

On Generalization of Dragomir's Inequalities

Hüseyin Budak*, Mehmet Zeki Sarıkaya

Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey *Corresponding author: hsyn.budak@gmail.com

Received August 15, 2017; Revised September 16, 2017; Accepted September 21, 2017

Abstract In this paper, we establish some generalization of weighted Ostrowski type integral inequalities for functions of bounded variation.

Keywords: Function of bounded variation, Ostrowski type inequalities, Riemann-Stieltjes integrals

Cite This Article: Hüseyin Budak, and Mehmet Zeki Sarıkaya, "On Generalization of Dragomir's Inequalities." *Turkish Journal of Analysis and Number Theory*, vol. 5, no. 5 (2017): 191-196. doi: 10.12691/tjant-5-5-5.

1. Introduction

Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping on (a,b) whose derivative $f':(a,b) \to \mathbb{R}$ is bounded on (a,b), i.e. $\|f'\|_{\infty} := \sup_{t \in (a,b)} |f'(t)| < \infty$. Then we have the inequality

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] \left(b-a\right) \|f'\|_{\infty},$$

$$(1)$$

for all $x \in [a,b]$ [16]. The constant $\frac{1}{4}$ is the best possible.

This inequality is well known in the literature as the *Ostrowski inequality*.

Definition 1. Let $P: a = x_0 < x_1 < ... < x_n = b$ be any partition of [a,b] and let $\Delta f(x_i) = f(x_{i+1}) - f(x_i)$ Then f(x) is said to be of bounded variation if the sum

$$\sum_{i=1}^{n} \left| \Delta f(x_i) \right|$$

is bounded for all such partitions.

Let f be of bounded variation on [a,b], and $\Sigma(P)$

denotes the sum $\sum_{i=1}^{n} |\Delta f(x_i)|$ corresponding to the partition

P of [a,b]. The number

$$\bigvee_{a}^{b} (f) := \sup \left\{ \sum (P) : P \in P([a,b]) \right\},$$

is called the total variation of f on [a,b]. Here P([a,b]) denotes the family of partitions of [a,b].

In [7], Dragomir proved following Ostrowski type inequalities related functions of bounded variation:

Theorem 1. Let $f:[a,b] \to \mathbb{R}$ be a mapping of bounded variation on [a,b]. Then

$$\left| \int_{a}^{b} f(t)dt - (b-a)f(x) \right|$$

$$\leq \left[\frac{1}{2}(b-a) + \left| x - \frac{a+b}{2} \right| \right]_{a}^{b} (f)$$

holds for all $x \in [a,b]$. The constant $\frac{1}{2}$ is the best possible.

In [9], Dragomir gave a simple proof of following Lemma:

Lemma 1. Let $f, u : [a,b] \to \mathbb{R}$. If f is continious on [a,b] and u is bounded variation on [a,b], then

$$\left| \int_{a}^{b} f(t) du(t) \right| \le \int_{a}^{b} \left| f(t) \right| d \left(\bigvee_{a}^{t} (u) \right) \le \max_{t \in [a,b]} \left| f(t) \right| \bigvee_{a}^{b} (u).$$

In [5], Dragomir obtained following Ostrowski type inequality for functions of bounded variation:

Theorem 2. Let I_k : $a = x_0 < x_1 < ... < x_k = b$ be a division of the interval [a,b] and α_i (i = 0,1,...,k+1) be k+2 points so that $\alpha_0 = a$, $\alpha_i \in [x_{i-1},x_i]$ (i = 1,...,k), $\alpha_{k+1} = b$. If $f: [a,b] \to \mathbb{R}$ is of bounded variation on [a,b], then we have the inequality:

$$\left| \int_{a}^{b} f(x)dx - \sum_{i=0}^{k} \left(\alpha_{i+1} - \alpha_{i} \right) f(x_{i}) \right|$$

$$\leq \left[\frac{1}{2} \upsilon(h) + \max_{i \in \{0,1,\dots,k-1\}} \left| \alpha_{i+1} - \frac{x_{i} + x_{i+1}}{2} \right| \right] \int_{a}^{b} (f) \qquad (2)$$

$$\leq \upsilon(h) \bigvee (f)$$

where $v(h) := \max \{h_i | i = 0,...,n-1\}, h_i := x_{i+1} - x_i$ (i = 0,1,...,k-1) and $\bigvee_{a}^{b}(f)$ is the total variation of f on the interval [a,b].

