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Abstract  In this study, we analyzed the effects of trading volume as a proxy for the information arrival on stock 
return volatility and assess whether with the inclusion of trading volume in conditional variance equation, volatility 
persistence disappears using the generalized autoregressive conditional heteroscedasticity models; EGARCH and 
TGARCH. The analysis was done on the daily Nairobi Security Exchange (NSE) 20-share index and trading volume 
from 02/01/2009 to 02/06/2017 accounting for 2108 observations. The results of AR (2)-EGARCH (1,1) and AR 
(2)-TGARCH (1,1) models show that the relationship between trading volume and stock returns volatility is positive 
but not statistically significant implying that trading volume as a proxy of information flow can be considered 
generally as a poor source of volatility in stock returns. However, the results do not support the hypothesis that 
persistence in volatility disappears with the inclusion of trading volume in the conditional variance equation and this 
was consistent with the Student’s t-distribution and Generalized error term distribution assumption. We suggest that 
the AR (2)-EGARCH (1,1) model without trading volume with student t-distribution is a more suitable model to 
capture the main features of the stock returns such as the volatility clustering, the stock returns volatility and the 
leverage effect. 
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1. Introduction 

The study of volatility in financial markets is of great 
importance to investors in the managing of risk as it 
provides a degree of uncertainty on their investment. 
Reference [1] articulates that financial analysts and 
investors in financial markets are concerned with the 
unpredictability on asset return investment that are 
attributed to business performance instability and varying 
market prices. The common risk measures in financial 
markets are the Value at Risk (VaR) and Expected 
Shortfall (ES) were the former is a more established 
statistic within the financial markets while the latter is 
increasingly becoming of research interest. 

In many instances, time series especially in natural 
sciences cannot be modeled by a linear process. Thus, are 
better modeled by nonlinear processes which include; 
ARCH, GARCH, TGARCH, EGARCH, PGARCH and 
many others. Financial time series returns often display 
volatility clustering. Reference [2] outlines the most 
essential financial time series features as; they tend to 

have leptokurtic distribution, leverage effect, skewness 
and volatility clustering. Hence, the standard 
ARCH/GARCH model can model the leptokurtosis, 
skewness and volatility clustering. [3] shows that the 
standard model is unable to capture the dynamics of an 
important feature of financial time series known as the 
leverage effect i.e. cannot model this asymmetric 
behaviour of stock returns. 

A stock return is what an investor gains or losses on 
investing in a particular stock or portfolio which is 
dependent on the inherent risk in the market that the stock 
is listed. [4] articulates that variations on investment 
returns are mostly dependent on the willingness of the 
investor to take risk that is, the more the willingness to 
take the risk, the more the returns to the said investor and 
conversely. In [5], volatility is defined as a measure of 
variability or dispersion about a measure of central 
tendency. Generally, in financial markets, the major 
concern is often on the spread of asset returns. [6] 
articulates that for any stock market, volatility and returns 
are two important factors around which the entire stock 
market revolves. Volatility is associated with the 
uncertainty of the price; however, it is really not the same 

 



 Journal of Finance and Economics 194 

as risk. The undesirable outcome is linked to risk, whereas 
a strict measure of uncertainty which can be attributed to 
either a positive or negative outcome is volatility [5]. For 
instance, a higher volatility implies higher risk in the market. 

The number of shares that change ownership for a 
particular security is measured by the trading volume. In 
the financial market, several researchers and traders  
are of the view that trading volume strongly influences 
movements in prices. Reference [7] argues that researchers 
have found out that the trading volumes contains a lot of 
information as it forms a good proxy for information level 
of investors regarding stocks at any given time hence 
affecting the reactions through selling and buying of 
stocks. [8] argues that this has been consistent with studies 
by [7,9,10], who concluded that volume and the absolute 
changes in price have a positive correlation. Reference [11] 
argues that one factor that many have considered in the 
prediction of stock prices is the trading volume. In 
addition, the accessible amount of new information about 
a company on a given day can vary a securities everyday 
volume depending on the expiry of option contracts, the 
trading say is full or half day and other possible factors. 
Among a wide range of factors influencing the trading 
volume, the arrival of new information is one factor  
that corresponds the most to a securities fundamental 
evaluation. 

