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1. Introduction 

Definition 1.1 A function :f I ⊆ →   is said to be 
convex if the inequality 

 ( )( ) ( ) ( ) ( )1 1f tx t y tf x t f y+ − ≤ + −  

is valid for all 𝑥𝑥, 𝑦𝑦∈𝐼𝐼 and 𝑡𝑡∈[0,1]. If this inequality 
reverses, then f is said to be concave on interval 𝐼𝐼≠∅. This 
definition is well known in the literature.  

It is well known that theory of convex sets and convex 
functions play an important role in mathematics and the 
other pure and applied sciences.  

If 𝑓𝑓: 𝐼𝐼→ℝ is a convex function on the interval 𝐼𝐼, then 
for any 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 with 𝑎𝑎≠𝑏𝑏 we have the following double 
inequality  

 ( ) ( ) ( )1 .
2 2

b
a

f a f ba bf f x dx
b a

++  ≤ ≤  −  ∫  (1.1) 

This double inequality is known in the literature  
as Hermite-Hadamard integral inequality for convex 
functions. Note that some of the classical inequalities for 
means can be derived from (1.1) for appropriate particular 
selections of the mapping 𝑓𝑓. Both inequalities hold in the 
reversed direction if f is concave. For some results which 
generalize, improve and extend the inequalities (1.1) we 
refer the reader to the recent papers (see [1-11]) and 
references therein.  
Definition 1.2 [10] Let 𝑓𝑓: 𝐼𝐼⊆(0,∞)→ℝ is said to be  
GA-convex (geometric-arithmetically convex) if  

 ( ) ( ) ( ) ( )1 1t tf x y tf y t f x− ≤ + −  

for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐼𝐼 and 𝑡𝑡∈[0,1]. If this inequality is reversed, 
then 𝑓𝑓 is said to be geometric arithmetically concave.  

In [2], S. S. Dragomir proposed the following  
Hermite-Hadamard type inequalities which refine the first 
inequality of (1.1).  
Theorem 1.1 [2]. Let 𝑓𝑓 is convex on [𝑎𝑎,b]. Then H is 
convex, increasing on [0,1], and for all 𝑡𝑡∈[0,1], we have  

 
( ) ( ) ( )

( )

0 1
2

1 b
a

a bf H H t H

f x dx
b a

+  ≤ ≤ ≤ 
 

≤
− ∫

 (1.2) 

where 

 ( ) ( )1 1 .
2

b
a

a bH t f tx t dx
b a

+ = + − −  ∫  

An analogous result for convex functions which refines 
the second inequality of (1.1) is obtained by G. S. Yang 
and M. C. Hong in [9] as follows.  
Theorem 1.2 [9]. Let f is convex on [𝑎𝑎,b]. Then P is 
convex, increasing on [0,1], and for all 𝑡𝑡∈[0,1], we have  

 
( ) ( ) ( ) ( )

( ) ( )

1 0 1

2

b
a

f x dx P P t P
b a

f a f b

= ≤ ≤
−

+
=

∫
 (1.3) 

where  
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 ( ) ( )

1 1
2 21 .

2 1 1
2 2

b
a

t tf a x
P t dx

b a t tf b x

  + −    +     
     =  −  + −     + +    

      

∫  

G. S. Yang and K. L. Tseng in [8] established some 
generalizations of (1.2) and (1.3) based on the following 
results.  
Theorem 1.3 [8] Let 𝑓𝑓: [𝑎𝑎,b]→ℝ be a convex function, 
0<𝛼𝛼<1, 0<𝛽𝛽<1  

 ( )1 ,A a bα α= + −  

 ( )0
1min ,

1
u b a α α

β β
 −

= −  
− 

 

and let h be defined by  

 ( ) ( ) ( ) ( )( )1 1 ,h t f A t f A tβ β β β= − − + + −  

for 𝑡𝑡∈[0,𝑢𝑢0]. Then h is convex, increasing on [0,𝑢𝑢0] and 
for all 𝑡𝑡∈[0,𝑢𝑢0],  

 ( )( ) ( ) ( ) ( ) ( )1 1 .f a b h t f a f bα α α α+ − ≤ ≤ + −  

The weighted generalization of Hermite-Hadamard 
inequality for GA-convex functions is as follows [16]:  
Theorem 1.4 Let 𝑓𝑓:𝐼𝐼⊆(0,∞)→ℝ be a GA-convex function, 
𝑎𝑎, 𝑏𝑏∈𝐼𝐼 and 𝑎𝑎<𝑏𝑏. If 𝑔𝑔: [𝑎𝑎,b]→[0,∞) is continuous and 
geometrically symmetric according to ,ab  then  

 
( ) ( ) ( ) ( )

( ) ( ) ( )
.

