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1. Introduction 

In number theory, the totient function or Euler's phi 
function ( )nϕ  of a positive integer n  plays a vital role in 
group theory [1]. It determines the size of the 
multiplicative group modulo n . Apart from this, it also 
finds application in one of the very prevalent 
cryptographic techniques called RSA algorithm. It is well 
known that, ( )nϕ  is defined as the number of integers less 
than or equal to n , that are coprime to n . Paul Erdös 
extensively worked on co-prime graphs [2]. He has 
established very good fundamental results on number of 
cycles in coprime graphs. Further in [3], the author has 
studied exclusively on graph labeling and Euler's Phi 
function for  planar graphs. Motivated by this, we study 
the co-prime graphs from spectral theory perspective. In 
this paper we apply graph theoretic approach to study the 

( )nϕ  based on coprime graph labelling. More graph labelling 
techniques can be found in [4]. The coprime labeled graph 
is denoted by ER- ( ( , ))G p qϕ . The vertex set V  of ER-

( ( , ))G p qϕ  has p  vertices, labeled with {1,2, , p… } and 
q  edges. If two distinct vertices labeled i  and j  are 
coprime, then there exists an edge between them. 

This paper is organized into four sections. In section 2, 
main results are discussed. In section 3, algorithms to 
compute the greatest common divisor (GCD) and the least 
common multiplier (LCM) of any two given numbers 
between 1 and p  using ER- ( ( , ))G p qϕ  are described. 

Final section is for conclusions. For terminology and 
notations, one can look at [1,5]. The following are the 
most used notations: 

(1) ( )xπ  is the set of prime numbers up to a real 
number x. 

(2) ( , )a b  is the GCD of two numbers a and b and 

[ ],a b  is the LCM of them. 
(3) A wheel graph pW  is a graph with p vertices, 

formed by connecting a single vertex to all vertices of a 
1pC −  cycle. 

(4) Chromatic number ( )Gχ  of a graph G is the 
minimum number of colors to properly color the graph. 

(5) Chromatic polynomial ( , )f G t  of a graph G  is the 
number of different ways of properly coloring a labeled 
graph G  by t  colors. 

(6) Dominating set of a graph ( , )G V E  is a subset S  of 
V  such that every vertex of V S−  is adjacent to some 
vertex of S . 

(7) Domination Number ( )Gγ  is the cardinality of the 
smallest dominating set. 

(8) ( )L G  is the line graph of G . 
(9) Permanent ( )Per A  of a matrix A  is the sum 

, ( )1
p

i ii a α
α

=Π∑ , where α  runs over all permutations of the 

set {1,2, , }.p  
(10) Energy ( )E G  of a graph ( , )G p q  is the sum of the 

absolute eigenvalues of the adjacency matrix A  of ,G  
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that is, 
1

( ) | |
p

i
i

E G λ
=

= ∑ , where iλ  are the eigenvalues of A  

[6]. 
(11) Two graphs are said to be equi-energetic if and 

only if their energies are equal [7]. 
(12) ERπ - ( ( , ))G p qϕ  is a variant of ER − ( ( , ))G p qϕ  

in which the vertices of the graph are labeled with the first 
1p −  prime numbers {2,3,5, }  and 1 . 

2. Results 

In this section, we state some observations and results 
of an ER- ( ( , ))G p qϕ  graph. 

2.1. Observations 

(1) ER − ( ( , ))G p qϕ  is a simple connected graph 
without pendant vertex. 

(2) (ER∆ - ( ( , ))) 1G p q pϕ = − . 
(3) The trivial graph (1,0)G  is an ER ϕ−  graph. 
(4) 2K  and 3K  are the only complete graphs which are  

ER ϕ−  graphs. 
(5) For 4p ≥ , the ER- ( ( , ))G p qϕ  is not a regular 

graph. 
(6) ER- ( ( , ))G p qϕ  has a star graph 1, 1pK −  as its 

subgraph. 
(7) For the ER- ( ( , ))G p qϕ , 
(i) The girth is 3. 
(ii) The circumference is p. 
(iii) The diameter is 2. 