For some recent results connected with functions of bounded variation see [1,2,3,4,6,8,10-15,17-21].

The aim of this paper is to obtain some generalization of weighted Ostrowski type integral inequalities for functions of bounded variation.

2. Main Results

Firstly, we will give the following notations which are used in main Theorem:

Let $I_n: a=x_0 < x_1 < ... < x_n = b$ be a partition of the interval [a,b], α_i (i=0,1,...,n+1) be n+2 points so that $\alpha_0=a$, $\alpha_i \in [x_{i-1},x_i]$ (i=1,...,n), $\alpha_{n+1}=b$. Let $w:[a,b] \to (0,\infty)$ be continious and positive mapping on (a,b), and

$$\begin{split} \upsilon(h) &:= \max \left\{ h_i \middle| i = 0, ..., n - 1 \right\}, \\ h_i &:= x_{i+1} - x_i \ \left(i = 0, 1, ..., n - 1 \right), \\ \upsilon(L) &:= \max \left\{ L_i \middle| i = 0, ..., n - 1 \right\}, \\ L_i &= \int\limits_{x_i}^{x_{i+1}} w(u) du \ \left(i = 0, 1, ..., n - 1 \right). \end{split}$$

Theorem 3. If $f:[a,b] \to \mathbb{R}$ is of bounded variation on [a,b], then we have the inequalities

$$\left| \sum_{i=0}^{n} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u) du \right) f(x_{i}) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$\leq \|w\|_{\infty, [a,b]} \left[\frac{1}{2} \upsilon(h) + \max_{i \in \{0,1,\dots,k-1\}} \left| \alpha_{i+1} - \frac{x_{i} + x_{i+1}}{2} \right| \right]_{a}^{b} (f) (3)$$

$$\leq \|w\|_{\infty, [a,b]} \upsilon(h) \bigvee_{a} (f)$$

and

$$\left| \sum_{i=0}^{n} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u) du \right) f(x_{i}) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$\leq \left[\frac{1}{2} v(L) + \max_{i \in \{0, 1, \dots, n-1\}} \frac{1}{2} \middle| \int_{x_i}^{\alpha_{i+1}} w(u) du - \int_{\alpha_{i+1}}^{x_{i+1}} w(u) du \middle| \int_{a}^{b} (f) du \right] \leq v(L) \bigvee_{a}^{b} (f)$$

where $\bigvee_{a}^{b}(f)$ is the total variation of f on the interval [a,b].

Proof. Let us consider the functions *K* defined by

$$K(t) = \begin{cases} \int_{\alpha_1}^t w(u)du, & t \in [a, x_1] \\ \int_{\alpha_2}^t w(u)du, & t \in [x_1, x_2] \\ \vdots & \vdots & \vdots \\ \int_{\alpha_{n-1}}^t w(u)du, & t \in [x_{n-2}, x_{n-1}] \\ \int_{\alpha_n}^t w(u)du, & t \in [x_{n-1}, b]. \end{cases}$$

Integrating by parts, we obtain

$$\int_{a}^{b} K(t)df(t)
a
= \sum_{i=0}^{n-1} \left[\int_{x_{i}}^{x_{i+1}} K(t)df(t) \right]
= \sum_{i=0}^{n-1} \left[\int_{x_{i}}^{x_{i+1}} \int_{\alpha_{i+1}}^{t} w(u)du \right] df(t) \right]
= \sum_{i=0}^{n-1} \left[\int_{\alpha_{i+1}}^{x_{i+1}} w(u)du \right] f(x_{i+1})
+ \left(\int_{x_{i}}^{\alpha_{i+1}} w(u)du \right) f(x_{i}) - \int_{x_{i}}^{x_{i+1}} f(t)w(t)dt \right]
= \sum_{i=1}^{n} \left(\int_{\alpha_{i}}^{x_{i}} w(u)du \right) f(x_{i}) + \sum_{i=0}^{n-1} \left(\int_{x_{i}}^{\alpha_{i+1}} w(u)du \right) f(x_{i})
- \int_{a}^{b} f(t)w(t)dt.$$
(5)

