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1. Introduction

Let f:[a,b] > R be a differentiable mapping on (a,b)

whose derivative f':(a,b) > R is bounded on (a,b), i.e.

tela,

|| f ’||OO = sup | f ’(t)| < 0. Then we have the inequality
(a.0)

b
1
T — j f(0)dt

()

4 (b-a)

)
(6=a)[ /.,

for all x €[a,b] [16]. The constant i is the best possible.

This inequality is well known in the literature as the
Ostrowski inequality.
Definition 1. Let P : a=x5<x <..<x,=b be any

partition of [a,b] and let Af(x;)= f(x;;)— f(x;) Then
f(x) is said to be of bounded variation if the sum

n

A &)

i=1
is bounded for all such partitions.
Let f be of bounded variation on [a,b], and ¥(P)

n
denotes the sum > |Af (xi)| corresponding to the partition
i=l

P of [a,b]. The number

b

vI(f) = sup{Z(P) : PeP([a,b])},

a

is called the total variation of f on [a,b]. Here P([a,b])
denotes the family of partitions of [a,b].

In [7], Dragomir proved following Ostrowski type
inequalities related functions of bounded variation:

Theorem 1. Let f :[a,b] >R be a mapping of

bounded variation on [a,b]. Then

b
[r@dt-(b-a) f(x)

a+b

xX—

s{%{b—a)+

b
}v(f)

holds for all x €[a,b]. The constant % is the best possible.

In [9], Dragomir gave a simple proof of following

Lemma:
Lemma 1. Let f,u : [a,b] > R. If / is continious on

[a,b] and u is bounded variation on [a,b], then

b
[£@)du@)

b t b
sﬂfaw{§Asz£ﬁ%UVNVW)

In [5], Dragomir obtained following Ostrowski type
inequality for functions of bounded variation:
Theorem 2. Let [, : a=xy<x <..<x,=b be a

division of the interval [a,b] and «; (i =0,1,....k+1) be
k+2 points so that oy =a, o; e[xi_l,x[] (i=1...k),
o =b. If f:[a,b] >R is of bounded variation on

[a,b], then we have the inequality:

b k
[Fde = (a1 - ) £ (x7)

i=0

Xt Xy

< {lu(h) +  max |y 2

2 ie{0,1,...k-1}

b
}\/(f) 2

b
<o(hn(f)
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i

where v(h) = max{hi| i=0,.,n— 1}’ By =X —X Proof. Let us consider the functions K defined by

b t
(i=0,1,....,k—1) and \/(f) is the total variation of f on I wu)du, tela,x)
a a]
the interval [a,b)]. ‘
For some recent results connected with functions of aj w(u)du, telx,x)
bounded variation see [1,2,3,4,6,8,10-15,17-21]. 2
The aim of this paper is to obtain some generalization K@) =
of weighted Ostrowski type integral inequalities for t
functions of bounded variation. [ w)du, te [xn,z,xn,l)
an—-1
t
2. Main Results [ wydu,  te[x, 1,b]
an
Firstly, we will give the following notations which are Integrating by parts , we obtain

used in main Theorem:

.. b
Let [, : a=xy<x <..<x, =b be a partition of the IK(t)df(t)
interval [a,b] , O (i = 0,1,...,n+1) be n+2 points so "
that ag=a, a;€[x_,x] (i=1..n), a, =b. Let n1| Xig1
w : [a,b] > (0,%) be continious and positive mapping = - j K(@)df (2)
1= X;
on (a,b), and -
n—1{ *i+1 t
v(h) = max{hl-| i= O,...,n—l}, = I j w(u)du |df ()
. =0 x \ain
by =X —x; (Z:O,l,...,n—l), -
n—1{ [ X+l
o(L) = max{Ll»| i= 0,...,n—1}, = j wu)du | f(x;,1) (5)
Xit] =0[\ ajy
L = J w(u)du (izO,l,...,n—l). 41 -
% + j w(u)du | f(x;)— j F(Ow)dt
Theorem 3. If f:[a,b] > R is of bounded variation on Xi i
[a,b], then we have the inequalities n [ n-lf it
=1 [wendu | fGi)+ Y| [ wawdu | £(x)
n | %+l b i=l\ a; =0\ x;
|| wedu | £~ [Feywnyar b
i=0{ o a - j F(Owt)dt.
1 X; + X4 b “
< ”W"w,[a,b] {EUU’HZ,E{O’T’?&]} RS }\a/(f) 3) In last equality in (5), we have
b n | X
< [l o, 0NV S| [wadu | £(x)
“ i=1\ o
and (6)
b n—1{ %
n ((@ist b = jw(u)du f®+Y jw(u)du £(x),
> j w(u)du f(x,.)—j F(Ow()dt o i1 o
=0\ a; a .
and similarly
a o (1) n—1( %+l
i+l i+1 b
< lv(L)+ max l J w(u)du — I w(u)du| [\/(f) z _[ w(u)du | f(x;)
2 i€{0,1,..,n-1} 2| ° 1 M i=0{ x; e
Xi it
b a1 n—1{ %+l
<v(L)\(f) = Iw(u)du f(a)+ z J. w(u)du | f(x;).
a a i=1 Xj