2

b b
a a

b
a

g x f x g x
f ab dx dx

x x
f a f b g x

dx
x

≤

+
≤

∫ ∫

∫
 

Specifically, if g(𝑥𝑥)=1 is taken in this theorem, the 
following Hermite-Hadamard inequality is obtained for 
GA-convex functions:  

 
( ) ( )

( ) ( )

1
ln ln

.
2

b
a

f x
f ab dx

b a x
f a f b

≤
−
+

≤

∫
 (1.4) 

This inequality is also obtained in the case of 𝑠𝑠=1 
specially in Theorem 3.1 and Theorem 3.3 in [14].  

It is remarkable that M. Z. Sarıkaya et al. [7] proved the 
following interesting inequalities of Hermite-Hadamard 
type involving Riemann-Liouville fractional integrals.  
Theorem 1.5 [7] Let 𝑓𝑓: [𝑎𝑎,b]→ℝ be a positive function 
with 𝑎𝑎<𝑏𝑏 and 𝑓𝑓∈𝐿𝐿1[𝑎𝑎,𝑏𝑏]. If 𝑓𝑓 is a convex function on [𝑎𝑎,b], 
then the following inequalities for fractional integrals hold:  

 

( )
( )

( ) ( )

( ) ( )

1
2 2

2

R a R b
a bf J f b J f a

b a

f a f b

α α
α

α
+ −

Γ ++   ≤ +     −

+
≤

(1.5) 

with 𝛼𝛼>0.  
We remark that the symbols aJ fα

+  and bJ fα
−   

denote the left-sided and right-sided Riemann-Liouville 

fractional integrals of the order 𝛼𝛼≥0 with 𝑎𝑎≥0 which are 
defined by  

 ( ) ( ) ( ) ( )11 , ,
x

R a a
J f x x t f t dt x aαα

α
−

+ = − >
Γ ∫  

and  

 ( ) ( ) ( ) ( )11 ,
b

R b x
J f x t x f t dt x bαα

α
−

− = − <
Γ ∫  

respectively. Here, Γ(𝛼𝛼) is the Gamma function defined 

by ( ) 1
0

.te t dtαα
∞ − −Γ = ∫  

Definition 1.3 [12] Let 𝑓𝑓∈[𝑎𝑎,𝑏𝑏]. The right-hand side and 
left-hand side Hadamard fractional integrals aJ fα

+  and 

bJ fα
−  of order 𝛼𝛼>0 with 𝑏𝑏>𝑎𝑎≥0 are defined by  

 ( ) ( ) ( )
11 ln ,

x
H b a

x dtJ f x f t x a
t t

α
α

α

−

−
 = > Γ  ∫  

and  

 ( ) ( ) ( )
11 ln ,

b
H b x

t dtJ f x f t x b
x t

α
α

α

−

−
 = < Γ  ∫  

respectively, where 𝛤𝛤(𝛼𝛼) is the Gamma function defined 

by ( ) 1
0

.te t dtαα
∞ − −Γ = ∫  

In this paper, we establish some new Hermite-Hadamard 
type inequalities for convex functions via Riemann-Liouville 
fractional integrals which refine the inequalities of (1.5).  

Ruiyin Xiang [11] proved the following Lemma and 
Theorem for interesting inequalities of Hermite-Hadamard 
type inequalities for convex functions via Riemann-Liouville 
fractional integrals.  
Lemma 1.1 Let 𝑓𝑓: [𝑎𝑎,b]→ℝ be a convex function and h be 
defined by  

 ( ) 1 .
2 2 2 2 2

a b t a b th t f f
  +   +    = − + +       

       
 

Then ℎ(𝑡𝑡) is convex, increasing on [0,𝑏𝑏−𝑎𝑎] and for all 
𝑡𝑡∈[0,𝑏𝑏−𝑎𝑎],  

 ( ) ( ) ( )
.

