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1. Introduction

The object of this paper is to evaluate an integral

involving Bessel polynomials and the H -function of two
variables due to Singh and Mandia [8], and to apply it in
obtaining a particular solution of the classical problem
known as the ‘time-domain synthesis problem’, occurring
in the electric network theory. On specializing the

parameters, the H -function of two variables may be
reduced to almost all elementary functions and special
functions appearing in applied Mathematics Erdelyi, A. et.
al. ([2], p.215-222). The special solution derived in the
paper is of general character and hence may encompass
several cases of interest.

The H -function of two variables will be defined and

represented by Singh and Mandia [8] in the following
manner:
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Where x and y are not equal to zero (real or complex),

and an empty product is interpreted as unity
Pj»4-1;,m; are non-negative integers such that
0<m <p;,0< m; qu(i =1,2,3;7=2,3) . All the
a;(j=12,...p).0;(j=12,...91),¢;(j=12,... ps),

d;(j=12,...q7), e;(j=12,...p3),[;(j=12,...93)
are complex parameters.
7;20(j=12,...,p),6; 20(j=12,...,q) (not all zero
simultaneously),  similarly >0(j=1,2,..., p3),
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F; 20(j=12,...,93) (not all zero simultaneously). The
exponents Kj(j = 1,2,...,n3),Lj(j =my+1,...,97),
Ri(j=12,.,m),8;(j=m3+l,..,q3) can take on non-

negative values.
The contour ; is in & -plane and runs from —ico to

+ico . The poles of I"(dj —5j§)(j =1,2,...,my) lie to the

right and the poles of r{(l —c;+ ng)}K-’ (j=12.i1y),

T(1=a;+a;&+4n)(j=12,.m) to the left of the
contour. For K ;(j=1,2,...,ny) not an integer, the poles of

gamma functions of the numerator in (1.3) are converted
to the branch points.
The contour L, is in 77 -plane and runs from —io to

+ico . The poles of F(fj —an)(j:1,2,...,m3)lie to the
. R
right and the poles of F{(l—ej +Ej77)} (j=12,...n3),

F(l—aj+aj§+Aj77)(j:1,2,...,nl) to the left of the

contour. For R;(j=1,2,...,n3) not an integer, the poles of

gamma functions of the numerator in (1.4) are converted
to the branch points.

The functions defined in (1.1) is an analytic function of
xand y,if
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The behavior of the H -function of two variables for
small values of | z | follows as:

HIx,y]1=0( x [*] y ), max {| x|l y |} >0 (1.10)
Where
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1< j<my 0; 1< j<my F;

For large value of | z |,
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Provided that U <0 and ¥V <0.
If we take K; =1(j =12,...m,).L; =1(j =m, +1,....q,),

R; =1(j =12,um3),S; =1(j = my +1,...g3) in (1.1), the

H -function of two variables reduces to H -function of
two variables due to [7].

The following results are needed in the analysis that
follows:

Bessel polynomials are defined as

v, (x;a,b) = i M(_%j
r=0 " (1.14)
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Orthogonality property of Bessel polynomials is
derived by Exton ([4], p.215, (14)):
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Where Re(a)<l-m—-n.
The integral defined by Bajpai et.al. [1] is also required:

ng le xyn(x a,l)dx = [Co-mia=o-1+n) (1.16)
0 INa-o-1)

Where Re(o +n)<0,Re(a—o—1+n)>0,0 #-1,-2,....

2. Integral

The integral to be evaluated is
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a; a;
J J
For j=12,.,n;0#-1,-2,..., and conditions (1.7),

(1.8) and (1.9) are also satisfied.

Proof: To establish (2.1), express the H -function of two
variables in its integrand as a Mellin-Barnes type integral
(1.1) and interchange the order of integration which is
permissible due to the absolute convergence of the
integrals involved in the process, we obtain
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Now evaluating the inner integral with the help of
(1.16), it becomes
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Which on applying (1.1), yields the desired result (2.1).
Special Case: If we take Kj =1(j=12,..,m),

Lj =l(j:m2 +1,...,Q2), Rj :l(jzl,?_,...,l’l'},),
,q3) in (1.1), the H -function of two

S;=1(j =my +1,..

variables reduces to H -function of two variables due to
[7], and we get
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Provided all condition are satisfied given in (2.1).

3. Solution of the Time-Domain Synthesis
Problem of Signals

The classical time-domain synthesis problem occurring
in electric network theory is as follows ([4], p. 139):

Given an electrical signal described by a real valued
conventional function f(¢) on 0<t<o , construct an
electrical network consisting of finite number of
components R,C and I which are all fixed, linear and
positive, such that output of fj (¢) , resulting from a delta-
function o&(¢) approximates f(z) on 0<t<oo in some
sense.

In order to obtain a solution of this problem, we expand
the function f'(¢) into a convergent series:

1= v, ) (3.1)

n=0

Or real-valued function y, (¢) . Let every partial sum

N
In@® = w,(t); N=0,12,... (3.2)

n=0

Possesses the two properties

1) fy@)=0,for —o<t<0

(ii) The Laplace transform Fy (s) Of Fy (¢)is a rational
function having a zero as s =o0 and all its poles in the
left-hand s -plane, except possibly for a simple pole at the
origin.

After choosing N in (3.2) sufficiently large whatever
approximation criterion is being used, an orthogonal series
expansion may be employed. The Bessel polynomial
transformation and (1.15) yields as immediate solution in

the following form:
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Where R(a)<1-2n.
The function f(¢) is continuous and of bounded

variation in the open interval (0,) .

4, Particular Solution of the Problem

The particular solution of the problem is:
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<2,
J
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(1.9) are also holds.
Proof: Let us consider
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Equation (4.2) is valid, since f(¢)is continuous and of

bounded variation in the open interval (0,).
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Multiplying both sides of (4.2) by ¢ 2 e 2 Ym(t;a,1)
and integrating with respect to ¢ from 0 to o, we get

1
—o,n|: my,n)y:m3,n

P1,.91:P2-92:P2-92

® (aj,on,AJ)1 ( Vs j)l, ( J’J)n2+1 m
J 2| (e Ejirs),, AerE) :
o |l ut Lny’ n3+1,p3
v . ST
(bj,ﬂj,BJ )1 a1 (d/ 5])1 ) (dj’él’LJ )m2+1,q2’
(ff’F.l')l’mS ’(fJ’ J> J)m3+1,q3 ]
o) ) ;2 l
z J‘ 2 Y ta, )y, (t;a,)dt
n=0 0
Now using (2.1) and (1.15), we obtain
D"T(a+m)2m+a—1)sinza
C, =
ml(m+a-1) 7
0,1y my,nym3,ny (4.3

P1+Lq1+2:p2.92;02.92

(ajaids) -

I )l,nz ’

(a—o-1;4),

J yj)n2+1,p2’
At )1,n3 it n3+l,p3

<>

| -ff’F.) ’(fj’F] m3+,q3

On account of the most general character of the result

(4.2) due to presence of the H -function of two variables,
numerous special cases can be derived but further sake of
brevity those are not presented here.
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