In last equality in (5), we have

$$\sum_{i=1}^{n} \left(\int_{\alpha_{i}}^{x_{i}} w(u) du \right) f(x_{i})$$

$$= \left(\int_{\alpha_{n}}^{b} w(u) du \right) f(b) + \sum_{i=1}^{n-1} \left(\int_{\alpha_{i}}^{x_{i}} w(u) du \right) f(x_{i}),$$
(6)

and similarly

$$\sum_{i=0}^{n-1} \begin{pmatrix} \alpha_{i+1} \\ \int \\ x_i \end{pmatrix} w(u) du f(x_i)$$

$$= \begin{pmatrix} \alpha_1 \\ \int \\ a \end{pmatrix} w(u) du f(a) + \sum_{i=1}^{n-1} \begin{pmatrix} \alpha_{i+1} \\ \int \\ x_i \end{pmatrix} w(u) du f(x_i).$$
(7)

Adding (6) and (7) in (5), we get the equality

$$\int_{a}^{b} K(t)df(t)$$

$$= \left(\int_{\alpha_{n}}^{b} w(u)du\right) f(b) + \sum_{i=1}^{n-1} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u)du\right) f(x_{i})$$

$$+ \left(\int_{a}^{\alpha_{1}} w(u)du\right) f(a) - \int_{a}^{b} f(t)w(t)dt$$

$$= \sum_{i=0}^{n} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u)du\right) f(x_{i}) - \int_{a}^{b} f(t)w(t)dt.$$
(8)

On the other hand, taking modulus in (8) and using triangle inequality we have

$$\left| \sum_{i=0}^{n} \left(\sum_{\alpha_{i}}^{\alpha_{i+1}} w(u) du \right) f(x_{i}) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$= \left| \int_{a}^{b} K(t) df(t) \right|$$

$$= \left| \sum_{i=0}^{n-1} \left[\int_{x_{i}}^{x_{i+1}} \left(\int_{\alpha_{i+1}}^{t} w(u) du \right) df(t) \right]$$

$$\leq \sum_{i=0}^{n-1} \left| \int_{x_{i}}^{x_{i+1}} \left(\int_{\alpha_{i+1}}^{t} w(u) du \right) df(t) \right|$$

$$\leq \left\| w \right\|_{\infty, [a,b]} \sum_{i=0}^{n-1} \left| \int_{x_{i}}^{x_{i+1}} (t - \alpha_{i+1}) df(t) \right|$$

Using Lemma 1 in last inequality in (9), we have

$$\begin{vmatrix} x_{i+1} \\ \int_{x_{i}}^{x_{i+1}} (t - \alpha_{i+1}) df(t) \end{vmatrix}$$

$$\leq \sup_{t \in [x_{i}, x_{i+1}]} |t - \alpha_{i+1}| \bigvee_{x_{i}}^{x_{i+1}} (f)$$

$$= \max \left\{ \alpha_{i+1} - x_{i}, x_{i+1} - \alpha_{i+1} \right\} \bigvee_{x_{i}}^{x_{i+1}} (f)$$

$$= \left[\frac{1}{2} (x_{i+1} - x_{i}) + \left| \alpha_{i+1} - \frac{x_{i} + x_{i+1}}{2} \right| \right] \bigvee_{x_{i}}^{x_{i+1}} (f).$$

Putting (10) in (9), we obtain

$$\leq \|w\|_{\infty,[a,b]}$$

$$\times \max_{i \in [0,...,n-1]} \begin{cases} \frac{1}{2} (x_{i+1} - x_i) \\ + \left| \alpha_{i+1} - \frac{x_i + x_{i+1}}{2} \right| \end{cases} \sum_{i=0}^{n-1} \bigvee_{x_i} (f)$$

$$\leq \|w\|_{\infty,[a,b]} \begin{bmatrix} \frac{1}{2} \upsilon(h) \\ + \max_{i \in [0,...,n-1]} \left| \alpha_{i+1} - \frac{x_i + x_{i+1}}{2} \right| \bigvee_{a}^{b} (f).$$