Theorem 2.1. The number of edges in ER- ( ( , ))G p qϕ  is 

 
2

( ) 2.
p

i
q i for pϕ

=
= ≥∑  

Proof. By definition of an ER ϕ−  graph, there exists an 
edge between any two distinct vertices i  and j  of the  
ER- ( ( , ))G p qϕ  if and only if ( , ) 1i j =  and i j≠ . Thus, 
the vertex labelled with p  has ( )pϕ  number of edges 
with vertices in {1,2, , 1}p − . Similarly the vertex 
labelled with 1p −  has ( 1)pϕ −  edges with vertices in 
{ 1,2, , p }, excluding the edge with vertex p  if any, 
since this edge is already counted within the edge set of 
vertex labeled by p . Continuing this way for any 
arbitrary vertex labelled by r , there are ( )rϕ  edges with 
vertices in {1,2, , 1}r −  excluding the edges with 
vertices from { 1, 2, , }r r p+ +   if any, as these edges are 
already accounted with the edge set of vertices of 
{ 1, 2, , }r r p+ +  . Similarly the vertex labelled by 2 is 
having one edge with vertex labelled by 1  with excluding 
those edges which are associated with {3,4, , }p  and 
finally vertex labeled by 1 has zero edges  with excluding 
those edges which are associated with {2,3,4, , }p .  

Thus the total number of edges in ER- ( ( , ))G p qϕ  is 

2
( )

p

i
q iϕ

=
= ∑ . 

Corollary 2.2. The number of edges in ER- ( ( , ))G p qϕ  is 

less than or equal to 
2
p 

 
 

. 

Proof. From Theorem 2.1, 

 
2

( ) 2.
p

i
q i for pϕ

=
= ≥∑  

and using the Euler's totient property, ( ) 1i iϕ ≤ − , we get 

 
2

( 1) 2
p

i
q i for p

=
≤ − ≥∑  

 
1

.
2

p
q p 

 
 

+
≤ −  

Thus .
2
p

q  
 
 

≤  

Example 1. The number of edges in ER- ( (3, ))G qϕ  is 
(2) (3) 1 2 3.q ϕ ϕ= + = + =  The number of edges in  

ER- ( ( 1, ))G p qϕ +  is ( 1)q pϕ+ + , where q  is the number 
of edges in ER- ( ( , ))G p qϕ . 

Theorem 2.3. If 5p ≥  and p  is odd, then ER- ( (3, ))G qϕ  
contains a spanning sub-graph as a wheel graph pW . 
Proof. The proof can be given in two steps: 1) The  
ER- ( ( , ))G p qϕ  has 1pC −  cycles, and 2) Every vertex of 

1pC −  has an edge with a distinguished vertex. Without 
loss of generality, let the vertex labelled by 1 be the 
distinguished vertex and the vertices {2,3, , }p  be the 
possible vertices of 1pC − . Since every vertex labelled by 

2i >  is coprime with the vertices labelled 1( )i mod p+  
and 1( )i mod p− . By the virtue of this, it has an edge with 
the vertices labeled by 1( )i mod p+  and 1( )i mod p−  and 
since p  is odd, the vertex labelled by 2 has an edge with 
vertex labelled by p  and 3. Thus these edges together 
with the vertices form a cycle 1pC − . By definition, every 
natural number is co-prime to 1. Thus all the vertices 
labelled by {2,3, , }p  of 1pC −  has an edge with the 

vertex labelled by 1. Hence ER- ( ( , ))G p qϕ  contains a 
wheel spanning subgraph pW . 
Corollary 2.4. If 4p ≥  and p  is even, then  
ER- ( ( , ))G p qϕ  contains a subgraph pW x− . 
Proof. Using Theorem 2.2, as p  is even, there can't be an 
edge between the vertices labelled by 2 and p . Thus no 

1pC −  cycle can be formed with the vertices {2,3, , }p . 

Thus an ER- ( ( , ))G p qϕ  contains a subgraph pW x− , 
whenever p  is even. 
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Theorem 2.5. ER- ( ( , )) { }G p q pϕ −  is also an ER- ϕ  
graph and is isomorphic to ER- ( ( 1, ( )))G p q pϕ ϕ− − . 
Proof. ER- ( ( , )) { }G p q pϕ −  is a graph obtained by 
removing the vertex labelled by p  and all the edges 
associated with it. Thus the resultant graph has 1p −  
vertices {1,2,3, , 1}p −  and there exist an edge between 
any pair of vertices if and only if their labels are  
co-primes. Hence ER- ( ( , )) { }G p q pϕ −  is ER- ϕ  graph  
having number of vertices and edges as 1p −  and 

( )q pϕ− , respectively, and therefore, is isomorphic to  
ER − ( ( 1, ( )))G p q pϕ ϕ− −  graph. 
Theorem 2.6. If ( )pπ  is the set of primes up to p , then 
maximal clique in ER- ( ( , ))G p qϕ  is | ( )| 1pKπ + . 
Proof. Since any two prime numbers are coprime, there 
exist edges between all the vertices labelled with prime 
numbers, and as these numbers are coprime with 1, they 
together form a complete graph with | ( ) | 1pπ +  vertices. 
Thus the maximal clique in ER- ( ( , ))G p qϕ  is | ( )| 1pKπ + . 

