyze and investigate 
degenerate forms of some special polynomials and 
numbers. We focus on the generalized Gould-Hopper 
based degenerate central factorial numbers of the second 
kind. We then derive several properties and formulas for 
these numbers. 

For non-negative integer ,n  the central factorial 
numbers of the second kind ( ),T n m  are defined by the 
following exponential generating function 
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 =∑ (cf. [5,7,8,10])(3.1) 

or by recurrence relation for a fixed non-negative integer n , 

 ( ) [ ]
0

, ,
n

mn

m
x T n m x

=
= ∑  (3.2) 

where the notation [ ]mx  called as the central factorial 

equals to 1 2 1
2 2 2
m m mx x x x    + − + − − +    

    
  with 

initial condition [ ]0 1x = , cf. [5,7,8,10] and see also 
references cited therein. 

For non-negative integer ,n  the degenerate central 
factorial numbers of the second kind ( )2, ,T n mλ  are 
defined by the following exponential generating function 
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When λ  approaches to 0 , the degenerate central factorial 
numbers of the second kind (3.3) reduces to the central 
factorial numbers of the second kind (3.1), namely 

( ) ( )2,
0

lim , ,T n m T n mλ
λ→

= . 

We are now ready to define the generalized Gould-
Hopper based degenerate central factorial numbers of the 
second kind. 
Definition 2. Let { }, , \ 0 .λ β γ ∈  The generalized 
Gould-Hopper based degenerate central factorial 

numbers of the second kind [ ] ( ),
2, , , , : ,jT n m rω
λ β γ ρ  are 

introduced by means of the following generating function 
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We here analyze some circumstances of the generalized 
Gould-Hopper based degenerate central factorial numbers 

of the second kind [ ] ( ),
2, , , , : ,jT n m rω
λ β γ ρ  as follows. 

Remark 2. 
(1) When 0r ρ= = , we get the unified degenerate 

central factorial numbers of the second kind 
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(2) When 0ρ = , we get an extension for the r -central 
factorial numbers, termed the unified degenerate  
r -central factorial numbers of the second kind: 
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(3) When 0r = , we get a new polynomial which is an 

extension of the central factorial numbers: 
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(4) When 1
2

ω =  and 0r ρ= = , we get the degenerate 

central factorial numbers of the second kind ( )2, ,T n mλ  
in (3.3), cf. [8]. 

(5) When 0λ → , generalized Gould-Hopper based 
degenerate central factorial numbers of the second kind 
[ ] ( ),
2, , , , : ,jT n m rω
λ β γ ρ  reduce to the ω -analog of the 

degenerate Gould-Hopper based central factorial 
numbers of the second kind denoted by 
( ) ( )2, ; , , : ,jT n m rω β γ ρ , which is also novel generalization of 

the factorial numbers of the second kind ( )2 ,T n m  in (3.1), 
given by 

[ ] ( )
( )

( ) ( ),
2, ,

0
, : , .

! !

mtn
j r j

n

te et
T n m r e t e t

n m

ω
ω ρ

β γ

ω

β γ ρ
∞

=

−−
=∑ (3.8) 

(6) When 1
2

ω =  and , , 0λ β γ → , we attain the 

familiar central factorial numbers of the second kind 
( ),T n m  in (3.1), cf. [5,7,8,10]. 
We now investigate some properties of the generalized 

Gould-Hopper based degenerate central factorial numbers 

of the second kind [ ] ( ),
2, , , , : ,jT n m rω
λ β γ ρ . Hence, we give 

the following Theorem 5. 
Theorem 5. For , ,k m n∈  and { }, , \ 0 ,λ β γ ∈  we 
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Proof. In view of Definition 2 and using (3.5), (3.6) and 
(3.7), we write 
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which implies the asserted result (3.9). The equations 
(3.10) and (3.11) can be derived similarly. So, the proof is 
completed. 

Here are the differentiation rules for the generalized 
Gould-Hopper based degenerate central factorial numbers 
of the second kind. 
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and 
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Proof. From (3.4), we get 
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which implies the claimed result (3.12). The proofs of the 
results in (3.13) and (3.14) can be done by the similar 
proof method used above. 