This completes the proof of first inequality in (3). On the other hand, in last inequality in (11), we have

$$\left| \alpha_{i+1} - \frac{x_i + x_{i+1}}{2} \right| \le \frac{1}{2} h_i$$

$$and \max_{i \in [0, \dots, n-1]} \left| \alpha_{i+1} - \frac{x_i + x_{i+1}}{2} \right| \le \frac{1}{2} \upsilon(h).$$
(12)

Adding (12) in last inequality in (11), we obtain the inequality (3).

Finally, for proof of inequality (4), taking modulus in (8), we have

$$\left| \sum_{i=0}^{n} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u) du \right) f(x_{i}) - \int_{a}^{b} f(t) w(t) dt. \right|$$

$$= \left| \int_{a}^{b} K(t) df(t) \right|$$

$$= \left| \sum_{i=0}^{n-1} \left[\int_{x_{i}}^{x_{i+1}} \left(\int_{\alpha_{i+1}}^{t} w(u) du \right) df(t) \right] \right|$$

$$\leq \sum_{i=0}^{n-1} \left| \int_{x_{i}}^{x_{i+1}} \left(\int_{\alpha_{i+1}}^{t} w(u) du \right) df(t) \right|.$$
(13)

Using Lemma 1 for the last integral of (13), we have

$$\begin{vmatrix} x_{i+1} \\ \int_{x_{i}}^{t} \left(\int_{\alpha_{i+1}}^{t} w(u) du \right) df(t) \end{vmatrix}$$

$$\leq \sup_{t \in [x_{i}, x_{i+1}]} \int_{\alpha_{i+1}}^{t} w(u) du \begin{vmatrix} x_{i+1} \\ \bigvee_{i} (f) \\ x_{i} \end{vmatrix}$$

$$= \max \begin{cases} \int_{x_{i}}^{a_{i+1}} w(u) du, \int_{\alpha_{i+1}}^{x_{i+1}} w(u) du \\ x_{i} \end{vmatrix} \bigvee_{x_{i}}^{x_{i+1}} (f)$$

$$= \left[\frac{1}{2} \int_{x_{i}}^{x_{i+1}} w(u) du - \int_{\alpha_{i+1}}^{x_{i+1}} w(u) du \right] \bigvee_{x_{i}}^{x_{i+1}} (f).$$

$$= \left[\frac{1}{2} \int_{x_{i}}^{a_{i+1}} w(u) du - \int_{\alpha_{i+1}}^{x_{i+1}} w(u) du \right] \bigvee_{x_{i}}^{x_{i+1}} (f).$$

Adding (14) in (13), we obtain

$$\left| \sum_{i=0}^{n} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u) du \right) f(x_{i}) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$\leq \sum_{i=0}^{n-1} \left[\frac{1}{2} \int_{x_{i}}^{x_{i+1}} w(u) du \right] \left(\int_{x_{i}}^{x_{i+1}} w(u) du \right) \left(\int_{x_{i}}^{x_{i+1}} w(u)$$

which completes the proof of first inequality in (4).

Using triangle inequality in last inequality in (15), we have

$$\begin{vmatrix} \alpha_{i+1} \\ \int_{x_i} w(u) du - \int_{\alpha_{i+1}} w(u) du \end{vmatrix}$$

$$\leq \begin{vmatrix} \alpha_{i+1} \\ \int_{x_i} w(u) du \end{vmatrix} + \begin{vmatrix} x_{i+1} \\ \alpha_{i+1} \\ \alpha_{i+1} \end{vmatrix} w(u) du \end{vmatrix}$$

$$= \int_{x_i} w(u) du + \int_{\alpha_{i+1}} w(u) du = \int_{x_i} w(u) du$$

and

$$\max_{i \in \{0,1,\dots,n-1\}} \frac{1}{2} \left| \int_{x_i}^{\alpha_{i+1}} w(u) du - \int_{\alpha_{i+1}}^{x_{i+1}} w(u) du \right| \le \frac{1}{2} v(L).$$

This completes the proof.