Corollary 2.7. The chromatic number χ  of ER- ( ( , ))G p qϕ  
is | ( ) | 1pπ + . 
Proof. By using Theorem 2.5, maximal clique in  
ER- ( ( , ))G p qϕ  is | ( )| 1pKπ + . Hence it requires | ( ) | 1pπ +  

colors to color the | ( ) |pπ  prime labelled vertices and  
one more color to color the vertex labelled by 1 .  
Since the remaining | ( ) | 1p pπ− −  vertices can be colored 
by | ( ) | 1pπ +  colors. Thus (ERχ - ( ( , ))G p qϕ ) is 
| ( ) | 1pπ + . 
Theorem 2.8. Let 1 2 3 | ( )|{ , , ,...... }pp p p pπ  be the  
set of prime numbers from 1 to p  with 

1 2 3 | ( )|pp p p pπ< < < <  and | ( ) | 1.t pπ≥ +  Then 

chromatic polynomial of ER- ( ( , ))G p qϕ  is given by 

1
| ( )| | 1,1 0

1
( ( ( , ), )) ( ) .

ip p
p p p pi j ij i

i
f ER G p q t t t i

π
ϕ

−   
−   

    = − >

=

∑
− = −∏  

Proof. Let there are  t  colors available to color graph  
ER- ( ( , )).G p qϕ  By corollary 2.7, ( ( ( , ), )) 0,f ER G p q tϕ− =  
for | ( ) | 1t pπ< + . Wlog, let | ( ) | 1t pπ>= +  and we  
color the vertices labled with 1 , 1 2 3 | ( )|, , ,..., ,...i pp p p p pπ  

in | ( )|, 1, 2,..., ,....., pt t t t i t pπ− − − −  ways respectively. 

Let 0 1 2 3 1 | ( )|{ , , , ,....., , ,........, }i i p pP P P P P P P P π+=  be the 

set of sets 0 1 2 3 1 | ( )|, , , ,....., , ,........,i i p pP P P P P P P π+  with the 

following properties. 
Let 0P ={vertex labeled with 1}. Let 1P  be the set of 

vertices which are labeled with the numbers which are 

divisible by prime 1p . Then 1
1

| | pP
p

 
=  
 

. 

Let 2P  be the set of vertices which are labeled with the 
numbers which are divisible by prime 2p  and not 

divisible by prime 1p . Then 2 2 1 2
| | .p pP p p p

   = −      
. 

Wlog, for all i  in | ( )|[2, ]ppπ , let iP  be the set of 
vertices  which are labeled with the numbers which are 
divisible by prime ip  and not divisible by primes 1p , 2p , 

3p , ... 1ip − . Then 

 
1

1
|

i

i
i j ij

p pP
p p p

−

=

  
= −   

    
∑  

0 1 2 3 1 | ( )|..... ........ .i i p pP P P P P P P π φ+ =
       

 

 
| ( )|

0
| | .

p

i
i

P p
π

=
=∑  

Further vertex of set 0P  can be colored in t  ways and 
for i  in [1, ]pπ , all the vertices of the set iP  are not 
connected to each other and hence all the vertices of this 
set can be colred with the same color and thus every 
vertex of this set can be colored in t i−  ways. Thus in 
total all the vertices of iP  can be clored in | |( ) Pit i−  or 

1

11 0( )

ip p
p p pi j ij it i

  
  
  

−
−

= >  −
∑

−  ways. 

1
| ( )|

1,1 0

1
( ( ( , ), )) ( ) .

ip p
p p p pi j ij i

i
f ER G p q t t t i

π
ϕ

−   
−   

    = − >

=

∑
∴ − = −∏  

Theorem 2.9. If pi is a prime number which is a label 
of a vertex v in ER- ( ( , ))G p qϕ , then the degree of v is 

.
i

pp p
 −   

 

Proof. Let a vertex v  in ER- ( ( , ))G p qϕ  be labelled by a 
prime number ip , where 1 ip p≤ ≤ . The maximum 
degree of any vertex in ER − ( ( , ))G p qϕ  is 1p − . Then 

number of non-coprimes from 1 to p  with ip  is 
i

p
p

 
  

. 

