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Abstract Suppose that E is an algebraic number field over the rational field Q. Let a(n) be the number of integral
ideals in E with norm n and A(x) denote the remainder term in the asymptotic formula of the I-th integral power sum
of a(n). In this paper the bound of the average behavior of A(x) is given. This result constitutes an improvement upon

that of Lii and Wang for the error terms in mean value.
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1. Introduction and the Result

Let £ be an algebraic number field of degree d over
the rational field Q, and £ (s,E) be its Dedekind zeta-
function. Thus

1
b E = b
¢(s,E) ; oy

(Re(s) > 1),

where a runs over all integral ideals of the field £, and
Na is the norm of a . If a(n) denotes the number of

integral ideals in £ with norm », then we have

< a(n) .
é’(s,E):Z—s, s=o+it, o>1.
n=1 1

It is known that a(n) is a multiplicative function and
satisfies

a(n) < r(n)?, (1)

where 7(n) is the divisor function.
It is an important problem to study the function a(n).
In 1927, Landau [7] first proved that

l—i+e
damy=ax+0|x 41|

n<x

for any arbitrary algebraic number field of degree d > 2,

where « is the residue of {(s, E) at its simple pole s =1.

It is hard to refine Landau's result. Later, Huxley and
Watt [3] and Miiller [9] improved the results for the
quadratic and cubic fields, respectively.

Until 1993, Nowak [10] obtained the best result
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d(5d+2) (log x)5d+2 ,for3<d <6

2
I—+
olx ¢

Z a(n) =ax+
n<x I—+—F

- 2
ol x ? 2% (logx)d | |, ford>7

for any arbitrary algebraic number field of degree d >3 .
In [1], Chandraseknaran and Good studied the [/ -th
integral power sum of a(n) in some Galois fields, and

they showed that
Theorem 1.0. If £ is a Galois extension of @@ of

degree d , then for any € >0 and any integer d >2 , we
have

S a(n)' = x0,, (logx)+0 x md

n<x

where m=d'™!, and @ (¢) is a suitable polynomial in ¢

of degree m—1.
Recently, Lii and Wang [8] improved the classical

2
result of [1] by replacing — with .
[1]by replacing 7 md +6

Motivated by [2,4,5], the purpose of this paper is to
study the remainder term in mean square, and we shall
prove the following result.

Theorem 1.1 Subject to assumptions in Theorem 1.0,
and define

A(x)= " a(n) -~ xQ,,(logx) . (2)

n<x

Then we have

X 3——e
jl A2(x)dx <, X md+3
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for any given € > 0.

Notations. As usual, the Vinogradov symbol 4 <« B
means that B is positive and the ratio A/ B is bounded.
The letter € denotes an arbitrary small positive number,
not the same at each occurrence.

2. Proof of Theorem 1.1

To prove our Theorem, we need the following lemmas.
Lemma 2.1 Let £/Q be a Galois extension of degree

d ,and a(n) be defined in (1). Define

,(Res > 1). (3

Ni(s)= Z

nln

Then we have
Ny(s)=¢"(s,E)- 4 (s),

for any integer />1, where m=d'™!, and 4, (s) denotes

a Dirichlet series, which is absolutely and uniformly
convergent for Re(s)>1/2 .

Proof. This is Lemma 2.1 in [8].
Lemma 2.2. Let £ be an algebraic number field of
degree d , then

—(l-o)+e

C(o+it, E)y < (1+]t])3 ,

for%ﬁ0£1+6 and any fixed ¢ >0.

Proof. By Lemma 2.2 in [8] and the Phragmen-

Lindel6f principle for a strip (see, e.g. Theorem 5.53 in

[6]), Lemma 2.2 follows immediately.
Now we begin to prove our theorem.
Let E be a Galois extension of Q of degree d .