Remark 1. Under assumptions Theorem 3 with w(u) = 1, the inequality (3) reduces inequality (2).

Remark 2. If w(u) = h'(u) (differentiable with respect to u) in Theorem 3, then we have the inequality

$$\left| \sum_{i=0}^{n} \left(\int_{\alpha_{i}}^{\alpha_{i+1}} w(u) du \right) f(x_{i}) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$\leq \left[\frac{1}{2} v(L) + \max_{i \in \{0,1,\dots,n-1\}} \left| h(\alpha_{i+1}) - \frac{x_{i} + x_{i+1}}{2} \right| \right] \bigvee_{a}^{b} (f)$$

$$\leq v(L) \bigvee_{\alpha} (f)$$
(16)

which was proved by Kuei-Lin Tseng et al. in [20].

Remark 3. If we choose w(u) = 1, h(u) = u in (16), inequality reduces inequality (2).

Corollary 1. Under assumption Theorem 3, choosing $x_0 = a, x_1 = b$, $\alpha_0 = a$, $\alpha_1 = \alpha, \alpha_2 = b$ in inequality (4) we obtain the inequality

$$\begin{vmatrix} \begin{pmatrix} \alpha \\ \int w(u)du \end{pmatrix} f(a) \\ + \begin{pmatrix} \int w(u)du \end{pmatrix} f(b) - \int f(t)w(t)dt \end{vmatrix}$$

$$\leq \begin{bmatrix} \frac{1}{2} \int w(u)du \\ + \frac{1}{2} \int w(u)du - \int w(u)du \end{bmatrix} b \\ + \frac{1}{2} \int w(u)du - \int w(u)du \end{bmatrix} b$$

$$\leq \begin{pmatrix} \int w(u)du \\ - \int w(u)du \end{pmatrix} (f).$$

Remark 4.

1) In (17), if we take $\alpha = b$, then we have the "weighted left rectangle inequality"

$$\left| \left(\int_{a}^{b} w(u) du \right) f(a) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$\leq \left(\int_{a}^{b} w(u) du \right) \bigvee_{a}^{b} (f).$$

2) If we take $\alpha = a$ in (17) then we have the "weighted right rectangle inequality"

$$\left| \left(\int_{a}^{b} w(u) du \right) f(b) - \int_{a}^{b} f(t) w(t) dt \right|$$

$$\leq \left(\int_{a}^{b} w(u) du \right) \bigvee_{a}^{b} (f).$$

3. Applications for Quadrature Rule

Let us consider the arbitrary division

$$I_n : a = x_0 < x_1 < ... < x_n = b$$

and let $w: [a,b] \rightarrow (0,\infty)$ be continious function with

$$\upsilon(L) := \max \left\{ L_i \, \middle| \, i = 0, ..., n-1 \right\},$$

$$L_i = \int_{x_i}^{x_{i+1}} w(u) du \ \left(i = 0, 1, ..., n-1 \right).$$

Then the following Theorem holds.

Theorem 4. Let $f: Q \to \mathbb{R}$ is of bounded variatin on Q and $\xi_i \in [x_i, x_{i+1}]$ (i = 0, ..., n-1). Then we have the quadrature formula:

$$\int_{a}^{b} f(t)w(t)dt = \sum_{i=0}^{n-1} \left(\int_{x_{i}}^{\xi_{i}} w(u)du \right) f(x_{i}) + \sum_{i=0}^{n-1} \left(\int_{\xi_{i}}^{x_{i+1}} w(u)du \right) f(x_{i+1}) + R_{w}(I_{n}, f, w, \xi).$$

The remainder term $R_w(I_n, f, w, \xi)$ satisfies

$$\begin{aligned} & \left| R_{w}(I_{n}, f, w, \xi) \right| \\ & \leq \left[\frac{1}{2} \upsilon(L) + \max_{i \in \{0, 1, \dots, n-1\}} \frac{1}{2} \left| \int_{x_{i}}^{\xi_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right| \right] \int_{a}^{b} (f) \ (18) \\ & \leq \upsilon(L) \bigvee_{a} (f). \end{aligned}$$