Since ip  is a prime number and no number except 1 and 
itself can divide ip . Thus number of coprimes from 1 to 

p  with ip  is 
i

pp p
 −   

. By the definition of  

ER − ( ( , ))G p qϕ , the degree of this vertex v  is 

.
i

pp p
 −   

 

Theorem 2.10. The sum of degrees of vertices labelled 
with non prime vertices in ( ( , ))ER G p qϕ−  is 

 
2 ( )

2 ( ) | ( ) | ,
%

p

ji j p

pi p p
pπ

ϕ π
= ∈

 
− +  

  
∑ ∑  (1) 

where 2 i p≤ ≤  and each ip  is a prime number. 
Proof. Let the vertices x jv  and y jv  are labelled with  

non-prime and prime numbers respectively. Also let S  be 
the set of numbers such that {1, 2, , } \ ( )S p pπ= … . It is  
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well-known that the sum of degrees of all the vertices of 
any graph is twice the number of edges in it. By using this 
and Theorems 2.1 and 2.8, 

 
1 ( )

 ( ) ( ) ( ),
p

i x yk j
i k S k p

d v d v d v
π= ∈ ∈

= +∑ ∑ ∑  

i.e., 
2 ( )

2 ( )

( ) 2 ( ) ( )

2 ( ) ( )

p

x yk j
k S i j p

p

ji j p

d v i d v

pi p
p

π

π

ϕ

ϕ

∈ = ∈

= ∈

= −

 
= − −  

  

∑ ∑ ∑

∑ ∑
 

i.e., 
2 ( )

( ) 2 ( ) | ( ) | .
p

xk
jk S i j p

pd v i p p
pπ

ϕ π
∈ = ∈

 
= − +  

  
∑ ∑ ∑  

This completes the proof. 
Theorem 2.11. If 3,p ≥  then ER- ( ( , ))varphi G p q  always 
contains a Hamiltonian cycle. 
Proof. Case 1: Let p  be odd. By using mathematical 
Induction: it is true for 3,p =  the ER − ( (3,3))Gϕ  is 3K , 
since 3K  is a Hamiltonian graph. Now assume that it is 
true for 2 1p n= − . We want to prove it for 2 1p n= + . 
By definition and Theorem 2.2, ER − ( (2 1, ))G n qϕ +  has 
a spanning subgraph as wheel graph 2 1nW + . But a wheel 
graph has a Hamiltonian cycle. Thus ER − ( (2 1, ))G n qϕ +  
has a Hamiltonian cycle. 
Case 2: Let 2 ,p n=  2n ≥  be even and 1 2 2{ , , , }p nv v v =…  

is the vertex set labeled with {1,2, , 2 }n… . By Corollary 
2.3, ER − ( ( , ))G p qϕ  contains a spanning subgraph 

pW x−  then there exist a path 2 1 1 2 2n p nP v v v− ==   and 

edge or path ( 1 2p nv v = ) between the vertices 1v  (labeled 1) 

and 2p nv =  (labeled 2p n= ). By joining these two paths, 

a cycle 2p nC =  is formed, which proves the theorem for 
even p  also. Hence the result is true all values of p .  
Note that (L(ER- ( ( , ))G p qϕ ) is also a Hamiltonian graph). 
Theorem 2.12. The domination number and the  
total domination number of ER- ( ( , ))G p qϕ  is  

(ERγ - ( ( , ))) (TG p q ERϕ γ= - ( ( , ))) 1G p qϕ = . 
Proof. In ER- ( ( , ))G p qϕ , the vertex labeled by 1 is 
adjacent to all the other vertices. Thus the set {1} is the 
minimum dominating set of $ER$- ( ( , ))G p qϕ  having  
the cardinality 1. Thus (ERγ - ( ( , ))) 1G p qϕ = . Similarly 

(T ERγ - ( ( , ))) 1G p qϕ = . 
Theorem 2.13. If 7,p ≥  ER − ( ( , ))G p qϕ  is non-planar. 
Proof. By Kuratowaski's theorem on planarity, a graph is 
non-planar if and only if it contains either 5K  or 3,3K  as 
its subgraph, or obtains any of these subgraphs by means 
of homeomorphic operations. By Theorem 2.5, every  
ER − ( ( , ))G p qϕ  has ( ) 1pKπ +  as its maximal clique.  
For 7p ≥ , the number of primes is 4.≥  Thus  
ER − ( ( , ))G p qϕ  has Kuratowaski's 2nd graph 5K  as its 
subgraph. Thus ER − ( ( , ))G p qϕ  is non-planar. 

