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Abstract  The p-adic log  gamma functions associated with q-extensions of Genocchi and Euler polynomials with 
weight α were recently studied [6]. By the same motivation, we aim in this paper to describe q-analogue of p-adic 
log gamma functions with weight alpha and beta. Moreover, we give relationship between p-adic q-log gamma 
functions with weight (α,β) and q-extension of Genocchi numbers with weight alpha and beta and modified q-Euler 
numbers with weight α. 
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1. Introduction 
Assume that p is a fixed odd prime number. Throughout 

this paper Z, Z ,p Q p and C p  will denote by the ring of 
integers, the field of p-adic rational numbers and the 
completion of the algebraic closure of Q ,p  respectively. 

Also we denote *N N {0}= ∪  and ( )exp .xx e=  Let 

{ }: C Qp pv → ∪ ∞  ( )Q is the field of rational numbers  

denote the p-adic valuation of C p  normalized so that 

( ) 1pv p = . The absolute value on C p  will be denoted as 

. p , and ( )v xp
px p−=  for C .px∈  When one talks of q-

extensions, q  is considered in many ways, e.g. as an 
indeterminate, a complex number C,q∈  or a p-adic 
number C .pq∈  If C,q∈  we assume that 1.q <  If 

C ,pq∈  we assume 
1

11 ,p
pq p

−
−− <  so that 

( )exp logxq x q=  for 1.px ≤  We use the following 

notation. 
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where [ ]1lim ;q qx x→ =  cf. [1-23]. 

For a fixed positive integer d  with ( ), 1,d f =  we set 
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and 
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where Za∈  satisfies the condition 0 Na dp≤ < . 
It is known that  
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is a distribution on X  for C pq∈  with 1 1.pq− ≤  

Let ( )Z pUD  be the set of uniformly differentiable 

function on Z .p  We say that f  is a uniformly 

differentiable function at a point Z ,pa∈  if the difference 
quotient 
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has a limit ( )´f a′  as ( ) ( ), ,x y a a→  and denote this by 

( )Z pf UD∈ . The p-adic q-integral of the function 

( )Z pf UD∈  is defined by 
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The bosonic integral is considered by Kim as the 

bosonic limit ( ) ( ) ( ), ,
, ,0 :n q n qg gα β α β=  ( ) ( )1 1limq qI f I f→= . 

Similarly, the p-adic fermionic integration on Z p  defined 
by Kim as follows: 
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Let 1,q →  then we have p-adic fermionic integral on 
Z p  as follows: 
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Stirling asymptotic series are known as 
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where nB  are familiar n-th Bernoulli numbers cf. 
[6,8,9,23]. 

Recently, Araci et al. defined modified q-Genocchi 
numbers and polynomials with weight α and β in [4,5] by 
the means of generating function: 

 ( ) ( )
[ ]

( ),
, Z

0
.

!

n x tq
n q qpn

tg x t q e d
n

ξ αα β βξ
βµ ξ

∞ +−
−

=
=∑ ∫ (1.4) 

So from the above, we easily get Witt's formula of 
modified q-Genocchi numbers and polynomials with 
weight α and β as follows: 
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where ( ) ( ) ( ), ,
, ,0 :n q n qg gα β α β=  are modified q-extension of 

Genocchi numbers with weight α and β cf. [4,5]. 
In [21], Rim and Jeong are defined modified q-Euler 

numbers with weight α as follows: 
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From expressions of (1.5) and (1.6), we get the following 
Proposition 1. 

Proposition 1. The following 
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is true. 
In previous paper [6], Araci, Acikgoz and Park 

introduced weighted q-analogue of p-adic log  gamma 
type functions and derived some interesting identities. 
They were motivated from paper of T. Kim by "On a q-
analogue of the p-adic log gamma functions and related 
integrals, J. Number Theory, 76 (1999), no. 2, 320-329." 
By the same motivation, we introduce q-analogue of p-
adic log gamma type function with weight α and β. We 
derive in this paper some interesting identities including 
this type of functions. 

2. On P-Adic log Γ Function with Weight 
α and β 

In this part, from (1.2), we start at the following nice 
identity: 

 

( ) ( ) ( ) ( ) ( )
[ ] ( ) ( )

1

1
1

0

1

2 1

nx x
q n q

n
n l

q
l

I q f I q f

f l

β ββ β

β

−− −
− −

−
− −

=

+ −

= −∑
 (2.1) 

where ( ) ( )nf x f x n= +  and Nn∈  (see [4]). 
In particular for 1n =  into (2.1), we easily see that 
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By simple an application, it is easy to indicate as 
follows: 
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where ( ) ( )( ) ( ) ( )( )´1 log 1 1 log 1d
dxx x x x+ + = + + .  

By expression of (2.3), we can derive 
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where c  is constant. 
If we take 0,x =  so we get 0.c =  By expression of 

(2.3) and (2.4), we easily see that, 
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It is considered by T. Kim for q-analogue of p-adic 
locally analytic function on C \ Zp p  as follows: 

 ( ) [ ] [ ]( ) ( ), Z
log 1p q qq qp

G x x x dξ ξ µ ξ−= + + −∫ (2.6) 

(for detail, see [5,6]). 
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By the same motivation of (2.6), in previous paper [6], 
q-analogue of p-adic locally analytic function on C \ Zp p  

with weight α is considered  
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In particular 1α =  in (2.7), we easily see that, 
( ) ( ) ( )1

, , .p q p qG x G x=  
With the same manner, we introduce q-analogue of p-

adic locally analytic function on p with weight α and β as 
follows: 
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From expressions of (2.2) and (2.8), we state the 
following Theorem: 
Theorem 1. The following identity holds: 
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Substituting 
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→  into (2.5) and by using 

(2.9), we get interesting formula: 
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If we substitute 1α =  into (2.10), we get Kim's q-
analogue of p-adic log gamma function (for detail, see 
[8]). From expression of (1.2) and (2.10), we obtain the 
following worthwhile and interesting theorems. 
Theorem 2. For C \ Zp px∈  the following  
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is true. 

Corollary 1. Taking 1q →  in Theorem 2, we get nice 
identity:  
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where nG  are called famous Genocchi numbers. 
Theorem 3. The following nice identity 
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is true. 
Corollary 2. Putting 1q →  into Theorem 3, we have the 
following identity: 
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where nE  are familiar Euler numbers. 
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