Proof. Applying Corollary 1 to interval $[x_i, x_{i+1}]$, we have the inequality

$$\begin{vmatrix} \left(\sum_{x_{i}}^{\xi_{i}} w(u) du \right) f(x_{i}) \\ + \left(\sum_{x_{i}}^{x_{i+1}} w(u) du \right) f(x_{i+1}) - \int_{a}^{x_{i+1}} f(t) w(t) dt \end{vmatrix}$$

$$\leq \begin{vmatrix} \frac{1}{2} \sum_{x_{i}}^{x_{i+1}} w(u) du \\ + \frac{1}{2} \begin{vmatrix} \sum_{x_{i}}^{\xi_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \end{vmatrix} \begin{vmatrix} x_{i+1} \\ y \\ x_{i} \end{vmatrix}$$

$$(19)$$

Summing the inequality (19) over i from 0 to n-1, then we have

$$\begin{split} & \left| R_{w}(I_{n}, f, w, \xi) \right| \\ & \leq \sum_{i=0}^{n-1} \left[\frac{1}{2} \int_{x_{i}}^{x_{i+1}} w(u) du \right. \\ & \left. \leq \sum_{i=0}^{n-1} \left[\frac{1}{2} \int_{x_{i}}^{x_{i+1}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right] \right]_{x_{i}}^{x_{i+1}} \\ & \leq \max_{i \in \{0, 1, \dots, n-1\}} \left\{ \frac{1}{2} \int_{x_{i}}^{x_{i+1}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right\} \sum_{i=0}^{n-1} \sum_{x_{i}}^{x_{i+1}} (f) \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{\xi_{i}} \left[\frac{1}{2} \left(\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right) \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{\xi_{i}} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i+1}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i}} w(u) du \right]_{x_{i}}^{b} \\ & \leq \left[\frac{1}{2} \upsilon(L) \right]_{x_{i}}^{b} \left[\int_{x_{i}}^{x_{i}} w(u) du - \int_{\xi_{i}}^{x_{i}} w($$

This completes proof of the first inequality in (18). Also, we have

$$\begin{vmatrix} \xi_i \\ w(u)du - \int_{\xi_i}^{x_{i+1}} w(u)du \end{vmatrix}$$

$$\leq \begin{vmatrix} \xi_i \\ w(u)du \end{vmatrix} + \begin{vmatrix} x_{i+1} \\ \int_{\xi_i}^{x_{i+1}} w(u)du \end{vmatrix} \leq \int_{x_i}^{x_{i+1}} w(u)du$$

and

$$\max_{i \in \{0,1,\dots,n-1\}} \frac{1}{2} \left| \int_{x_i}^{\xi_i} w(u) du - \int_{\xi_i}^{x_{i+1}} w(u) du \right| \le \frac{1}{2} \upsilon(L)$$

which completes the proof.

Remark 5.

1) If we choose $\xi_i = x_{i+1}$, then we have the weighted left rectangle rule

$$\int_{a}^{b} f(t)w(t)dt$$

$$= \sum_{i=0}^{n-1} \left(\int_{x_{i}}^{x_{i+1}} w(u)du \right) f(x_{i}) + R_{wL}(I_{n}, f, w).$$

The remainder $R_{wL}(I_n, f, w)$ satisfies

$$|R_{wL}(I_n, f, w)| \le \upsilon(L) \bigvee_{n=0}^{b} (f).$$

2) Similarly, choosing $\xi_i = x_i$, we have the weighted right rectangle rule

$$\int_{a}^{b} f(t)w(t)dt$$

$$= \sum_{i=0}^{n-1} \left(\int_{x_{i}}^{x_{i+1}} w(u)du \right) f(x_{i+1}) + R_{wR}(I_{n}, f, w).$$