2 2
f a f ba bf h t

++  ≤ ≤ 
 

 

Theorem 1.6 Let 𝑓𝑓:[𝑎𝑎,𝑏𝑏]→ℝ be a positive function with 
𝑎𝑎<𝑏𝑏 and 𝑓𝑓∈𝐿𝐿1[𝑎𝑎,𝑏𝑏]. If 𝑓𝑓 is a convex function on [𝑎𝑎,𝑏𝑏], then 
𝑊𝑊𝐻𝐻 is convex and monotonically increasing on [0,1] and  

 
( ) ( ) ( )

( )
( )

( ) ( )

0 1
2

1

2
R a R b

a bf WH WH t WH

J f b J f a
b a

α α
α

α
+ −

+  = ≤ ≤ 
 

Γ +  = + −

 

with 𝛼𝛼>0, where  

 
( )

( )
( )

( ) ( )1 1

1
22

.

b
a

a bWH t f tx t
b a

b x x a dx

α

α α

α

− −

+ = + − 
 −

 × − + −  

∫
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We can rewrite as follows the theorem in [13] for s = 1:  
Theorem 1.7 Let 𝑓𝑓:𝐼𝐼⊆ℝ+⟶ℝ. Then the following 
statements are true:  

(1)  The function f(𝑥𝑥) is geometric-arithmetically convex 
on I if and only if f(𝑒𝑒𝑥𝑥) is convex on the interval 
𝑙𝑙𝑛𝑛𝐼𝐼={𝑙𝑙𝑛𝑛𝑥𝑥|𝑥𝑥∈𝐼𝐼}, where it is assumed that 𝑙𝑙𝑛𝑛0=−∞.  

(2)  If f(𝑥𝑥) is decreasing and geometric-arithmetically 
convex on 𝐼𝐼, then it is convex on 𝐼𝐼.  

(3)  If f(𝑥𝑥) is increasing and convex on 𝐼𝐼, then it is also 
geometric-arithmetically convex on 𝐼𝐼.  

For GA-convex functions Hermite-Hadamard inequalities 
obtained with the help of fractional integrals can be given 
as follows [15].  
Theorem 1.8 Let 𝑓𝑓:𝐼𝐼⊆(0,∞)→ℝ be a function, 𝑎𝑎,𝑏𝑏∈𝐼𝐼, 
𝑎𝑎<𝑏𝑏 and 𝑓𝑓∈[𝑎𝑎,𝑏𝑏]. If the function 𝑓𝑓 is GA-convex on [𝑎𝑎,b], 
then the following inequality for the fractional integrals 
hold:  

 

( ) ( ) ( ) ( )

( ) ( )

1

2 ln

2

H a H bf ab J f b J f a
b
a

f a f b

α α
α

α
+ −

Γ −  ≤ +  
 
 

+
≤

 (1.6) 

with 𝛼𝛼>0.  
We have obtained the left sides of the (1.4) and (1.6) 

inequalities using a functional that we have defined. We 
have also obtained the left side of the Hermite-Hadamard-
Fejér inequality through Hadamard fractional integrals for 
GA-convex functions.  

2. The Left Hand Sides of the  
Hermite-Hadamard and  
Hermite-Hadamard-Fejér  
Inequalities via Functionals  

Theorem 2.1 Let 𝑓𝑓:[𝑎𝑎,𝑏𝑏]⊂(0,∞)→ℝ a be geometric 
arithmetically (GA)-convex function, 0<𝛼𝛼<1, 0<𝛽𝛽<1  

 ( )1ln ,A a bα α−=  

 ( )0
1ln ln min ,

1
u b a α α

β β
 −

= −  
− 

 

and let ℎ be defined by  

 
( ) ( ) ( )

( )( )
1

11

1

,

t

t

h t f a b e

f a b e

α α β

βα α

β

β

− −

−−

= −

+
 

for 𝑡𝑡∈[0,𝑢𝑢0]. Then h is convex, increasing on [0,𝑢𝑢0] and 
for all 𝑡𝑡∈[0,𝑢𝑢0],  

 ( ) ( ) ( ) ( ) ( )1 1 .f a b h t f a f bα α α α− ≤ ≤ + −  

Proof. We note that if 𝑓𝑓:[𝑎𝑎,𝑏𝑏]⊂(0,∞)→ℝ is GA-convex 
according to Theorem 1.7 and 𝑔𝑔 is linear, then the 
composition 𝑔𝑔=(𝑓𝑓𝑜𝑜𝑒𝑒𝑥𝑥𝑝𝑝) is convex on [𝑙𝑙𝑛𝑛𝑎𝑎,𝑙𝑙𝑛𝑛𝑏𝑏]. According 
to the Theorem 1.3, also we note that a positive constant 

multiple of a convex function and a sum of two convex 
functions are convex, hence function  

 

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( )

( )( )

1

1

11

1 1

1

1

tA t A

t

t

h t g A t g A t

f e e f e e

f a b e

f a b e

ββ

α β β

βα α

β β β β

β β

β

β

−−

− −

−−

= − − + + −

= − +

= −

+

 

is convex and increasing on [0,𝑢𝑢0] and for all 𝑡𝑡∈[0,𝑢𝑢0],  

 
( )( )