We here give the following correlation. 
Theorem 7. The following correlation 
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is valid for { }, , \ 0 .λ β γ ∈  

Proof. By Definition 2 and (2.12), we obtain 
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which provides the desired result (3.15). 
We give the following theorem. 

Theorem 8. The following relation 
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holds true for { }, , , \ 0 .α λ β γ ∈  

Proof. By Definition 3, we get 
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which implies the desired result (3.16). 
We here give the following correlation. 

Theorem 9. The following correlation 
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is valid for { }, , , \ 0 .α λ β γ ∈  

Proof. By Definition 2 and the identity (2.9), we obtain 
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which provides the desired result (3.17). 

4. Construction of Generalized  
Gould-Hopper Based Fully Degenerate 
Central Bell Polynomials 

In this part, we introduce the generalized Gould-Hopper 
based fully degenerate central Bell polynomials and 
investigated multifarious correlations and formulas 
including summation formulas, derivation rule and 
correlations with the Stirling numbers of the first kind, the 
generalized Gould-Hopper based degenerate central 
factorial numbers of the second kind and the generalized 
degenerate Gould-Hopper polynomials. 

The classical Bell polynomials ( )nBel x  (also called 
exponential polynomials) and central Bell polynomials 

( ) ( )c
nBel x  (also called central exponential polynomials) 

are defined by means of the following generating 
functions: 

 ( ) ( )1

0 !

tn x e
n

n

tBel x e
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∞ −

=
=∑  (cf. [2,3,4,6,9,11]) (4.1) 

and 
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=
=∑ (cf. [5,7,8,10]). (4.2) 

The classical Bell numbers nBel  and usual central Bell 

numbers ( )c
nBel  are acquired by choosing 1x =  in (4.1) 

and (4.2), that is ( )1 :n nBel Bel=  and ( ) ( ) ( )1 :c c
n nBel Bel= , 

which are given by the following exponential generating 
function: 
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 (4.3) 

The Bell polynomials extensively studied by Bell [2] 
appear as a standard mathematical tool and arise in 
combinatorial analysis. The familiar Bell polynomials and 
the central Bell polynomials have been intensely studied 
by many mathematicians, cf. [2-11] and see also the 
references cited therein. The large investigations of the 
Bell polynomials and numbers yield a motivation to 
improve this mathematical tool. 

The central Bell polynomials and central factorial numbers 
of the second kind satisfy the following relation  
(cf. [5,7,8,10]). 
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m
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=
= ∑  (4.4) 

The degenerate classical Bell polynomials and the 
degenerate central Bell polynomials are given by the 
following Taylor series expansion at 0t =  as follows: 
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and 
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=∑  (cf. [8]), (4.6) 

When 1x =  in (4.5) and (4.6), the mentioned polynomials 

( ( ),nBel xλ  and ( ) ( ),
c

nBel xλ ) reduce to the corresponding 
numbers 

 ( ) ( ) ( ) ( )
, , , ,1 :  and 1 :c c

n n n nBel Bel Bel Belλ λ λ λ= =  (4.7) 

termed as the degenerate Bell numbers and the degenerate 
central Bell numbers, respectively. 
Remark 3. We note that using (2.9), the degenerate 
classical Bell polynomials (4.5) and the degenerate 
central Bell polynomials (4.6) reduce the classical Bell 
polynomials (4.1) and the central Bell polynomials (4.2) 
in the following limit cases: 
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The degenerate central Bell polynomials and the 
degenerate central factorial numbers of the second kind 
satisfy the following relation (cf. [8]) 
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We are now ready to define the generalized  
Gould-Hopper based fully degenerate central Bell 
polynomials and numbers by the following Definition 3. 
Definition 3. Let { }, , , \ 0 .α λ β γ ∈  The generalized 
Gould-Hopper based fully degenerate central Bell 

polynomials ( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  are defined by the 

following exponential generating function 
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When 1,x =  the generalized Gould-Hopper based fully 
degenerate central Bell polynomials reduce to the 
corresponding numbers  
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termed as generalized Gould-Hopper based fully 
degenerate central Bell numbers: 
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We now analyze various special circumstances of the 
generalized Gould-Hopper based fully degenerate central 
Bell polynomials as follows. 
Remark 4. 