Remark 2.14. With 7p < , no Kuratowaski's graph exists 
as a subgraph in ER − ( ( , ))G p qϕ  and also these graphs 
can be embedded in a plane surface. Hence they are 
planar graphs. 
Theorem 2.15. If 2 1p n= + , 2n ≥ , then ER- ( ( , ))G p qϕ  
has wheel subgraphs 5 7, , ,W W …  pW ,. Therefore, the 
number of wheel subgraphs is 1n − . 
Proof. By Theorem 2.4, it is true that, ER − ( ( , ))G p qϕ  
has ER − ( ( , )) { }G p q pϕ −  as its subgraph and is also an 
ER ϕ−  graph. Since p  is odd, by Theorem 2.2, this 
graph has 2 1p nW = +  as its spanning subgraph. But the fact 

that 1p −  is even implies ER- ( ( , )) { }G p q pϕ −  has  
no wheel subgraphs 1pW − . But 2p −  is odd and  

ER − ( ( , )) { , 1}G p q p pϕ − −  is also an ER ϕ−  graph and 
has 2 1nW −  as its subgraph. Thus alternating ER ϕ−  
graphs have wheel subgraphs when the number of vertices 
is odd. Finally this process is continued till the number  
of vertices of ER ϕ−  reaches 5, which has 5W  as  
its subgraph. Thus ER − ( ( , ))G p qϕ  has wheel subgraphs 

5 7 2 1, , , p nW W W = + . 

Theorem 2.16. The graph ERπ - ( ( , ))G p qϕ  is pK . 
Proof. By the definition, 1p −  vertices of this graph are 
labelled by prime numbers and one vertex labeled as 1. 
All these labels are coprime to each other and hence  
there exist an edge between every pair of vertices.  
Thus ERπ - ( ( , ))G p qϕ  is pK .  
Theorem 2.17. The number of edges in  
ER − ( ( 1, ))G p qϕ +  is q p+  if 1p +  is prime, and 

( 1)q pϕ+ +  if 1p +  is composite, where q  is the number 
of edges in an ER- ( ( , ))G p qϕ  graph. 
Proof. By construction method. Consider an  
ERπ - ( ( , ))G p qϕ  graph. Let v  be the vertex labeled  
by 1p +  of the trivial graph (1,0)G . Now the graph  
ER- ( ( 1, ))G p qϕ ′+  is constructed from ER- ( ( , ))G p qϕ  
and (1,0)G  by the following procedure. If 1p +  is prime, 
then 1p +  is coprime to all the numbers 1, 2,3, , p .  

ER- ( ( 1, )) ( ( , )) (1,0).G p q ER G p q Gϕ ϕ′+ = − ⊗  Then 
q q p′ = + . If 1p +  is composite, then 1p +  is coprime  
to ( 1)pϕ +  numbers among 1,2,3, , .p…  Then  
ER- ( ( 1, ))G p qϕ ′+  is constructed by adding ( 1)pϕ +  
edges between the vertices of ER- ( ( , ))G p qϕ  and the 
vertex labeled 1p +  of (1,0)G , such that the labels of the 
vertices of ER- ( ( , ))G p qϕ  are coprime with the vertex 
labeled 1p +  of (1,0)G . Thus ( 1)q q pϕ′ = + + . 

3. Eigenvalues of an ER- φ(G(p, q)) Graph 

The adjacency matrix ( )A Γ  of ERΓ = - ( ( , ))G p qϕ  is 
defined by its entries 1ija =  if ( )i jv v E∈ Γ  and 0 
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otherwise. Since ( )A Γ  is symmetric, its eigenvalues are 
real. Without loss of generality, we can write them as 

1 2( ) ( ) ( )pλ λ λΓ ≥ Γ ≥ ≥ Γ  and call them the eigenvalues 
of G . 
Lemma 3.1. [8] Let ( , )V EΓ =  be a graph with sub-vertex 
set 1 2{ , , , }kV v v v′ = …  having same set of neighbors 

1 2{ , , , }k k sv v v+ + … , where 1{ , , , , , , }.k s nV v v v v= … … …  
Then this  graph Γ  has at least ( 1)k −  equal eigenvalues 
0. Also the corresponding 1k −  eigenvectors are 

 


2 3

(1, 1,0, ,0) , (1,0, 1,0, ,0) , ,

and (1,0, , 1,0, ,0) .

T T

T

k

− … − … …

… − …





 

Theorem 3.2. Let ER − ( ( , ))G p qϕ  be a graph of order  
p . Also let i  be a prime number with positive integer ia  

( 2)ia ≥  such that 1a ai ii p i− ≤ < , 2,3,i = … . Then  one of 
the eigenvalues of the adjacency matrix of an ER- ( ( , ))G p qϕ  
graph is 0  of multiplicity 

( )
2 | ( ) |i

i p
a p

π
π

∈
−∑ . 