( ) ( ) ( ) ( )
ln 1 ln

ln 1 ln

g a b

h t g a f b

α α

α α

+ −

≤ ≤ + −
 

that is,  

 ( ) ( ) ( ) ( ) ( )1 1 .f a b h t f a f bα α α α− ≤ ≤ + −  

Lemma 2.1 Let 𝑓𝑓:[𝑎𝑎,𝑏𝑏]⊂(0,∞)→ℝ be a GA-convex 
function and ℎ be defined by  

 ( ) 2 21 .
2

t t

h t f abe f abe
−    

    = +
    

    

 

Then ℎ(𝑡𝑡) is convex, increasing on 0, ln b
a

 
  

 and for all 

0, ln ,bt
a

 ∈   
 

 ( ) ( ) ( ) ( )
.

2
f a f b

f ab h t
+

≤ ≤  

Proof. If 𝑓𝑓:[𝑎𝑎,𝑏𝑏]⊂(0,∞)→ℝ is geometric-arithmetically 
(GA) convex, then according to the Theorem 1.7 the 
function 𝑔𝑔=𝑓𝑓𝑜𝑜𝑒𝑒𝑥𝑥𝑝𝑝 is convex on [𝑙𝑙𝑛𝑛𝑎𝑎,𝑙𝑙𝑛𝑛𝑏𝑏]. Then the 
function ℎ defined by  

 

( )

2 2

ln ln
2 21

2 ln ln
2 2

1
2

t t

a b tg
h t

a b tg

f abe f abe
−

  +   −      =   +   + +      
    
    = +
    

    

 

is convex and increasing on 0, ln b
a

 
  

 and for 

0, ln bt
a

 ∀ ∈   
 

 ( ) ( ) ( )ln lnln ln .
2 2

g a g ba bg h t
++  ≤ ≤ 

 
 

If substituting 𝑔𝑔=𝑓𝑓𝑜𝑜𝑒𝑒𝑥𝑥𝑝𝑝 in the above inequality, we 
have  

 ( ) ( ) ( ) ( )
.

2
f a f b

f ab h t
+

≤ ≤  
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Theorem 2.2 Let 𝑓𝑓:[𝑎𝑎,𝑏𝑏]⊂(0,∞)→ℝ be a function and 
𝑓𝑓∈𝐿𝐿[𝑎𝑎,𝑏𝑏]. If the function 𝑓𝑓 is GA-convex on [𝑎𝑎,b], then Hα 
defined by  

 

( ) ( )1

1 1

2 ln

1ln ln

b t t
a

H t f x G
b
a

b x dx
x a x

α α

α α

α −

− −

=
 
 
 
    ×  +    
     

∫

 

is convex and monotonically increasing on [0,1] and  

 

( ) ( ) ( ) ( )
( ) ( ) ( )

0 1

1
.

2 ln
H H b

f ab H H t H

J f b J f a
b
a

α α α

α α
αα

α
+ +

= ≤ ≤

Γ +  = +  
 
 

 

Proof. i) Firstly, let 𝑡𝑡1, 𝑡𝑡2, 𝛽𝛽∈[0,1]. We need to show that  

 ( )( ) ( ) ( ) ( )1 2 1 21 1 .H t t H t H tα α αβ β β β− + ≤ − +  

Using the definition of 𝐻𝐻𝛼𝛼, we can write the following  

 

( )( )
( ) ( )( )

1 2

1 1 11 2 1 2

1 1

1

2 ln

1ln ln .

b t t t t
a

H t t

f x G
b
a

b x dx
x a x

α

β β β β
α

α α

β β

α − + − − −

− −

− +

=
 
 
 
    ×  +    
     

∫  

Since the function 𝑓𝑓 is geometric-arithmetically convex, 
we get  

 

( ) ( )( ) ( )( )
( ) ( )

( ) ( ) ( )

1 1 1 11 2 2 2

11 11 1 2 2

1 11 1 2 21 .

t t t t

t t t t

t t t t

f x G

f x G x G

f x G f x G

β β β β

β β

β β

− + − − + −

−− −

− −

 
=  

 

≤ − +

 

So  

 

( )( )

( ) ( )

( )

( ) ( ) ( )

1 2

1

11 1
1

1

12 2
1

1 2

1

ln
11

2 ln ln

ln
1

2 ln ln

1 ,

b t t
a

b t t
a

H t t

b
x

f x G dx
xb x

a a

b
x

f x G dx
xb x

a a

H t H t

α

α

α α

α

α α

α α

β β

αβ

αβ

β β

−

−
−

−

−
−

− +

         ≤ −   
     +          

         +   
     +          

= − +

∫

∫

 

from which we get 𝐻𝐻α is convex on [0,1].  
ii) By elementary calculus, we have  

 