Reference [12] articulates that the arrival of information 
assumes a critical part in stock markets as it primarily 
drives movements. This information can be a public 
statement, profit declaration, court ruling relation to 
operations or change in company regulatory policies. 
Additionally, news arrival as an essential driver of market 
movements is a unique property of vector stochastic 
models. Thus, implying that news has a significant impact 
on the investment decisions of most investors than 
information regarding the business activities of listed 
companies such as financial statement. 

Researchers have become more interested in the 
analysis of trading volume and corresponding change in 
prices relating to informational releases due to the 
inferences that can be made from abnormal trading 
volume. However, traders focus on the trading volume 
because of several reasons. Theoretically, low volume in 
the market means high fluctuations in prices while  
low price variability is as a result of high volume. 
Consequently, this results in reduction of the price effect 
on large trade. Generally, broker revenue increases with 
an increase in volume and due to high turnover, the 
market makers have a greater chance for profit. 

Although a fair amount of empirical evidence exists on 
the effects of trading volume on the stock returns volatility 
for emerging stock markets in developing countries, the 
current literature provides very few empirical studies that 
considered asymmetric GARCH models. Therefore, this 
study intends to fill this gap by analyzing the effects of 
trading volume as a proxy for the arrival of information 
(hereafter, information arrival) on stock return volatility 
and assess whether with the inclusion of trading volume  
in conditional variance equation, volatility persistence 
disappears using the generalized autoregressive conditional 
heteroscedasticity models; EGARCH and TGARCH. The 
remaining parts of this paper are organized as follows. We 
discuss the methodology considered in Section 2. The 

results and discussion are contained in Section 3 and lastly, 
we conclude the paper in Section 4. 

2. Methodology 

The analysis was done on daily NSE 20-share price 
index and trading volume from 02/01/2009 to 2/06/2017 
accounting for 2108 observations and was analyzed in the 
R software environment [13].  

The stock return is defined as: 

 1ln ln −= −t t tR P P  (1) 

where tP  and 1−tP are the values of the stock index at 
close of the current day and previous day respectively. 𝐑𝐑𝐭𝐭  
is the logarithmic of stock returns. 

The trading volume is defined as: 

 1ln ln −= −t t tV Vol Vol  (2) 

where tVol  and 1−tVol  are the values of the volume of 
shares traded at the close of the current day and previous 
day of trade respectively. 𝐕𝐕𝐭𝐭 is the logarithmic of trading 
volume. 

We let 𝜖𝜖𝑡𝑡  be the shock at time t and 𝐹𝐹𝑡𝑡  be the available 
information through time t. The modeling includes the 
estimation of the mean and conditional variance equations. 
We define the model as, 

 ( )t t 1E R |F ~N(0,1),t t−= +tR    

 .tµ= +tR   (3) 

where µ  is the conditional mean of tR  given information 
through time 1t −  and tR  is the return at time index t. t  
is a non-constant term with respect to time and is defined 
as, 

 σ=t t ta  (4) 

Where, 
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and 1−tF  denotes the information set available at time t-1, 
σ t  is the volatility that evolves over time and 

( )~  0,1 . . .N i i dta  

2.1. Conditional Mean Equation 
In modeling the conditional mean equation of  Rt , we 

will employ the general Box Jenkins ARMA (p, q) model 
defined as, 

 
p q

t i t i t j t 1
i 1 j 1
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= + + +∑ ∑   (5) 

Where µ  is a constant, iφ  and jθ  are parameters of the 

ARMA (p, q) model and t  is the disturbance term. 
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2.2. Conditional Variance Equation 
To model the daily stock returns volatility, we used 

asymmetric models due to the fact that shocks of equal 
magnitude which may either be positive or negative are 
considered to have different effects on the volatility in 
future. Reference [14] articulates that asymmetric models 
are extensively motivated by the need to distinguish 
between negative and positive shocks and their impact on 
volatility in financial markets. In this paper, we used the 
standard EGARCH (r, s) and TGARCH (r, s) models that 
we discuss below: 

2.2.1. Exponential GARCH (EGARCH) Models 
In this model, the asymmetric responses of the time-

varying variance to shocks is captured. The model ensures 

a positive variance and uses standardized value of 
σ

−

−

t i

t i


. 