Recall a(n) denotes the number of integral ideals in

FE with norm 7, and

{(S,E):ZM, s=o+it, o>1.
S
n=1 1
Let
3
r=xd3,

From (1), (3) and Perron's formula (see Proposition

5.54 in [6], we get
l 1+e+iT S l+€
N;(s —ds+0
[ N ( 7 J

> a(n) =

n<x 1+e iT
By the property N;(s) only has a simple pole at
1 .
= 1 for Re(s) >5 and Cauchy's residue theorem, we

have

1 1
+e+1 —+e—iT

1 l+e+iT 2
2./

a(n =— +
Z( ) 27i -[

< .
n=x 7+5 iT E+E+1T Ite—iT

S
N, (s)x—ds
s

x1+e
+l}=elle(s)x+O( 7 J
= x0,, (log x) + J; (x) + Jo (x) + J3 (x) + O(xHeT_l )

where m=d'™!, and Q,, (¢) is a suitable polynomial in ¢
of degree m—1 .

From the definition of A(x) in (2 ), we have
A(x) = Jl(x)+J2(X)+J3(X)+O(xl+€T71).

Therefore to prove Theorem 1.1, we shall prove the
following results.

X 5 S—Lﬂ
[ TP @dr < x0 md3 =123 (4)

and

2 6
1+e 3— +
LX(O{XT JJ dx<, X md+3 ‘. (5)

It is easy to get

2 6
1+e 3+e 3_ te
X
L (O(XT B dx < X <X md+3 (6)

T

Now we consider the integral J; (x) . We have

1 ! l+e+it
T
Jl(x):—J._TNl(—+e+it 1x—dt.
2z 2 —+e+it
2
Then
1 .
—+e+ify
X 2
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+€+lt1
2
1 .
1— —te—it)
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2

I I ( +e+zt1jN,(2+e+it2j

( +€+ltl)( +e—ity)

2
y (J‘IX x1+25+i(t] —1) )dxdtldtz
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<X 2+2€j dtl.f dt,
T (g A+ [ DA+~ )
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T T |Nl[2+6+it1j2
<« X L dtIL
T T gy )

|N,(;+e+it2j|2 it
+ 5 2 (7)
) 4[4 -1 |

| N, (;+€+i’1j|2
< X2+26J'

T (4 )

T T dtz

Ny -1y |

To go further, we get

jT dt, < 1+l

T -1 dt
a7 o )
a+l =T )1y =1y |

_T1+|t1—t2 | -1
dt
+.f 2 ©)
1+ n -1 |
< J‘”Itllﬁ < log2T.
t
By (7) and (8)
v . N,(;+e+it1j|2

L JE (x)dx < X2+3€j dy.  (9)

T (g )

From (9), Lemma 2.1 and 2.3, we have (for d >3)
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g’d G+e+it,Ej

1 2
x4 (—+e+it1)
2

dt
{ 2
" (—+s+it,EJ
2

=
md 2

r| —+e | _
< X2+35 +X2+3EL ;6 ¢ 2dt

X T
L le (x)dx < X2 4 x 23 L

243 243¢ (T
<<X+E+X+EJ.l

(10

md_,
< X2+3e +X2+4€T 3

3- +€
< X md+3
Finally we estimate trivial bounds of the integrals
Jy(x), J3(x). By Lemma 2.2, we get

1

J () + J3(x) < jli X | ™o +iT, E)| T ' do
—T€
2

md
o im0+
<« max x°T3 T

1/2+e<o<l+e

x o —l+e€
= max —=| T 3
%-{-GSGSH—E T

!
l+e l+e d——1+e
+x2 T6 ,

which yields
1 m 2
X 2 ¥l e —te ——l+e
L (T, (x) + T3 (x))2dx < L +x2 T6 dx
2
¥ xl+e
< .[
Ll (11
3te md_ e
<« +X2+26T 3

T

3— +e
<« X md+3

The inequalities (4), (5) immediately follow from (6),
(10) and (11). That is,

6
X 3——rte
L A2(x)dx <, X md+3

Then this completes the proof of Theorem 1.1.
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