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Abstract In this paper, we get the fractional integral inequalities obtained for geometric arithmetically (GA)
convex functions by using functionals. The left hand side of the Hermite-Hadamard and Hermite-Hadamard-Fejér
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1. Introduction

Definition 1.1 A function f:l c R — R is said to be
convex if the inequality

f(tx+(1-t)y) <tf (x)+(1-t) f(y)

is valid for all x, yel and te€[0,1]. If this inequality
reverses, then f is said to be concave on interval I#@. This
definition is well known in the literature.

It is well known that theory of convex sets and convex
functions play an important role in mathematics and the
other pure and applied sciences.

If f: I>R is a convex function on the interval I, then
for any a, b € I with a#b we have the following double
inequality

a+b 1 ¢b f(a)+ f(b)

This double inequality is known in the literature
as Hermite-Hadamard integral inequality for convex
functions. Note that some of the classical inequalities for
means can be derived from (1.1) for appropriate particular
selections of the mapping f. Both inequalities hold in the
reversed direction if f is concave. For some results which
generalize, improve and extend the inequalities (1.1) we
refer the reader to the recent papers (see [1-11]) and
references therein.

Definition 1.2 [10] Let f:1<(0,00)—R is said to be
GA-convex (geometric-arithmetically convex) if

F(X ) <t (v)+(2-1) £ (x)

for all x, y €I and t€[0,1]. If this inequality is reversed,
then f is said to be geometric arithmetically concave.

In [2], S. S. Dragomir proposed the following
Hermite-Hadamard type inequalities which refine the first
inequality of (1.1).

Theorem 1.1 [2]. Let f is convex on [a,b]. Then H is
convex, increasing on [0,1], and for all t€[0,1], we have
f(aT”’Js H(0)<H (t) < H (1)

(1.2
b

Sﬁ.[a f (x)dx

where

Ht) = :f(tx+(1—t)a7m)dx.

An analogous result for convex functions which refines
the second inequality of (1.1) is obtained by G. S. Yang
and M. C. Hong in [9] as follows.

Theorem 1.2 [9]. Let f is convex on [a,b]. Then P is
convex, increasing on [0,1], and for all t€[0,1], we have

ﬁ 7t (x)dx = P(0)<P(t) < P()
f(a)+f(b)

2

(1.3

where
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1+t 1-t
P (0)= 2(bl— . P f [(T}H[Tj Xj

(5]

G. S. Yang and K. L. Tseng in [8] established some
generalizations of (1.2) and (1.3) based on the following
results.

Theorem 1.3 [8] Let f: [a,b]>R be a convex function,
0<a<l,0<p<1

A=cqa+(1-a)b,

and let h be defined by
h(t)=(1-8) f (A-pt)+ BT (A+(1-B)t),

for te[0,ug]. Then h is convex, increasing on [0,uy] and
for all t€[0,u],

f(aa+(1-a)b)<h(t)<af(a)+(l-a)f(b).

The weighted generalization of Hermite-Hadamard
inequality for GA-convex functions is as follows [16]:
Theorem 1.4 Let f:1<(0,.0)—R be a GA-convex function,
a, b€l and a<b. If g: [a,b]—[0,0) is continuous and

geometrically symmetric according to Jab, then
f
f(Vab) [ g(x)dxs_[b ()9 (x)g,
a X a X
. f(a)+f (b)J~b g(x)dx.
2 a x

Specifically, if g(x)=1 is taken in this theorem, the
following Hermite-Hadamard inequality is obtained for
GA-convex functions:

< 1 bf(x)

f(\/E)_Inb—lna—[a X dx (1.4)
_f(a)+f(b) '
S

This inequality is also obtained in the case of s=1
specially in Theorem 3.1 and Theorem 3.3 in [14].

It is remarkable that M. Z. Sarikaya et al. [7] proved the
following interesting inequalities of Hermite-Hadamard
type involving Riemann-Liouville fractional integrals.
Theorem 1.5 [7] Let f: [a,b]—R be a positive function
with a<b and f€L,[a,b]. If f is a convex function on [a,b],
then the following inequalities for fractional integrals hold:

a+b F(a+1) a a
f[ 2 jgz(b_a)a[R‘]mf(b)"'RJb— (a)}

< f(a)+f(b)

2

(1.5)

with a>0.