The EGARCH (r, s) specification is given by 
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where the asymmetric or leverage parameter is γ i . In 
most empirical cases, the leverage parameter is expected 
to be positive so that a negative shock increases future 
volatility or uncertainty while a positive shock eases the 
impact on future uncertainty. When −t i  is positive (i.e. 
good news), its contribution to the log volatility is 

) |(1 |iα γ −+ i t i  while if −t i  is negative (i.e. bad news) 
then, the total impact is ) |(1 |iα γ −− i t i . If γ i  is: 

i.  γ i = 0, there is symmetry i.e. no asymmetric 
volatility 

ii.  γ i < 0, then negative shocks (bad news) will 
increase the volatility more than positive shocks 
(good news). 

iii.  γ i > 0, then positive shocks (good news) will 
increase the volatility more than negative shocks 
(bad news) 

The persistence P̂  of the model is given by, 
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In order to analyze the effects of the trading volume tV  
on stock return volatility, the following modification of 
the conditional variance equation (6) is used: 
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Where tV  is the logarithmic of the trading volume which 
is used as a proxy for information arrival while meaning 
of the rest of the parameters are as defined in equation (6). 
[15] argues that if the proxy of information flow in the 

market is serially correlated to the variance then the 
persistence would be significantly smaller than when  

tV  is not included and the parameter δ  > 0. If the 
parameter δ  > 0 and statistically significant, then the 
proxy for information flow is serially correlated to the 
variance and has explanatory power. 

2.2.2. Threshold GARCH (TGARCH) Models 
The TGARCH (r, s) conditional variance specification 

is given by, 

 ( )
r s

2 2 2
t 0 i i t i t i j t j

i 1 j 1
σ α α γ N β σ− − −

= =
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where iγ  is the asymmetric response parameter or 
leverage parameter, iα  and jβ  are non-negative 
parameters satisfying conditions similar to those of 
GARCH models. If iγ =0, the model collapses to the 
classical GARCH (p, q) process. In this model, positive 
shocks (good news) and negative shocks (bad news) have 
different effects on the conditional variance 2

tσ  that is 
when t i− , 

i.  t i−  > 0, the effect on volatility is iα . 
ii.  t i−  < 0, the effect on volatility is i iα γ+ . 

The persistence P̂  of the model is given by, 
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where k is the expected value of the standardized residuals 
ta  below zero (effectively the probability of being below 

zero), 
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0
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where f is the standardized conditional density with any 
additional skew and shape parameters (· · ·). For instance, 
the value of k is 0.5 in the case of symmetric distributions. 

In order to analyze the effects of the trading volume tV  
on stock return volatility, the following modification of 
the conditional variance equation (8) is used: 

 ( )
r s

2 2 2
t 0 i i t i t i j t j t

i 1 j 1
σ α α γ N β σ δV− − −

= =
= + + + +∑ ∑  (11) 

Where tV  is the logarithmic of the trading volume  
which is used as a proxy for information arrival to the 
market while meaning of the rest of the parameters are as 
defined in equation (8). According to [15], the value of δ  
should be positive and there should be negligible volatility 
persistence. 
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2.3. Distribution Assumptions of the Error (at) 
in the GARCH type Model 

Reference [8] argues that often non-normality patterns 
such as excess kurtosis and skewness are exhibited by 
financial time series. The residuals of conditional 
heteroscedasticity models may generally show excess 
kurtosis, heavy tails and skewness. In order to account for 
the skewness, excess kurtosis and heavy-tails of return 
distributions this study employed the use of the Student’s-
t distribution and the Generalized Error Distribution 
(GED). 

