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Abstract  The p-adic gamma function is considered to obtain its derivative and to evaluate its the fermionic p-adic 
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1. Introduction 

The p-adic numbers introduced by the German 
mathematician Kurt Hensel (1861-1941), are widely used 
in mathematics: in number theory, algebraic geometry, 
representation theory, algebraic and arithmetical dynamics, 
and cryptography. The p-adic numbers have been used to 
applying fields with successfully applying in super.eld 
theory of p-adic numbers by Vladimirov and Volovich. In 
addition, the p-adic model of the universe, the p-adic 
quantum theory, the p-adic string theory such as areas 
occurred in physics (for detail see [1,2]). 

Special numbers and polynomials plays an important 
role in almost all areas of mathematics, in mathematical 
physics, computer science, engineering problems and 
other areas of science. The q-calculus (or quantum 
calculus) appeared in the 18th century and it continues to 
develop rapidly and has been studied by many scientists 
(cf. [3-8]). Many generalizations of special functions  
with a q-parameter recently were obtained using p-adic  
q-integral on p  (cf. [9-15]). 

Let p be chosen as a fixed odd prime number. 
Throughout this paper, ,p  p  and p  denote the ring 
of p-adic integers, the field of p-adic numbers and the 
completion of the algebraic closure of ,p  respectively. 

In the year 1975, Morita [16] defined the gamma 
function over p-adic fields, denoted by ,pΓ  by the 
following formula: 
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where n  approaches x  through positive integers. The  
p-adic gamma function pΓ  is analytic on p  and 
satisfies the functional relation: 
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The p-adic Euler constant pγ  is defined by the formula: 
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The p-adic gamma function ( )p xΓ  has a great interest 
and has a great interest and has been studied by Diamond 
(1977) [17], Barsky (1977) [18], Dwork (1983) [19] and 
cited references therein. 
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In 1958, Mahler introduced an expansion for continuous 
functions of a p-adic variable using special polynomials as 
binomial coefficient polynomial [21]. Means that for any 
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( ) ,p pf C∈ →   there exist unique elements 0 1, ,a a …  

of p  such that  
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∑  are called Mahler coefficients of 

( ).p pf C∈ →   

The Mahler expansion of the p-adic gamma function 
pΓ  and its Mahler coefficients are determined by the 

following proposition: 
Proposition 1. ([20,22]) Let 
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where E  is the region of convergence of the power series 
% .
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For ( ) ,p pf ∈ →   the fermionic p-adic integral on 

p  is defined by Kim to be 
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(see [10,11]). For any ( ) ,p pf ∈ →   by (1.6), the 

following relation holds: 
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where ( ) ( )1 1f x f x= + . 
The Changhee numbers and polynomials which are 

derived umbral calculus are defined by Kim et al. as the 
generating function to be 
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In the case when 0x = , ( )0n nCh Ch=  stands for 
Changhee numbers, see [23] for details. In [24], Kim et al. 
obtained following theorems which will be useful in 
deriving the main results of this paper: 
Theorem 1. For 0 ,n∈  one has 
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Theorem 2. For 0 ,n∈  one has 
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Theorem 3. For 0 ,n∈  one has 
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2. Main Results 

In the present work, the fermionic p-adic integral of  
p-adic gamma function and of derivative of p-adic gamma 
function are evaluated. The p-adic Euler constants are 
expressed in term of Mahler coefficients of the p-adic 
gamma function. The relationship between the Changhee 
polynomials and the p-adic Euler constants are obtained. 
Theorem 4. Then the equality holds: 
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for ,px∈  where na  is defined by Proposition 1. 

Proof. Let .px∈  From Proposition 1, we have 
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From Theorem 1, we get 
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Using Theorem 3 we can rewrite (2.1) and we have the 
following corollory: 
Corollary 1. For n∈  and .px∈  
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where na  is defined by Proposition 1. 
Lemma 1. For n∈  and ,px∈  the following equality 
holds: 
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Form Theorem 3 we prove the theorem. 
Theorem 5. The following relation is holds 
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where na  is defined by Proposition 1. 
Proof. Let .px∈  By Proposition 1, we have 
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By using Theorem 2 we can write 
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Theorem 6. If ,px∈  then 
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Proof. By using Proposition 1, we have 
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From Lemma 1, fermionic p-adic integral of ( )p xΓ  is 
evaluated. 

From Theorem 5 and Theorem 6, the following 
corollary is obtained. 
Corollary 2. For ,n∈  
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From Proposition 1 and (1.3), derivative of p-adic 
Gamma functions, ,p′Γ  is obtained as 
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where na  is defined by Proposition 1. 
Theorem 7. The p-adic Euler constants have the 
expansion 
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Proof. When ( ) ( )pf x x′= Γ  in (1.7), we get 
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From (2.2) and (1.2), we can write 
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Using Theorem 3 and Lemma 1 we can rewrite (2.3) as 
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By some computing steps, the proof is completed. 
Theorem 8. Relationship between the Changhee polynomials 
and the p-adic Euler constants is as 
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Proof. we can rewrite (2.3) by 
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From Theorem 1 and Theorem 2, it is obtained 
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In addition, by using Corollary 2, we get 
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Theorem 9. If , px s∈  then 
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Proof. Let , .px s∈  We have 
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By using Theorem 3 we can write 
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In the case s = 1 in Theorem 9 we obtain the following 
conclusion 
Corollary 3. For ,px∈  
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