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Abstract The p-adic gamma function is considered to obtain its derivative and to evaluate its the fermionic p-adic
integral. Furthermore the relationship between the p-adic gamma function and Changhee polynomials and also
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1. Introduction

The p-adic numbers introduced by the German
mathematician Kurt Hensel (1861-1941), are widely used
in mathematics: in number theory, algebraic geometry,
representation theory, algebraic and arithmetical dynamics,
and cryptography. The p-adic numbers have been used to
applying fields with successfully applying in super.cld
theory of p-adic numbers by Vladimirov and Volovich. In
addition, the p-adic model of the universe, the p-adic
quantum theory, the p-adic string theory such as areas
occurred in physics (for detail see [1,2]).

Special numbers and polynomials plays an important
role in almost all areas of mathematics, in mathematical
physics, computer science, engineering problems and
other areas of science. The gq-calculus (or quantum
calculus) appeared in the 18th century and it continues to
develop rapidly and has been studied by many scientists
(cf. [3-8]). Many generalizations of special functions
with a g-parameter recently were obtained using p-adic
g-integral on Z , (cf. [9-15]).

Let p be chosen as a fixed odd prime number.
Throughout this paper, Z,, Q, and C, denote the ring

of p-adic integers, the field of p-adic numbers and the
completion of the algebraic closure of Q p» respectively.

In the year 1975, Morita [16] defined the gamma
function over p-adic fields, denoted by I',, by the
following formula:

r,(x)=1lim(-1)" J] j (xeZ
? n—x 1<j<n ( P)
(p.j)=1

where n approaches x through positive integers. The
p-adic gamma function I', is analytic on Z, and

satisfies the functional relation:
—al,(x) [x| =1

_rp(x)

T,(x+1)= (1.1

|x| <1
P
The p-adic Euler constant y,, is defined by the formula:

_T,0

Yp: R0 (1.2)

=T, (1) =-T"(0).

The p-adic gamma function I',, (x) has a great interest

and has a great interest and has been studied by Diamond
(1977) [17], Barsky (1977) [18], Dwork (1983) [19] and
cited references therein.

For xeZ,, the symbol [Xj is defined by (g) =1 and
n

' '” (xeN). The functions
n n! n!

[xj: x(x=D...(x=n+1) _ (x)

x> (xJ(x € Zp ,n€E N) form an orthonormal base of the
n

space C (Z p C p) with respect the norm || . ||OO This
orthonormal base have the following property:
o on-l n—j—l1
-1
(x] - ZL[XJ [[20], p162]  (1.3)
n =0 n—j \J

In 1958, Mabhler introduced an expansion for continuous
functions of a p-adic variable using special polynomials as
binomial coefficient polynomial [21]. Means that for any
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fe C(Zp - (Cp ), there exist unique elements ag,a, ...

of C » such that

f(X):nZ:oan(ij (erp).

k
The base {( j:neN} is called Mahler base of the
X

space C(Zp -C, ), and the elements {a,:neN}

e8]
in f(x)= Zan [x) are called Mahler coefficients of
n=0 n

fec(z,—>C,).
The Mahler expansion of the p-adic gamma function

r, and its Mahler coefficients are determined by the

following proposition:
Proposition 1. ([20,22]) Let

i X
Fp(x+1):’§)an[nj(xezp) (1.4)
and

( jl xP
exp x+2—
p ) 1-

where E is the region of convergence of the power series
AL
n!

For f € (Z »—C p), the fermionic p-adic integral on

Z( 1)n+1 nx

er) (1.5)

Z, is defined by Kim to be

P N_
1= reau ()= = m 2 o) 0.0
p
(see [10,11]). For any fe(Zp—>(Cp), by (1.6), the

following relation holds:

Ly (A)+11(f)=2/(0)
where f;(x)=f(x+1).

The Changhee numbers and polynomials which are
derived umbral calculus are defined by Kim et al. as the
generating function to be

1.7

(1+1)° ZCh
t+2 n'

In the case when x=0, Ch,(0)=Ch, stands for

Changhee numbers, see [23] for details. In [24], Kim et al.
obtained following theorems which will be useful in
deriving the main results of this paper:

Theorem 1. For n e N, one has

_[ (%), du_y (x) =Ch,.
Zp

Theorem 2. For ne N, one has

[ Gt yndi, ()= Chy ().
Zp

Theorem 3. For n e N, one has
x -1Y
I( Jd,u_l(x):[—j .
zZ,\n 2

2. Main Results

In the present work, the fermionic p-adic integral of
p-adic gamma function and of derivative of p-adic gamma
function are evaluated. The p-adic Euler constants are
expressed in term of Mabhler coefficients of the p-adic
gamma function. The relationship between the Changhee
polynomials and the p-adic Euler constants are obtained.
Theorem 4. Then the equality holds:

Za Chn_

I F Ge Dy
P

Jor xeZ,, where a, is defined by Proposition 1.

