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1. Introduction
In the literature there are many inequalities satisfied by

Bessel and modified Bessel functions of the first kind. 
Different types of inequalities for this functions are proved, 
like Turán types inequalities [4,15], Jordan's type 
Inequalities [5], Redheffer's type inequalities [6,8,24], 
Huygens types inequalities [10,11] and Frame's types 
inequalities [9], ...etc. This paper is a continuation of some 
inequalities for this functions. Wilker [19] proposed two 
open problems:  
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In [16], inequality (1) was proved, and the following 
inequality: 
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where the constants ( )42 /π  and 
8
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 are best possible, 

was also established. 
Wilker-type inequalities (1) and (2) have attracted 

much interest of many mathematicians and have 
motivated a large number of research papers involving 

different proofs and various generalizations and 
improvements (cf. [3,23] and the references cited therein). 

In this paper, some new Wilker-type inequalities 
involving modified Bessel functions of the first kind are 
established. Moreover, we present a new proof of 
generalization of the Lazarević and Wilker-type 
inequalities proved by Baricz [2]. 

Let 1,ν > −  let us consider the function 
[ ): 1,ν → ∞  defined by
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and Iν  is the modified Bessel function of the first kind 
defined by [[18], p. 77] 
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It is worth mentioning that in particular we have, 
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2. Lemmas
In order to establish our main results, we need several

lemmas, which we present in this section. 
Lemma 1. [14] Let na  and ( )0,1,2,...nb n =  be real 

numbers, and let the power series ( ) 0
n

nnA x a x∞
== ∑
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and ( ) 0
n
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== ∑  be convergent for .x R<  If 

0nb >  for 0,1,..,n =  and if n
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 is strictly increasing (or 

decreasing) for 0,1,2,...,n =  then the function 
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strictly increasing (or decreasing) on ( )0, .R  

Lemma 2. [1,8,13] Let [ ], : ,f g a b →   be two 

continuous functions which are differentiable on ( ), .a b  

Further, let 0g ′ ≠  on ( ), .a b  If f
g
′
′
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3. Wilker and Lazarević Type 
Inequalities for Modified Bessel Functions 

The first aim of this paper is to prove the following 
inequalities. 
Theorem 1. Let 1,ν > −  the following inequalities 
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holds for all ( )0, .x∈ ∞  

Proof. Let 1,ν > −  we define the function Fν  on ( )0,∞  
by 
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By using the differentiation formula [[18], p. 79] 
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we can easily show that 
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Using the Cauchy product 
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we get 
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where 
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Now, we define the sequence n
n

n
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b
=  for 0,1,...,n =  

thus 

 ( ) 1.nC nν ν= + +  

We conclude that nc  is increasing for 0,1, 2,...n =  and 
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is increasing on ( )0,∞  by Lemma 2. Furthermore, 
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from which follows the inequality (8) holds for all 1ν > −  
and 0.x >  Finally, using the the arithmeticgeometric 
mean inequality and equality (9), we get 
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Since ( ) 1,xν ≥  the inequality (9) holds for all 1ν > −  
and 0.x >  So, the proof of Theorem 1 is complete. 

In this theorem, we establish new inequalities of the 
Wilker type for modified Bessel function of the first kind. 
Theorem 2. Let 1ν > − and 0,x >  the following Wilker 
type inequality 
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is valid. In particular, the following inequality 
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hold for all 0.x >  
Proof. We define the function ( )H xν  on ( )0,∞  by 
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The Mittag-Leffler expansion for the modified Bessel 
functions of first kind, which becomes [[7], Eq. 7.9.3] 
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where ,1 ,2 ,0 ... ...,nj j jν ν ν< < < < <  are the positive 
zeros of the Bessel function Jν , and the differentiation 
formula (10) we have 
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Thus implies that the function ( )H xν  is increasing on 

( )0,∞  for all 1,ν > −  and consequently ( ) 0H xν >  for 
all 0.x >  So, the following inequality 

 ( ) ( )( ) 11 ,x x
ν
νν ν ++≥   (22) 

holds for all 1ν > −  and ( )0,x∈ ∞ . By using the 
arithmetic-geometric mean inequality we obtain 
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Finally, Observe that using (5) and (6) in particular for 
1
2

ν = −  we obtain the inequality (20). 

In the next theorem we present a generalization of the 
Lazarević and Wilker-type inequalities to modified Bessel 
functions of the first kind. The next result exist in [3]. We 
give an elementary proof. 
Theorem 3. let 1ν > −  and 0.x >  Then, the following 
inequalities 
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Therefore, (23) holds. From arithmetic-geometric mean 
inequality and inequality (23), we have 
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and the proof of theorem is complete. 

4. Concluding Remarks 
1. In proof of Theorem 1, we can see that the following 
Turán type inequality 
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1

x x xν ν ν
ν
ν+ +
+
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    (25) 

holds for all 1ν > −  and .x∈  This inequality is not new 
and it is actually equivalent to a very well-known Turán 
type inequality for the modified Bessel function of the 
first kind, firstly discovered by Thiruvenkatachar and 
Nanjundiah, see [17] 
2. On the other hand, by using (5), (6) and (7) in particular 

for 1,
2

ν −
=  the Turán type inequality (25) becomes 
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 ( ) ( ) ( )( ) ( )2cosh cosh sinh sinhx x x x x− <  

3. Inequality (23) is a natural generalization of the 
Lazarević inequality [[12], p. 207] 
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where 0.x ≠  Recently, Zhu gives a new proof of the 
inequality (26) in [20] and extends the inequality (26) to 
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