We remark that the symbols Jg f and Jg_ f
denote the left-sided and right-sided Riemann-Liouville

fractional integrals of the order a>0 with a>0 which are
defined by

RIZ (%) =ﬁj:(x_t)‘“ (t)dt, x> a,
and
RIE (%) =%a)j:(t—x)a_l f(t)dt, x <b

respectively. Here, T'(«) is the Gamma function defined
by I'(a) = L:O e 't dt.
Definition 1.3 [12] Let f€[a,b]. The right-hand side and
left-hand side Hadamard fractional integrals Jg, f and
Jo_f of order a>0 with b>a>0 are defined by

1 ex(, x\*H dt
JEf(X)=——| | In= f(t)— x>a
HYb () r(a)J-a( j ()t
and

1 ebf t) T, dt
W I ()= —— | (In;j 1% x<b

respectively, where I'(a) is the Gamma function defined
by I'(a)= I;O e 't dt.

In this paper, we establish some new Hermite-Hadamard
type inequalities for convex functions via Riemann-Liouville
fractional integrals which refine the inequalities of (1.5).

Ruiyin Xiang [11] proved the following Lemma and
Theorem for interesting inequalities of Hermite-Hadamard
type inequalities for convex functions via Riemann-Liouville
fractional integrals.

Lemma 1.1 Let f: [a,b]>R be a convex function and h be
defined by

oo

Then h(t) is convex, increasing on [0,b—a] and for all

te[0,b—al,
f [a—;bj <h(t)< w.

Theorem 1.6 Let f:[a,b]>R be a positive function with
a<b and f€Li[a,b]. If f is a convex function on [a,b], then
WH is convex and monotonically increasing on [0,1] and

f (a%bj _WH (0) SWH (t) SWH (1)
_ T(a+l)
2(b-a)"

with >0, where

Laj: f (tx+(1—t)a—;bj

2(b-a)

x[(b— x)o’_1 +(x— a)a_l}dx.

[RIET(0)+ RIE1(a)]

WH (t) =
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We can rewrite as follows the theorem in [13] for s = 1:
Theorem 1.7 Let f:ISR+—R. Then the following
statements are true:

(1) The function f(x) is geometric-arithmetically convex
on I if and only if f(ex) is convex on the interval
InI={Inx|x€l}, where it is assumed that In0=—oo.

(2) If f(x) is decreasing and geometric-arithmetically
convex on I, then it is convex on I.

(3) If f(x) is increasing and convex on I, then it is also
geometric-arithmetically convex on I.

For GA-convex functions Hermite-Hadamard inequalities

obtained with the help of fractional integrals can be given
as follows [15].
Theorem 1.8 Let f:IS(0,00)—R be a function, a,b€l,
a<b and f€[a,b]. If the function f is GA-convex on [a,b],
then the following inequality for the fractional integrals
hold:

f(@)sLﬁ[H 3Z f (0)+ I 1 (a)}
2(Ina)
. f(a)+f(b)

2

(1.6)

with a>0.

We have obtained the left sides of the (1.4) and (1.6)
inequalities using a functional that we have defined. We
have also obtained the left side of the Hermite-Hadamard-
Fejér inequality through Hadamard fractional integrals for
GA-convex functions.

2. The Left Hand Sides of the
Hermite-Hadamard and
Hermite-Hadamard-Fejér
Inequalities via Functionals

Theorem 2.1 Let f:[a,b]c(0,00)»R a be geometric
arithmetically (GA)-convex function, 0<a<1, 0<f<1

A= In(a“bl‘“),
Ug :(Inb—lna)min{i,l_—a}
1-p
and let h be defined by
h(t)=(1- ) (a“b" e )
+pf (aabl_”‘e(l_ﬁ)t),

for t€[0,u]. Then h is convex, increasing on [0,uy] and
for all te[0,uo],

f(a"™ ) <h(t)<af (a)+(1-a) f (b).