(1) When 1
2

ω = , the polynomials ( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  

and numbers ( ) ( ),
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(2) Upon setting , , 0α β γ → , the polynomials 
( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  and numbers ( ) ( ),
, , , , , ,c j

nBel rα λ β γ ω ρ  

in (4.10) and (4.11) reduce to the Gould Hopper based 
generalized degenerate central Bell polynomials 
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(4.12), which are also novel extensions of the central Bell 
polynomials ( ) ( )c

nBel x  and numbers ( )c
nBel  in (4.2) and 

(4.3), shown by 
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(3) When 1 ,
2

ω =  0rρ = =  and 0α → , we obtain the 

degenerate central Bell polynomials and numbers denoted 

by ( ) ( ),
,
c

nBel xλ  and ( )
,
c

nBel λ  in (4.6) and (4.7) (cf. [8]) 

(4) Setting 1
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ω =  and 0,λ →  we attain the degenerate 

central Bell polynomials and numbers denoted by 
( ) ( ),
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nBel xλ  and ( )
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nBel λ , which is different from the 
polynomials and numbers in (4.2) and (4.3) given by Kim 
et al. [8]: 
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(5) In the special case , , , 0α β γ λ →  and 1 ,
2

ω =  the 

polynomials ( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  and numbers 
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(6) When , 0,α λ →  0rρ = =  and 1
2

ω = , we arrive at 

the central Bell polynomials and numbers in (4.2) and (4.3) 
(cf. [5,7,8,10]). 

4.1. Simple Identities for ( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  

We now list a few properties of ( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  

which follow straightforwardly from Definition 3. So we 
omit the proofs. 
Theorem 10. For { }, , , \ 0 ,α λ β γ ∈  we have 
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Theorem 11. The following relation 
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holds true for { }, , , \ 0 .α λ β γ ∈  
We now state two summation formulas for 
( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  as follows. 

Theorem 12. The following summation formulas 
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are valid for { }, , , \ 0 .α λ β γ ∈  
We now provide a correlation as follows. 

Theorem 13. The following formula 
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holds true for { }, , , \ 0 .α λ β γ ∈  
We here provide an explicit formula for 
( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  as follows. 

Theorem 14. The following explicit formula 
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holds true for { }, , , \ 0 .α λ β γ ∈  

4.2. A Partial Derivative for 
( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  

Theorem 15 includes the partial derivative of 
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, , , , : , ,c j

nBel x rα λ β γ ω ρ  with respect to x  as follows. 

Theorem 15. The following relation 
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holds true for { }, , , \ 0 .α λ β γ ∈  
Proof. By Definition 3 and formulas (2.9) and (2.10), we get 
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which means the claimed result (4.22). 

4.3. Relations for ( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  

Here, we perform to get several diverse relations for 
( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  with some other degenerate 

polynomials including degenerate Bernstein, Bernoulli, 
Genocchi and Euler polynomials. 

We firstly perform to attain some relations with the 
degenerate Bernstein 
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Remark 5. Upon setting 0λ →  in (4.23), the generation 
function of degenerate Bernstein polynomials reduce to 
the generating function of familiar Bernstein polynomials 
as follows: 
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which is firstly given by Acikgoz and Araci in [32]. 
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Hence, we arrive at the following theorem. 
Theorem 16. The following correlation 
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holds true. 
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Therefore, from (3.4) and (4.23), we obtain 
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and by (3.5) and (4.10), similarly 
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Thus, we arrive at the following theorem. 
Theorem 17. The following summation equality 
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is valid. 
We here generalize the classical Bernoulli ( )nB x , 

Euler ( )nE x  and Genocchi ( )nG x  polynomials above 
via the generalized degenerate Gould-Hopper polynomials 
(2.12) as follows. 
Definition 4. The generalized degenerate Gould-Hopper 

based\ fully degenerate Bernoulli [ ] ( ), ; , ,j
nB rλ β γ ρ , Euler 
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nG rλ β γ ρ  polynomials 

are defined by the following exponential generating 
functions: 
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for { }, , \ 0 .λ β γ ∈  

Remark 6. As the parameters ,λ β  and γ  goes to 0 , the 
generalized degenerate Gould-Hopper based fully 
degenerate Bernoulli, Euler and Genocchi polynomials 
reduce to the usual Bernoulli, Euler and Genocchi 
polynomials, cf. [12,15,21,23,24,26,27,29,30,33,34]. 