2.3.1. Student’s t-Distribution 
[17] proposed that in fitting the GARCH model for the 

standardized error of the return series the Student’s t-
Distribution can be used in order to better capture the 
observed fat tails. The probability density function for a 
random variable that has a Student’s t-distribution with v 
degrees of freedom is given by, 

 ( )
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The density of the standardized Student’s t-Distribution 
with v > 2 degrees of freedom is given by; 
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where 2
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−= ∫  is a gamma function, v is the parameter 

that measures the thickness of the tail. The log likelihood 
function is given by equation (14).  
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2.3.2. Generalized Error Distribution  
The probability density function of the Generalized 

Error Distribution (GED) is given by, 
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Where ( )Γ .  Is the gamma function and  
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The log likelihood function is given by,  
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In order to maximize the log likelihood function, the 
quasi maximum likelihood function estimator will be used 
with respect to the unknown parameters. This is a 
preferred methodology because it is said to provide 
asymptotic standard errors that are valid under non-
normality, is generally consistent and has a normal 
limiting distribution [18]. 

3. Results and Discussion 

The descriptive statistics of the variables considered in 
this study are presented in Table 1. We observe that the 
stock returns series have a negative daily mean suggesting 
that they decrease slightly over time while the average 
mean daily trading volume is positive implying that the 
trading volume increase slightly with time. Both the stock 
returns and trading volume are right skewed implying that 
they have an asymmetric distribution as can be seen from 
the coefficient of the skewness.  The values of the 
skewness and the kurtosis are different from ’zero’ 
and ’three’ respectively. Hence, suggesting the presence 
of leptokurtic i.e. fat tails thus implying that the series are 
not normally distributed which is confirmed by the 
Jarque-Bera (JB) tests at 5% level of significance. 

Table 1. Descriptive statistics of the daily stock returns and trading 
volume 

Measure 𝑅𝑅𝑡𝑡  𝑉𝑉𝑡𝑡  
Number of 

observations 2107 2107 

Mean -0.000042 0.00013 
Median -0.000020 -0.000212 

Maximum 0.07269 0.039607 
Minimum -0.064127 -0.030795 

Std. deviation 0.007292 0.007628 
Skewness 0.495318 0.113634 
Kurtosis 13.613087 1.031374 

Jarque Bera 16393 98.6225 
P-value 2.2e-16 2.2e-16 

Table 2. Augmented Dickey-Fuller (ADF) test for the daily NSE 20 
share index return series and trading volume 

 Test statistic Critical value 
  1% 5% 10% 
𝑃𝑃𝑡𝑡  -0.7233 -2.58 -1.95 -1.62 
𝑅𝑅𝑡𝑡  -24.1935 -2.58 -1.95 -1.62 
𝑉𝑉𝑡𝑡  -54.6633 -2.58 -1.95 -1.62 
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Figure 1. Time plots for the daily NSE 20 Share Index Returns Series 

 
Figure 2. Time plots for the daily NSE 20 Share Index trading volume 

To test for stationarity of the time series, the 
Augmented Dickey Fuller (ADF) test was considered. 
From the computed test statistics in Table 2, we observe 
that the computed test statistics for the daily price series 
test is more than the critical values and thus, the null 
hypothesis is not rejected at 5% level of significance and 
we conclude that the price series is not stationary (there is 
a unit root) while tV  and tR  are stationary as can be 
observed from the visual inspection in Figure (1b) and 
Figure (2b). 

Table 3 shows the Ljung Box test for the stock return 
and trading volume series results at lags 2, 4, 6, 8 and the 
null hypothesis is rejected at 5% level of significance. 
Therefore, the result indicating that there exists correlation 
in the stock returns and trading volumes series. Hence, 
detected autocorrelation in the stock return and trading 
volume series can be removed from the data by fitting the 
simplest plausible ARMA (p, q) model. 