And, the remainder term $R_{wR}(I_n, f, w)$ satisfies

$$|R_{wR}(I_n, f, w)| \le \upsilon(L) \bigvee_{k=0}^{b} (f).$$

References

- Alomari, M. W., "A Generalization of weighted companion of Ostrowski integral inequality for mappings of bounded variation," RGMIA Research Report Collection, 14, 2011, Article 87, 11 pp.
- [2] Alomari, M. W. and Latif, M.A. "Weighted companion for the Ostrowski and the generalized trapezoid inequalities for mappings of bounded variation," RGMIA Research Report Collection, 14, 2011, Article 92, 10 pp.
- [3] Cerone, P. Cheung, W.S. and Dragomir, S.S., "On Ostrowski type inequalities for Stieltjes integrals with absolutely continuous integrands and integrators of bounded variation," Computers and Mathematics with Applications, 54, 2007, 183-191.

- [4] P. Cerone, S. S. Dragomir, and C. E. M. Pearce, A generalized trapezoid inequality for functions of bounded variation, Turk J Math, 24 (2000), 147-163.
- [5] Dragomir, S. S., "The Ostrowski integral inequality for mappings of bounded variation," Bull. Austral. Math. Soc., 60(1), 1999, 495-508.
- [6] Dragomir, S. S., "On the midpoint quadrature formula for mappings with bounded variation and applications," Kragujevac J. Math. 22, 2000, 13-19.
- [7] Dragomir, S. S., "On the Ostrowski's integral inequality for mappings with bounded variation and applications," Math. Inequal. Appl. 4(1), 2001, 59-66.
- [8] Dragomir, S. S., "A companion of Ostrowski's inequality for functions of bounded variation and applications," Int. J. Nonlinear Anal. Appl. 5(1), 2014, 89-97.
- [9] Dragomir, S. S., "Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation." Arch. Math. (Basel) 91(5), 2008, 450-460.
- [10] Dragomir, S.S. and Momoniat, E., "A Three point quadrature rule for functions of bounded variation and applications," RGMIA Research Report Collection, 14, 2011, Article 33, 16 pp.
- [11] Dragomir, S. S., "Some perturbed Ostrowski type inequalities for functions of bounded variation," RGMIA Res. Rep. Coll. 16, 2013, Art. 93.
- [12] Liu, W. and Sun, Y., "A Refinement of the companion of Ostrowski inequality for functions of bounded variation and Applications," arXiv:1207.3861v1, 2012.
- [13] Mishra, V.N., "Some problems on approximations of functions in banach spaces," Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India.

- [14] Mishra V.N. and Mishra, L.N., "Trigonometric approximation of signals (Functions) in L_P (p≥1)-norm," International Journal of Contemporary Mathematical Sciences, 7(19), 2012, 909-918.
- [15] Mishra, L.N., "On existence and behavior of solutions to some nonlinear integral equations with Applications," Ph.D. Thesis (2017), National Institute of Technology, Silchar 788010, Assam, India
- [16] Ostrowski, A., M. "Über die absolutabweichung einer differentiebaren funktion von ihrem integralmitelwert," Comment. Math. Helv. 10, 1938, 226-227.
- [17] Tseng, K-L, Yang, G-S and Dragomir, S. S., "Generalizations of weighted trapezoidal inequality for mappings of bounded variation and their applications," Mathematical and Computer Modelling, 40, 2004, 77-84.
- [18] Tseng, K-L, "Improvements of some inequalites of Ostrowski type and their applications," Taiwan. J. Math. 12(9), 2008, 2427-2441.
- [19] Tseng, K-L, Hwang, S-R, Yang, G-S and Chou, Y-M, "Improvements of the Ostrowski integral inequality for mappings of bounded variation I," Applied Mathematics and Computation 217, 2010, 2348-2355.
- [20] Tseng, K-L, Hwang, S-R, Yang, G-S and Chou, Y-M, "Weighted Ostrowski ,ntegral ,nequality for mappings of bounded variation," Taiwanese J. of Math., 15(2), 2011, 573-585.
- [21] Tseng, K-L, "Improvements of the Ostrowski integral inequality for mappings of bounded variation II," Applied Mathematics and Computation 218, 2012, 5841-5847.