b
where \/(f) is the total variation of f on the interval [a,b]. Adding (6) and (7) in (5), we get the equality

a
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oo <. o
i b n—1( @izl E(XH ) i
= J-w(u)du f(b)+ Z ‘[ w(u)du | f(x;) Xie[(gl_gﬁ_]] - X; + X4 ;} }{ N
. L ® Lo
+[ jw(u)duJ fla)- j F(Ow(t)dt S o) b
a a < "W"oo,[a, b] X+ v ()
u ((@isl b + max @ -
=31 | wldu | £q) - [£@pwinyat i€]0n-1] 2
i=0\ ¢ a This completes the proof of first inequality in (3).

. . . On the other hand, in last inequality in (11), we have
On the other hand, taking modulus in (8) and using

triangle inequality we have o Xi + X | 1 i
I R R
2 2
n [ @igl b (12)
Y| [ wedu | £ )~ [f@Owoar and  max gy, 2] < Loy
i=0\ ¢ a i€[0,...,n-1] 2 2

b Adding (12) in last inequality in (11), we obtain the
= _[K (D)df (1) inequality (3).
a Finally, for proof of inequality (4), taking modulus in

et xi (¢ (8), we have

=y j j w(u)du |df (t) 9 . b

i=0| % (i Y| [ wedu | £ - [f O

ntfrist( O\ e ¢

<y j j wu)du |df (£) b

20| % \ajyy =([K®dr )

n—1|%i+1 (13)

< —a: n—1| Xi+ L

—||W||oo,[a,b]§) ){ (1-ats1)df (@) = Zl I 1 j w(u)du |df (t)
=0 x \ain

Using Lemma 1 in last inequality in (9), we have
n—1[%+1 t

Yitl < Z w(u)du |df (t)|.
I (t_ai+1)df(t) i=0 ;[ ai‘[—l
X
Xitl Using Lemma 1 for the last integral of (13), we have
< sup |t—a,-+1| \V @) xia(
reliosiai] Y (10 [ [ woodu |are
i+l
= max { &1 =X, X1 ~ gt |\ (f) il
i j. Xi+1
| N P < sup | [ wdi v (f)
:{5(’%1 =X )|y 5 = } v (). oo xi1] gy i
M
] ) ) l %j+] Xi+1 Xi+]
Putting (10) in (9), we obtain =max{ [ w)du, [ wwdup/ (f) (14)
n [ %+l b _ K “itl ~ K
> j w(u)du | f(x;) - j F(Ow(t)dt. | il
i=0\ g a 5 I w(u)du
X X+l
(11) = ! v ()
%j+] Xi+1
1 1 X
nel E(XHI —xl-) a1 +E j w(u)du — J- w(u)du
s ||W||oo,[a,b] > x| |V f) B sl
= - i
= in E Adding (14) in (13), we obtain
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n | %+l b
| [ wedu | 1) [r@wd.
i=0 Qj a
[ gl 1
— J. w(u)du
n-1 2 x; Xi+1
< v () (15)
=0 1 ai+1 Xit+l X;
+E J wi(u)du — I w(u)du
Xj iyl
XTI
— | w(u)du
2 X n—lel
< max @)
i€{0,1,...,n~1} 1%+ Xit] g;l/
+— du — d
5 I w(u)du J. w(u)du
X; i+l
1
—v(L
2 @) b
< 1 aTl XTI \/(f)
+ max —| | wu)du— | w(u)du||¢
i€{0,1,...,n-1} 2 M o

which completes the proof of first inequality in (4).
Using triangle inequality in last inequality in (15), we
have

@j+1 Xi+1
[ wydu— [ wiwd
Y i+]
%j+1 Xi+1
< J w(u)du|+ J. w(u)du
Yi @]
i+l Xi+1 Xi+]
= I w(u)du + I w(u)du = IW(u)du
i %j+] xj
and
1 %yl Xi+1 1
max — w(u)du — w(u)du| < —v(L).
ie{0,1,...n—1} 2 -[ (@) .[ ) > V(@)
K %i+]

This completes the proof.
Remark 1. Under assumptions Theorem 3 with w(u) =1,

the inequality (3) reduces inequality (2).
Remark 2. If w(u)=h'(u) (differantiable with respect to

u ) in Theorem 3, then we have the inequality

n | %+l b
Y| [ wandu | £ = [F@wnde

i=0 o

Xi + X1

h(et;1) —

< {l v(L)+  max
2 i€{0,1

e{O, ,...,n—l}

b (16)
}v(f )

b
<v(L\(f)

which was proved by Kuei-Lin Tseng et al. in [20].