When 0r ρ= = , the polynomials in (4.26), (4.27) and 
(4.28) reduce to the corresponding degenerate numbers, 

namely [ ] ( ) ,, ; , 0,0 :j
nnB B λλ β γ = , [ ] ( ) ,, ; , 0,0 :j

nnE E λλ β γ =  and 

[ ] ( ) ,, ; , 0,0 :j
nnG G λλ β γ = , see [12,23] and the references 

cited therein for further details on the mentioned numbers. 
Note that the following relation holds true as has been 

in the usual Genocchi and Euler numbers: 
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The summation formulas for the polynomials 
[ ] ( ), ; , ,j
nB rλ β γ ρ , [ ] ( ), ; , ,j

nE rλ β γ ρ  and [ ] ( ), ; , ,j
nG rλ β γ ρ  are 

stated in the following theorem without proofs. 
Theorem 18. The following formulas are valid: 
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We now perform to acquire some representations for 
( ) ( ),
, , , , : , ,c j

nBel x rα λ β γ ω ρ  by means of the Gould-Hopper 

based fully degenerate Bernoulli, Euler and Genocchi 
polynomials and fully degenerate central Bell polynomials. 
Theorem 19. The following correlation 
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holds true. 
Proof. By (4.10) and (4.26), we get 
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which implies the desired result (4.29). 
Theorem 20. The following summation formula 
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is valid. 
Proof. From (4.10) and (4.27), the proof can be completed 
by utilizing a similar proof method in Theorem 19. So we 
omit the proof. 
Theorem 21. The following relation 

 

( ) ( )
( )

( ) ( ) [ ] ( )
( ) ( ) [ ] ( )

( )

,
, , , ,

1
1 ,

0 0

; ,, ,

1 1 , , ; ,

0

: , ,

111
1 2

: ,

: ,1
2 1

c j
n

n k
n k

k m
jc

mk m

jcn n k k

k

Bel x r

n k
k mn

Bel x G r

Bel x G rn
k n

α λ β γ

λ

β γλ α

λ α β γ

ω ρ

ω ρ

ω ρ

+
+ −

= =

−

+
+ −

=

  
  
  

 


+
=

+

×

+
+ 

  +

∑ ∑

∑

 

holds true. 
Proof. Because of (4.10) and (4.28), the proof can be done 
by using a similar proof method in Theorem 19. So we 
omit the proof. 

5. Conclusion 

In this paper, we have first defined the generalized 
degenerate Gould-Hopper polynomials via the degenerate 
exponential functions and then have given various 
relations and formulas such as addition formula and 
explicit identity. Also, we have defined the generalized 
Gould-Hopper based degenerate central factorial numbers 
of the second kind and have presented several identities 
and relationships. We have considered the generalized 
Gould-Hopper based fully degenerate central Bell 
polynomials and have derived multifarious correlations 
and formulas including summation formulas, derivation 
rule and correlations with the Stirling numbers of the first 
kind, the generalized Gould-Hopper based degenerate 
central factorial numbers of the second kind and the 

generalized degenerate Gould-Hopper polynomials. We 
then have investigated some relations with the degenerate 
Bernstein polynomials for the generalized Gould-Hopper 
based fully degenerate central Bell polynomials. Lastly, 
by introducing the Gould-Hopper based fully degenerate 
Bernoulli, Euler and Genocchi polynomials, we have 
proved many representations for the generalized Gould-
Hopper based fully degenerate central Bell polynomials 
via the introduced polynomials. 
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