Table 3. Ljung box test for the daily stock returns series and trading 
volume 

 m 2 4 6 8 
𝑅𝑅𝑡𝑡  𝑄𝑄𝑚𝑚  293.6 306.4 310.17 311.14 
 P-value 2.2e-16 2.2e16 2.2e-16 2.2e-16 
𝑉𝑉𝑡𝑡  𝑄𝑄𝑚𝑚  368.98 389.94 398.36 405.01 
 P-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

3.1. Estimated Mean Equation 
In this study, an ARMA (p, q) model was used to fit the 

mean returns because it is said to provide approximations 
to the conditional mean dynamics that are flexible and 
parsimonious. According to [19], to deduce the order of an 
ARMA (p, q) model we may use the Autocorrelation 
Function (ACF) and Partial Autocorrelation Function 
(PACF). In this study, we suggested that the stock returns 
can be modeled by an AR (2) process. This is consistent 
with the results in Table 4 which suggested the best fitting 
model based on the criterion of choosing a model with 
minimum AIC and BIC and largest log-likelihood 
function. Therefore, the ARMA (2, 0) is selected as the 
mean equation. 

Table 4. Selection criteria for ARMA (p, q) order selection 

Model AIC BIC LL 
ARMA (0, 0) -14754.61 -14743.31 7379.31 
ARMA (1, 0) -14782.09 -14965.13 7494.05 
ARMA (1, 1) -14997.12 -14974.5 7502.56 
ARMA (2, 0) -15000.26 -14977.66 7504.14 
ARMA (0, 1) -14931 -14914.12 7468.54 
ARMA (0, 2) -14995.29 -14972.67 7501.64 
ARMA (2, 2) -14997.47 -14963.55 7504.73 
ARMA (1, 2) -14998.88 -14970.61 7504.44 
ARMA (2, 1) -14999.36 -14971.09 7504.68 
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The test for ARCH effects on the residuals of the AR (2) 
model resulted in the rejection of the null hypothesis at 5% 
level of significance and the results of the tests considered 
are given in Table 5. The lack of fit can also be observed 
from the plot of ACF and PACF in Figure 3. Therefore, 
the implementation of the GARCH-type models is valid in 
the modeling of the stock returns volatility. 

Table 5. ARCH effect test on residuals of the ARMA (2, 0) model 
 m 2 4 6 8 

Ljung Box 𝑄𝑄𝑚𝑚
2 158.92 161.45 161.81 161.91 

 P-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 
Lagrange 
Multiplier 𝑄𝑄𝑚𝑚  134.84 138.55 139.21 139.12 

 P-value 2.2e-16 2.2e-16 2.2e-16 2.2e-16 

 
Figure 3. Plots of the autocorrelation function and partial autocorrelation function for the residuals of the daily NSE 20 Share Index returns series 

3.2. Estimated Volatility Models 
The results of the parameter estimate for the AR (2)-

EGARCH (1,1) and AR (2)-TGARCH (1,1) without and 
with trading volume respectively under the Student’s t-
distribution and Generalized Error distribution assumption 
of the error term distribution are presented in Table 6 and 
Table 7. The p-values are given in parentheses. 

3.2.1. AR (2)-EGARCH (1, 1) and AR (2)-TGARCH 
(1,1) Models without trading volume 

In Table 6, the estimates of the AR (2) i.e. 1φ  and 2φ  
are significant hence backing the implementation in 
modeling of the NSE stock returns with an AR (2) model. 
We observe that the GARCH term ( 1β ) is statistically 
significant for AR. 

(2)-EGARCH (1,1) with GED whereas the ARCH term 

( 1α ) and the mean parameter (μ) for both Student’s  
t-distribution and GED are not statistically significant at  
5% level of significance. The parameter 1γ  is positive and 
significant for the AR (2)-EGARCH (1,1) suggesting the 
presence of the leverage effect under the GED and 
Student’s t distribution. This implies a confirmation of the 
fact that good news (positive shocks) increases volatility 
more than bad news (negative shocks) of the same 
magnitude. This finding agrees with earlier studies on the 
NSE by [14] and [20] who modeled daily and weekly 
returns using the GARCH-type models respectively. The 
GARCH term ( 1β ) and the ARCH term ( 1α ) are 
statistically significant for AR (2)-TGARCH (1,1) at 5% 
level of significance under the GED and Student’s  
t-distribution. The parameter 1γ  in the AR (2)-TGARCH 
(1,1) model is negative and not statistically significant at  
5% level of significance suggesting that there is no 
asymmetry under both error term distribution assumptions. 