Proof. Since i  is an prime number, vertices with label 
12 3, , , , aii i i i −…  have same set of neighbors. By Lemma 

3.1, we conclude that ER- ( ( , ))G p qϕ  graph has at least 
2ia −  equal eigenvalues 0, ( )i pπ∈ . This completes the 

proof. 
Theorem 3.3. If p  is a prime number, then one of the 
eigenvalues of the adjacency matrix of an ER- ( ( , )).G p qϕ  
graph is 1− . 
Proof. Since p  is a prime, there exist at-least two vertices 
labeled 1 and p  having degree 1p − . Then the adjacency 
matrix ( p p×  matrix) of the graph is given by  

 

0 1 1 1
1 0 1 1

( ) .1 1 0 1

1 1 1 0

A

 
 
 
 Γ =
 
 
  







    



 

Now, 

 

1 1 1
1 1 1

| ( ) | 1 1 1

1 1 1

1 1 1 1
1 1 1

,1 1 1

1 1 1

pA I

λ
λ

λ λ

λ

λ λ
λ

λ

λ

−
−

Γ − = −

−

− − +
−

= −

−







    









    



 

by applying the transform 1 1 pR R R→ −  

 

1 0 0 1
1 1 1
1 1 1

1 1 1

λ
λ

λ

−
−

= −

−







    



 

by the determinant property. 
To compute the eigenvalues of ( )A Γ , write 

 | ( ) | 0.pA IλΓ − =  

From above, we get 1 0λ + = , that is, 1λ = − .  
Hence -1 is one of the eigenvalues of ER − ( ( , ))G p qϕ . 
Remark 3.4. From the proof of Theorem 3.3, we conclude 
that if there are k  vertices of ER − ( ( , ))G p qϕ  having  
degree 1,p −  then the multiplicity of eigenvalue -1 of  
ER ( ( , ))G p qϕ  is 1k − . 

In mathematics, Bertrand's postulate (actually a 
theorem) was proven by several researchers (see, [9]). 
Using Bertrand's postulate, we prove the following result: 
Theorem 3.5. One of the eigenvalues of the adjacency 
matrix of ER- ( ( , ))G p qϕ  graph is 1− . 
Proof. If p  is prime, then the proof is same as Theorem 
3.3. Otherwise, p  is composite. Then the proof is based 
on prime gaps. A prime gap is the difference between two 
successive prime numbers. To prove this theorem, the 
Bertrand's postulates [10,11,12] are applied. It states that 
there is always a prime number between x  and 2x. Any 
vertex in ER- ( ( , ))G p qϕ  has degree 1p −  if it is labelled 
by 1 or a prime number xp  such that ( , )xp k  = 1 for 
every k  such that 1x xp k p p+ ≤ ≤ ⇒  is not a divisor of 
the numbers from 1xp +  to p . By Bertrand's postulates, 

there is always a prime number between 
2
p  and p  as p  

is composite. Without loss of generality, let xp  be the 

nearest prime, which is less than p  and 
2 x
p p p≤ ≤ . 

Now 2 xp  is the least number divisible by xp .  
Since 2 xp p≤ , then xp  is not a divisor of numbers 
between 1xp +  to p . Hence the degree of the vertex that 
is labelled by xp  is 1p − . Thus there exist at least two 
vertices labeled by 1 and xp  having degree 1p − . By 
applying Theorem 3.3 and Bertrand's postulates result is 
proven. 

Let 1G  and 2G  be two graphs with 1n  and 2n  vertices,  
and 1m  and 2m  edges, respectively.  The union of two 
graphs 1G  and 2G , written 1 2G G∪ , is the graph  with 
vertex set 1 2( ) ( )V G V G∪  and edge set 1 2( ) ( )E G E G∪ .  
The join 1 2G G∨  of graphs 1G  and 2G  with disjoint  
vertex sets 1( )V G  and 2( )V G , and edge sets 1( )E G  and 

2( )E G  is the graph union 1 2G G∪   together with all the 
edges joining 1( )V G  and 2( )V G . Thus, for example, 

,p q p qK K K∨ = \,, the complete bipartite graph. 
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Theorem 3.6. One of the eigenvalues of the adjacency 
matrix of ( ( , ))ER G p qϕ−  graph is zero and its 
multiplicity is at least 2  for 2p ≥ . 
Proof. Let ERΓ = - ( ( , )).G p qϕ  By Theorems 3.3 and 3.5, 
there exist at least two  vertices having degree 1p −  in an 
Γ , where  p  is the number of vertices and q  is the 
number of edges in Γ . Then we have 