Proof. We note that if f:[a,b]c(0,00)>R is GA-convex
according to Theorem 1.7 and g is linear, then the
composition g=(foexp) is convex on [Ina,lnb]. According
to the Theorem 1.3, also we note that a positive constant

multiple of a convex function and a sum of two convex
functions are convex, hence function

h(t)=(1-B)g(A-pt)+ Bg(A+(1-B)t)
=(1-p)f (eAe’/’)t)+,Bf (eAe(lfﬂ)t)
~(1-p) f (a“b e )
+pf (a“bl_“e(l_ﬂ )t)
is convex and increasing on [0,uo] and for all t€[0,ug],
g(alna+(l-a)lnb)
<h(t)<ag(lna)+(1-«)f(Inb)
that is,
fa™™ ) <h(t)<af (a)+(1-a) f (b).

Lemma 2.1 Let f:[a,b]c(0,0)-=R be a GA-convex
function and h be defined by

t t
h(t):% f [@e_z} f [@eZJ .

Then h(t) is convex, increasing on [0, In E} and for all
a

te[O,InE},
a

f(@)gh(t)gw.

Proof. If f:[a,b]c(0,0)>R is geometric-arithmetically
(GA) convex, then according to the Theorem 1.7 the
function g=foexp is convex on [lna,nb]. Then the
function h defined by

e
o5

=% f[@e_;}+f[@e;J

h(t)=

N |-

and for

. . . b
is convex and increasing on |0,In—
a

Vit e {O, Ing}
a

g[lna+|nb g(lna)+g(|nb).

5 jsh(t)s 5

If substituting g=foexp in the above inequality, we
have

f(a)+f(b)

f(vab)<h(t) >

IA
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Theorem 2.2 Let f:[a,b]c(0,0)—=R be a function and
f€L[a,b]. If the function f is GA-convex on [a,b], then H,
defined by

Ha (t)=—2— [ (6H)

(vl]
() "ot e

is convex and monotonically increasing on [0,1] and

f(Vab) = H, (0) < H ()< H, ()

:M[H 384 (0)+ It ()]

Z[In bj“
a
Proof. i) Firstly, let ¢, t,, €[0,1]. We need to show that
H, (1= )t + Bty ) < (1-B)H, () + BH, ().
Using the definition of He, we can write the following
H, ((1-8)t+ft)
__ @ [ b (X(l—ﬁ‘)tﬁﬂ’tz Gl—(l—ﬂ)tl—ﬁtz)

a

o)
{loy (o

Since the function f is geometric-arithmetically convex,
we get

f (X(l—ﬂ)t1+ o g (1-P)(1-t2 }+A(1-t2) )
= f {( gt )1_ﬁ (th Gl )ﬁ}
< (l—ﬁ) f (thGl—tl )+ﬁf (thGl—tz )

So
Hy ((1-8)t +ty)

a-1
In—j
a J'b f (Xt]_Gl—tl) ( X ldX

a X a-1|x
+| In—
a

b a-1
In—
a b 1- [ Xj 1
+p b a-[a f(XtZG t2) X a-1 ;dX
2("1) +(In—j
a a
=(1-B)H, () +BH, (tp),

from which we get H, is convex on [0,1].
ii) By elementary calculus, we have

_ _ X ot _
In—
_a, Y
2 2
_w
J-Inb—lnaf{Ge 2} d_u
0 b a-1|2
In—
_a_\4
2 2
— a - -
b a a-1 ]
a _a_ VU
2 2
Lu
+J‘Inb—lna ; {GEZJ d_u
0 b a-1]2
In— U
2 2
Inbo| X tx
n na >y 5
—= f|Ge2 +Ge 2
pY* *0
4(Inj
a
a-1 b a-1
In—= X In— X
x|| —&-= —a42 dx

It follows from Lemma 2.1 that function h(x)=

x x
% f [@e 2 }r f (\/%e 2 ] is monotonically increasing

b a-1 b a-1

on [0,Inb—Ina]. Since

2 2 2 2

is nonnegative, hence H,(t) is increasing on [0,1]. Finally,
from

f(Vab)=H, (0)

and
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I(a+1)

v

we have completed the proof.
Corollary 2.1 With assumptions in Theorem 2.2, if a=1,
we get

H, (1)=

(138t (0)+ w3 f ()],

f (@)= H1(0) < Hy(t)<Hy (1)
=|Lbj: f (x)%dx

where the function H1 is defined as Theorem 2.2, which is
just the result in Theorem 2.2.