Proof. Let xeZ p- From Proposition 1, we have
fr (x+Ddpy (x IZa ( jdm (x)
p Z n=0
(2.1)
< X
:Zan J-( jd,u_l(x).
n=0 7, n
From Theorem 1, we get
J T ey ( Z” Ch,.
Zp

Using Theorem 3 we can rewrite (2.1) and we have the
following corollory:
Corollary 1. For neN and x€Z,,.

'ty e sy (5)= 2, (‘—lj

Zp n=0 2

where a,, is defined by Proposition 1.

Lemma 1. For neN and x€Z,, the following equality

holds:
Zf (x;ljdy_l (x)= (2"+1 —1)(_71)'1 :

p

Proof. When f(x)= (x j in (1.7), we have
n
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n Z

J-(jjd,ul(x)+ | (x;ljdﬂl(x)zz(o‘l} [ r (xe)dpy fr x)dp_y (x) =217 (0).

Zp Zp P
Form Theorem 3 we prove the theorem. From (2.2) and (1.2), we can write
Theorem 5. The following relation is holds o n-l n -1
X
© Z Z a, I ldp_y (x)
J‘ Ch, (s —1) =1 i=0 n—j J
Fp(x+s)d,u,1(x)=2an— =
Zp n=0 n! o n-l n j-1 Y_1
| ) 220 E [
where a, is defined by Proposition 1. n=1j=0 n—j Zp\ J
Proof. Let x € Z ,. By Proposition 1, we have =27y

Using Theorem 3 and Lemma 1 we can rewrite (2.3) as

0
(x+s-1)
,[ l"p(x+s)dy,1(x)=2an I —'"d,u,l(x). o
Zp n=0 Zp n:
Yp = 2 Z
By using Theorem 2 we can write n=1%j=0 "= ]
By some computing steps, the proof is completed.

J T, (x+s)d ,U— z a, M Theorem 8. Relationship between the Changhee polynomials
Zp n! and the p-adic Euler constants is as
Th 6.If xeZ,, th SES )y
eorem 6. If xe€Z,,, then :ZZ (Ch —Ch. ( ))
=1j=0 '2(n J)
o0 _1 n
.[ r (x)d,u 1 z (2’1“ )(7] . and
p - o n-1 ( )n J Ch
Proof. By using Proposition 1, we have Yp= z z a, —j

fr (0)dp_y (x f Zan[ jdﬂl(x) +ifﬂ (1_2—1‘—1).

Zp Zpn=0 n=lj=0 n—j
S x—1
_ z a, j ( Jdﬂ—l (x) Proof. we can rewrite (2.3) by
0 7 n .
p o n-l n Jj-1 (x)
L. .. . Z Z I S d H_q (x)

From Lemma 1, fermionic p-adic integral of T’ » (x) is =1 j=0 n—j Z, J!
evaluated. o n-l n j—1 (x_l)

From Theorem 5 and Theorem 6, the following n Z z a, J- J 4 1 (%)
corollary is obtained. n=1 j=0 n-j z P J! -
Corollary 2. For ne N,

= —2;/p.
n
Ch, (_1) =n !( pn+l _1)(__1j . From Theorem 1 and Theorem 2, it is obtained
2

o n-l1 ( l)n J
From Proposition 1 and (1.3), derivative of p-adic

Gamma functions, l"'p, is obtained as n=1j=0 " '2(” J )

(Ch +Chy (-1)) =7,

In addition, by using Corollary 2, we get

o n—l n]l
F, (x+l) ZZG (x] (2.2) o n-l nj h oonl
n=1j=0 - J zzan ¢ ZZ (l 211) 7p

1,=0 '2 (n- 1j=0 n—
where a,, is defined by Proposition 1. == ]) == /

Theorem 7. The p-adic Euler constants have the  Theorem9.If x,s €Z, then
expansion

© n-1 n—j—1
Ch:(s-1
i (—1 n-l .[ Fp(x+s d,u_ ZZa ) 5 ].'(S )
V) :nZIan — Z, =0 j=0 (I’l—])_].

Proof. When f'(x)=T",(x) in (1.7), we get Proof. Let x,s € Z ,. We have
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n j-1
J‘ L (x+s-1
Fp( j jd,ul(x)

'ljzp

By using Theorem 3 we can write

Zj I, (x+s)duy (x)

)4
o n-1 n—j-1
-1 Ch;(s—1
—Zza ) .].(S )
n=0 j=0 (n_])f!

In the case s = | in Theorem 9 we obtain the following
conclusion

Corollary 3. For xeZ,,

o n-1 n—j-l1
1) 7 " Ch;
IF’ x+1dy_ ZZa#
Z, n=0 j=0 (n=j)Jj!
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