 2 ,K HΓ = ∨  

where H  is a graph of order 2p −  with 2 3q p− +  edges. 
Thus we have 

 1 1 .K K HΓ = ∪ ∪  

Let ( , )xΦ Γ  be the characteristic polynomial of graph 
Γ . From above one can see easily that 

 2( , ) ( , ).x x H xΦ Γ = Φ  

This completes the theorem. 
The energy of the graph G is defined as 

 
1

( ) | |.
n

i
i

E E G λ
=

= = ∑  

This quantity has a long known chemical application; 
for details see the surveys [13,14,15]. Recently much 
work on graph energy appeared also in the mathematical 
literature (see, for instance, [16,17,18,19]). 
Theorem 3.7. If 1p +  is prime, then ( ( , ))ER G p qϕ−  

( ( 1, ))ER G p q pϕ− + +  are equi-energetic graphs. 
Proof. Denote by 1 ( ( , ))ER G p qϕΓ = −  and  

 2 ( ( 1, ))ER G p q pϕΓ = − + + .  

Let 1 1( )E Γ , 2 2( )E Γ  and 1 1( )A Γ , 2 2( )A Γ  be the 
energies and adjacency matrices of two graphs 1Γ  and 2Γ , 
respectively. Since 1p +  is a prime and is co-prime with 
all numbers 1, 2,3, , p… , this implies that in 2Γ , the 
vertex labeled by 1p +  has edges with all the vertices of 

1Γ . Thus we have  

 2 1 1.KΓ = ∪Γ  

Let the eigenvalues of 1 1( )A Γ  be 1 2, , , pλ λ λ… .  
From above one can see easily that the eigenvalues  
of 2 2( )A Γ  are 1 2, , , pλ λ λ…  and 0. Therefore 

2 2 1 1 1 1
1

( ) | | 0 ( ) ( )
p

i
i

E E Eλ
=

Γ = + = Γ = Γ∑ . Hence the result 

follows. 
Theorem 3.8. Permanent of adjacency matrix of 

( ( , ))ER G p qϕ−  is zero. 

Let A  be the adjacency matrix of ( ( , ))ER G p qϕ− . 
Since the vertex labeled by 1 is adjacent to allthe vertices 
of the graph ER- ( ( , ))G p qϕ  and ( ( , ))ER G p qϕ− , it is 

not adjacent to none of the vertices of ( ( , ))ER G p qϕ− .  
 

By Theorems 3.3 and 3.5, this implies that A  has at least  
two rows with allzeros. Without loss of generality,  
let the 1st and j th rows bezero rows. Using the  
definition of the permanent of matrix we get ( )Per A = 

,i ia αΠ∑  = 1, 2, ,1 2,i i p ipa a a…∑ , where 1 2{ , , , }pi i i…  is 

a permutation over {1, 2, , }p… . In each of the products of 
sums, there exists at least one term which has elements of 
the 1st  and thj  rows. Thus all the products of sums 
vanishes to zero. Hence the permanent of adjacency 
matrix is zero. 
Theorem 3.9. The number of edges of a line graph of 

( ( , ))ER G p qϕ−  is 

 

2
2

( )

22

2, ( )

( 1)
%1 ( ),

2
( )

pii p
p i

j
j j p

pp p
p

i

d v

π

π

ϕ∈

=

= ∉

   − + −      −


 
 


 +
  


 

∑
∑

∑
 

where jv  is labelled with non-primes. 

Proof. The number of edges Lq  of a $line$ $graph$ of 

( ( , ))ER G p qϕ−  is given by 2

1

1
2

p

L i
i

q q d
=

= − + ∑ , where 

id  is the degree of the vertex of G . By Theorem 2.1, for 

an ( ( , ))ER G p qϕ− , 
2

( )
p

i
q iϕ

=
= ∑ . The vertices of the 

graph ( ( , ))ER G p qϕ−  can be partitioned into 3 sets: 
vertices labeled with prime numbers, vertices labeled with 
composite numbers and vertex labeled with 1 and their 
cardinalities are ( ), ( ) 1p p pπ π− −  and 1, respectively. 
By using Theorems 2.1 and 2.3, the theorem is proved. 