Table 6. Parameter Estimation of the AR (2)-EGARCH (1, 1) and AR (2)-TGARCH (1,1) Models without trading volume 

Conditional distribution 
AR (2)- EGARCH (1, 1) AR (2)- TGARCH (1, 1) 

Student t GED Student t GED 
𝜇𝜇 0.0000 (0.4877) 0.0001 (0.4904) 0.0001 (0.7689) 0.0002 (0.3245) 

AR (1) 0.2748 (0.0000) 0.2725 (0.0000) 0.2756 (0.0000) 0.2722 (0.0000) 
AR (2) 0.1126 (0.0000) 0.1167 (0.0000) 0.1107 (0.0000) 0.1137 (0.0000) 
𝛼𝛼0 -2.1467 (0.0000) -2.2205 (0.0000) 0.0014 (0.0000) 0.0014 (0.0000) 
𝛼𝛼1 0.0052 (0.8327) 0.0123 (0.6360) 0.2175 (0.0000) 0.2395 (0.0000) 
𝛽𝛽1 0.7906 (0.4877) 0.7829 (0.0000) 0.6146 (0.0000) 0.5986 (0.0000) 
𝜸𝜸𝟏𝟏 0.41119 (0.0000) 0. 4393 (0.0000) -0.0235 (0.7470) -0.0481 (0.4945) 

shape 6.7475 (0.0000) 1.3319 (0.0000) 6.4704 (0.0000) 1.3024 (0.0000) 
𝑃𝑃� 0.7906 0.7829 0.7788 0.7782 

Q (9) 6.7328 (0.1558) 0.625 (0.4294) 5.6278 (0.3222) 5.7618 (0.2974) 
𝑄𝑄2  (9) 2.6165 (0.8202) 1.9246 (0.9138) 21.731 (0.0001) 17.605 (0.0008) 

ARCH (7) 0.9725 (0.9180) 1.0528 (0.9048) 0.8118 (0.9421) 0.8930 (0.9303) 
AIC -7.4419 -7.4188 -7.470 -7.4118 
BIC -7.4204 -7.3973 -7.4145 -7.3898 
LL 7848.028 7823.672 7841.799 7815.782 
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Table 7. Parameter Estimation of the AR (2)-EGARCH (1, 1) and AR (2)-TGARCH (1,1) Models with trading volume 

Conditional distribution 
AR (2)- EGARCH (1, 1) AR (2)- TGARCH (1, 1) 

Student t GED Student t GED 
𝜇𝜇 0.0000 (0.5526) 0.0001 (0.5423) 0.0000 (0.8111) 0.0002 (0.4397) 

AR (1) 0.2738 (0.0000) 0.2716 (0.0000) 0.2756 (0.0000) 0.2725 (0.0000) 
AR (2) 0.1137 (0.0000) 0.1179 (0.0000) 0.1119 (0.0000) 0.1146 (0.0000) 
𝛼𝛼0 -2.1099 (0.0000) -2.1800 (0.0000) 0.0013 (0.0000) 0.0014 (0.0000) 
𝛼𝛼1 0.0059 (0.8096) 0.0126 (0.6258) 0.2157 (0.0000) 0.2376 (0.0000) 
𝛽𝛽1 0.7942 (0.0000) 0.7868 (0.0000) 0.6190 (0.0000) 0.6034 (0.0000) 
𝜸𝜸𝟏𝟏 0.4088 (0.0000) 0. 4363 (0.0000) -0.0248 (0.7337) -0.0486 (0.4937) 
𝛿𝛿 4.2712 (0.4458) 5.3715 (0.3413) 0.0117 (0.4594) 0.0145 (0.3634) 

shape 6.7917 (0.0000) 1.3335 (0.0000) 6.5109 (0.0000) 1.3138 (0.0000) 
𝑃𝑃� 0.7942 0.7868 0.7819 0.7816 