Remark 3. If we choose w(u)=1, h(u)=u in (16),
inequality reduces inequality (2).

Corollary 1. Under assumption Theorem 3, choosing
xXg=a,xy=b, ay=a, og=a,a,=>b in inequality (4)

we obtain the inequality

IW(u)du}f(a)

b b
{ | w(u)duJ F®)=[f@eywyar

)
lJw(u)du a7
2 . b
< , Vi)
-i—l Iw(u)du - Iw(u)du
2 a [24
b b
< jw(u)dqu( 1.

Remark 4.
1) In (17), if we take a =b, then we have the
"weighted left rectangle inequality"

b b
( Iw(u)du] fla)- jf(z)w(r)dt

b b
< {Jw(u)du}v( 1).

2) If we take @ = a in (17) then we have the "weighted
right rectangle inequality"

b b
{ j w(u)duJ f(b)- j F(Ow(t)dt

b b
< [jw(u)dqu(f).

3. Applications for Quadrature Rule

Let us consider the arbitrary division

I,ia=xy<x <..<x,=b
and let w : [a,b] = (0,%) be continious function with

v(L) = max {Ll-| i=0,..,n —1} ,

Xi+1
L = I w(u)du (i=0,1,...,n—1).
X
Then the following Theorem holds.
Theorem 4. Let f:Q — R is of bounded variatin on Q
and ¢ e [x[,le] (i = 0,...,n—1). Then we have the

quadrature formula:
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b n-1( &

[F@omode =Y [wadu | f(x)
a i=0{ x;

n—1{ Xi+1

2

=00 &
The remainder term R, (/,,

Ry (L £ ,6)|

1
<|—=u(l)+ max
2 ie{O,l ..... n—

b
<o(D)\/()

Proof. Applying Corollary 1
have the inequality

1 Si
1}; Iw(u)du— I

[ wydu | £ () + Ry Ly £ 0,8).

, fow,&) satisfies

i+l b
w(u)du| [\/(f) (18)
i a

to interval [xl-,x,- +1], we

Si
[wedu | £(x)
Xi+1 Xi+1
| [ wandu | fO) = [ f@w)de
A ‘ 19)
1 Xi+1
— J. w(u)du
2 X; Xi+1
< . _ v ()
1 & Xi+1 X
+E Jw(u)du— ;Z[ w(u)du

Summing the inequality (19) over i from 0 to n—1,

then we have

Ry (L, £ w, &)

]

Xi+1
5 J. w(u)du
v v
<
0| 1 Si Xit1 Y
1
+E Iw(u)du— j w(u)du
X i
Xi+1
— I w(u)du
2 X n_lxi+1
< max l Z )
€0l | |4 Xi+1 i—0 ;l/
+E jw(u)du— _[ w(u)du
X i
. Z
—u(L
20( ) \
= 114 il v()
+ max —||w)du— | w(u)du| |4
ie{O,l,...,n—l}Z;[ @) é[ (@)
1 1

This completes proof of the first inequality in (18).
Also, we have

Si Xi4]
Iw(u)du— J.w(u)du
X i
i Xi4] Xitl
< Iw(u)du + J. w(u)du| < I w(u)du
X i X;
and
1 & Xi4] 1
max —||wu)du— | w(u)du|<—uv(L
ie{O,l,...,n—l}Z;C[ ) g ) 2 @)
1 1

which completes the proof.
Remark 5.

1) If we choose &; = x;,y, then we have the weighted
left rectangle rule

b
[£@mw(odr

n=1{ Yi+1
=2| [ wedu | f)+ Ry (1. 1),
i=0

X

The remainder R,; (/,,, f,w) satisfies

b
|Ryur (L, fow)| SOLIN/(S).

2) Similarly, choosing &; =x;, we have the weighted
right rectangle rule

b
[F @t

n—1[ *i+1
=2 | | wadu | £(xi0)+ Ry Ly £ ).
i=0

= X;

And, the remainder term R, p(Z,,, f,w) satisfies

b
Ry (L, £ W) <O/ (f).
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