Let ( )D Γ  be the diagonal matrix of vertex degrees  
of graph .Γ  Then the Laplacian matrix of Γ  is 

( ) ( ) ( )L D AΓ = Γ − Γ , where ( )A Γ  is the adjacency matrix 
of .Γ  Let 1 2 1( ) ( ) ( ) ( ) 0n nµ µ µ µ−Γ ≥ Γ ≥ ≥ Γ ≥ Γ =  
denote the eigenvalues of ( )L Γ . They are usually called 
the Laplacian eigenvalues of Γ . Among all eigenvalues of 
the Laplacian of a graph, the most studied is the second 
smallest, called the algebraic connectivity of a graph. It is 
well known that a graph is connected if and only if 

1( ) ( ) 0na µ −Γ = Γ > . Besides the algebraic connectivity, 

1( )µ Γ  is the invariant that interested the graph theorists. 
The following two results are obtained in [20] and [21]. 
Lemma 3.10. [20] Let G  be a graph with Laplacian 
spectrum 1 2 1{0 , , , , }n nµ µ µ µ−= … .  Then the Laplacian 
spectrum of G  is 1 2 2 1{0, , , , ,n nn n n nµ µ µ µ− −− − … − − }, 
where  G  is the complement of the graph G . 
Lemma 3.11. [21] Let ( , )G V E=  be a graph with vertex 
subset 1 2{ , , , }kV v v v′ = …  having the same set of neighbors 

1 2{ , , , }k k sv v v+ + … , where  1{ , , , , , , }k s nV v v v v= … … … . 
Then this graph G   has at least ( 1)k −  equal eigenvalues 
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and they are all equal to the cardinality of the neighbor 
set. Also the corresponding ( 1)k −   eigenvectors are  

 


2 3

(1, 1,0, ,0) , (1,0, 1,0, ,0) , ,

and (1,0, , 1,0, ,0) .

T T

T

k

− … − … …

… − …





 

Theorem 3.12. Let ER- ( ( , ))G p qϕ  be a graph of order p . 
Also let i  be a prime number  with positive integer ia  

( 2)ia ≥  such that 1a ai ii p i− ≤ < , 2,3,i = … . Then the 
eigenvalues of the Laplacian matrix of an ER- ( ( , ))G p qϕ  

graph is 
%
pp
i

 −   
 of multiplicity 2,ia −  ( ).i pπ∈  

Moreover, the largest two Laplacian eigenvalues are n . 
Proof. Since i  is an prime number, vertices with label  

12 3, , , , aii i i i −…  have same set of neighbors. By Lemma 
3.11 and Theorem 2.9, we conclude that ER- ( ( , ))G p qϕ   

graph has at least 2ia −  equal eigenvalues 
%
pp
i

 −   
, 

( )i pπ∈  
We have that two adjacent vertices are adjacent to all 

the remaining vertices of the graph ER- ( ( , )),G p qϕ  by the 
proofs of Theorems 3.3 and 3.5. This implies that  
graph ER- ( ( , ))G p qϕ  has at least two vertices of  

degree 1p − , that is, graph ( ( , ))ER G p qϕ−  has two 
isolated vertices. By Lemma 3.10, we conclude that the 
largest two Laplacian eigenvalues are n . This completes 
the proof. 

4. An Algorithm to Compute GCD and 
LCD of Two Numbers. 

Though the ( ( , ))ER G p qϕ−  is constructed using GCD 
concept, from its adjacency matrix, the GCD and LCM of 
any two numbers from 1 to p  can be computed with less 
complexity and this can easily be extended to higher order 
of the graphs. This is one of the techniques for finding 
GCD and LCM. The algorithm to compute the GCD of 
two numbers is as follows: 

4.1. GCD Computation of Two Numbers a 
and b, where 1 ≤ a, b < p 

(1) Determine the adjacency matrix A of 
( ( , )).ER G p qϕ−  

(2) If A(a, b) = 1 or a = b, then (a,b) = 1. 

(3) If a b  then (a, b) = a or (if b a , then (a, b) = b); 
else find the common non neighbors of i and j, excluding 
1. 

(4) MinCommonNeighbour = minimum(common non-
neighbors of i and j.) 

(5) (a; b) = minimum(a, b; minCommonNeighbour) 

4.2 LCD computation of two numbers a and b, 
where 1 ≤ a, b <p 

(1) Determine the adjacency matrix A of ( ( , ))ER G p qϕ− . 
(2) If ,a b=  [ ], ;a b a=  
(3) If ( , ) 1A a b =  or a b= , then ( , ) 1a b = . 
(4) Compute (a, b) using algorithm 3.1. 

(5) [ ] ( )
*, .
,

a ba b
a b

=  

5. Conclusion 

In this paper, we studied the spectral properties of  
co-prime labeled graphs ( ER ϕ− ) based on Euler's ϕ  
function. Several properties including connectivity, 
coloring and domination of these graphs are stated and 
proved. As part of further research, the study of generic 
spectral properties of these graphs is in progress. 
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