Remark 2.1 The inequality obtained in Theorem 3.2 gives
us the left side of the inequality obtained in Theorem 1.8.

The next theorem is a generalization of Theorem 2.2:

Theorem 2.3 Let f:[a,b]c(0,0)=R be a function and
f€L[a,b]. If the function f is GA-convex on [a,b] and g is
integrable, nonnegative and symmetrically according to

Jab, that is g(a—bj:g(x) for all x€[ab], then
X

gHg (t) defined by

o b
— s

()2

is convex and monotonically increasing on [0,1], for a>0
f(\/%): gHa (0)< gHy (1) < gHg (1)

I(a+1)

=— S 5 (f9)(b)+ I (T)(2) ]
b
2(In j
a
Proof. i) Firstly, let t,, t2, B€[0,1]. We need to show that
oHa (1-5)t +5ty)
< (l_ﬂ) g Hg (t1)+ﬂg Hg (tZ)'

Using the definition of (H,, we can write the

£ (Xtel—t )

following
gHa (1=t + Bty
__ @ [ b (X(l—ﬁ)t1+ﬂ’t2 cl-(1-B)u-pt2 )

2 InE o
)
(CHRECH

So,

oHa (-5t + Bty)

<(1-8)

&

X

X
a

:(1_ﬂ) gHa(tl)+lBgHa(t2)

from which we get H,, is convex on [0,1].

ii) By elementary calculus, we have

gHa(t) __ @ fb f (XtGl—t)

Z[InZ)a :
(ORI C =

_jf £ (XtGl—t)

+J.3£ f (xtGH)

o e

9() 4

.n_ﬂg

X

i t
Inb-I G _
J-n na o Glt
0 u
e2
u et u
be? Ge?
x| In— +| In
G a
_ [04
b a
Z(Inj Inb-Ina = t
a +j fl|ce2 | Gt
0
a-1 u
b Ge?
x| | In—— +| In
u a
Ge?

13
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In—
a_
2 2
— a =
h b a tu
z(m aj L:nb—lnaf Ge?2
_ ; w1
In—
_a_ VU u
2 2 g{GeZJ
X ——2du
b a-1 2
In—
+ a+E
2 2

Since the function g is simmetrically according to the

Jab
u u
g[Ge 2}=g abu =g[Ge2].
Ge 2

1 ¢Inb-I X X

np—-ina Py e

gHal) o« _Lmooinal oy ] g2
a 0

Z(In bj
a
a-1 b a-1

X InE X In—= X
xq| Ge?2 Ta_E + Ta+5 dx.

It follows from Lemma 2.1 that
1 _& &
h(x)=> f/abe 2 + f/abe?

is monotonically increasing on [0, Inb—Ina]. Since

b a-1 a-1

X In—= X InE X
g/Ge2 ||| -2+2| +|—=2-Z
2 2 2 2

is nonnegative, hence H, (t) is increasing on [0,1].
Finally, from

f(Vab) = gH, (0)< gH, (1)< gH, (1)

T 5 (10)(0) w3 (10)(2)]
Z(Ian

Here, by an easy calculation we get

b a-1
(In—]
b X

a

:M‘H 35, (fg)(b)+ 4 Jt?i(fg)(a)]

)

This completes the proof of Theorem.
Remark 2.2. If g(x)=1 in Theorem 2.3, then the
following equality holds:
b
Ho (1) =——[ f(x'6")

a

3. Conclusion

In this paper, we obtain some new Hermite-Hadamard
and Hermite-Hadamard-Fejér type inequalities for geometric
arithmetically convex functions via Hadamard fractional
integrals. We conclude that the results obtained in this work
are the refinements of the earlier results. An interesting
topic is whether we can use the methods in this paper
to establish the left side hand of Hermite-Hadamard
and Hermite-Hadamard-Fejér inequalities for geometric
arithmetically convex functions via Hadamard fractional
integrals.
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