( ) ( )

( )

( )

1

11 1
1

1

1
1

1 1
1

ln
1

2 ln ln

ln
1

2 ln ln

ln ln

b t t
a

ab t t
a

t t

b
x

H t f x G dx
xb x

a a

b
x

f x G dx
xb x

a a

b xf x G
x a

α

α α α

α

α α

α α

α

α

−

−
−

−

−
−

− −
−

    
  =  

    +        
         =   

     +          
    +  +    
    

∫

∫

1

ln ln 2
0 1

1

2
1

ln

2 2

2
ln

2 2

2 ln ln

2 2

ln

2 2

1

tu
b a

tu

b
ab

b
ua

du
f Ge

b
ua

b b
ua a

d
f Ge

b
ua

dx
x

α

α

α α

α

α

−

−−

−

−

−

+

+ −

=

−

+

+ +



    
  
         

     
  
  
  
   
            
         

     
  
  
  
   

∫

∫

ln ln

0

ln ln 2 2
0

1 1

2

4 ln

ln ln
.

2 2 2 2

b a

tx tx
b a

u

f Ge Ge
b
a

b b
x xa a dx

α

α α

α

−

−−

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 = +
     

 
         × − + +               

∫

∫

 

It follows from Lemma 2.1 that function ( )h x =  

2 21
2

tx tx

f abe f abe
−    

    +
    

    

 is monotonically increasing 

on [ ]0, ln ln .b a−  Since 

1 1
ln ln

2 2 2 2

b b
x xa a

α α− −         − + +               

 

is nonnegative, hence Hα(𝑡𝑡) is increasing on [0,1]. Finally, 
from  

 ( ) ( )0f ab Hα=  

and  
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 ( ) ( ) ( ) ( )
1

1 ,

2 ln
H a H bH J f b J f a

b
a

α α
α α

α
+ −

Γ +  = +  
 
 

 

we have completed the proof.  
Corollary 2.1 With assumptions in Theorem 2.2, if 𝛼𝛼=1, 
we get  

 
( ) ( ) ( ) ( )

( )

1 1 10 1

1 1

ln

b
a

f ab H H t H

f x dx
b x
a

= ≤ ≤

= ∫  

where the function 𝐻𝐻1 is defined as Theorem 2.2, which is 
just the result in Theorem 2.2.  
Remark 2.1 The inequality obtained in Theorem 3.2 gives 
us the left side of the inequality obtained in Theorem 1.8.  

The next theorem is a generalization of Theorem 2.2:  
Theorem 2.3 Let 𝑓𝑓:[𝑎𝑎,𝑏𝑏]⊂(0,∞)→ℝ be a function and 
𝑓𝑓∈𝐿𝐿[𝑎𝑎,𝑏𝑏]. If the function 𝑓𝑓 is GA-convex on [𝑎𝑎,b] and 𝑔𝑔 is 
integrable, nonnegative and symmetrically according to 

,ab  that is ( )abg g x
x

  = 
 

 for all 𝑥𝑥∈[𝑎𝑎,𝑏𝑏], then 

( )g H tα  defined by  

 

( ) ( )

( )

1
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is convex and monotonically increasing on [0,1], for 𝛼𝛼>0  
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Using the definition of ,g Hα  we can write the 
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from which we get g Hα  is convex on [0,1].  
ii) By elementary calculus, we have  
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It follows from Lemma 2.1 that  
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is monotonically increasing on [0, 𝑙𝑙𝑛𝑛𝑏𝑏−𝑙𝑙𝑛𝑛𝑎𝑎]. Since  
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is nonnegative, hence ( )g H tα  is increasing on [0,1]. 
Finally, from  
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Here, by an easy calculation we get  
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This completes the proof of Theorem.  
Remark 2.2. If g(𝑥𝑥)=1 in Theorem 2.3, then the 
following equality holds:  
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3. Conclusion 

In this paper, we obtain some new Hermite-Hadamard 
and Hermite-Hadamard-Fejér type inequalities for geometric 
arithmetically convex functions via Hadamard fractional 
integrals. We conclude that the results obtained in this work 
are the refinements of the earlier results. An interesting 
topic is whether we can use the methods in this paper  
to establish the left side hand of Hermite-Hadamard  
and Hermite-Hadamard-Fejér inequalities for geometric 
arithmetically convex functions via Hadamard fractional 
integrals.  
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