Q (9) 6.5768 (0.1741) 6.3523 (0.4251) 5.4449 (0.3580) 5.5275 (0.3416) 
𝑄𝑄2  (9) 2.5037 (0.8202) 1.7924 (0.9283) 22.072 (0.0001) 17.814 (0.0007) 

ARCH (7) 0.9114 (0.9275) 0.9709 (0.9182) 0.7641 (0.9486) 0.8315 (0.9393) 
AIC -7.4412 -7.4182 -7.4353 -7.4107 
BIC -7.4171 -7.3941 -7.4111 -7.3866 
LL 7848.317 7843.123 7842.073 7816.197 

 

3.2.2. AR (2)-EGARCH (1, 1) and AR (2)-TGARCH 
(1,1) Models trading volume 

Table 7 gives the results of the parameter estimates for 
the AR (2)-EGARCH (1,1) and AR (2)-TGARCH (1,1) 
with trading volume under the GED and Student’s  
t- distribution. The mean parameter (μ) for all distribution 
assumptions are not statistically significant at 5% level of 
significance. The estimates of the AR (2) i.e. 1φ  and 2φ  
are significant hence approving the utilization of the AR 
(2) model for NSE stock returns. The GARCH term ( 1β ) 
is statistically significant for the AR (2)-EGARCH (1,1) 
and AR (2)-TGARCH (1,1) under all distributional 
assumptions whereas the ARCH term ( 1α ) for the  
AR (2)-EGARCH (1,1) at 5% level of significance is not 
statistically significant. In the AR (2)-EGARCH (1,1), the 
parameter 1γ  in the model is positive and statistically 
significant at 5% level of significance implying the 
presence of asymmetry under the GED and Student’s  
t-distribution. This suggests that positive shocks (good 
news) results in more conditional variance than negative 
shocks (bad news) of similar magnitude indicating that 
bad news has a lesser impact on the volatility than good 
news. Similarly, in the AR (2)-TGARCH (1,1) the 
parameter 1γ  is negative and not statistically significant at 
5% level of significance hence, collapsing the model to a 
GARCH (r, s) process where good and bad news have the 
same impact on stock market return series and thus 
implying that there is no asymmetry under the error term 
distributional assumptions. 

We observe that in both the AR (2)-EGARCH (1,1) and 
AR (2)-TGARCH (1,1) models respectively, the value of 
the parameter 1γ  slightly decreases with the inclusion of 
the trading volume in the model implying that the trading 
volume leads to less asymmetric volatility on the market. 
The parameter δ  is positive but not statistically 
significant hence, we deduce that the volatility in the NSE 
cannot be explained by the trading volume. Then, the 
proxy of information flow that is trading volume 
considered in this study may reflect a poor source of 

heteroskedasticity in the NSE stock returns and differs 
with findings of [15] as volatility persistence remains high. 
This is consistent with results of [21] and [22]. The 
positive coefficient of the parameter δ  indicates a 
positive relationship between stock return volatility and 
trading volume. This result is steady with the findings of 
[23] who examined the relationship between the daily 
stock return and the trading volume in the NSE using 
regression analysis. The degree of persistence in the 
conditional variance equations slightly increased with the 
inclusion of trading volume in all the models considered 
and thus, this is consistent regardless of the error term 
distribution assumption. The persistence implies that 
today’s volatility shocks have an impact on the future 
expected volatility. Also, the presence of the leverage 
effect in the NSE stock returns is confirmed by the AR 
(2)-EGARCH (1,1) process for the innovations with 
Student’s t distribution and GED.  

The model accuracy evaluation was done using the 
Ljung-Box test for the Q (9) and 2Q (9) for residuals and 
squared residuals respectively and the ARCH (7) for all 
the models under the all error term distribution 
assumptions. The null hypothesis of no significant 
correlations and no arch effects is accepted for all the 
cases implying that the fitted models were adequate. 
Finally, a more suitable model to capture the main features 
of the stock returns such as the volatility clustering, the 
volatility and the leverage effect based on the values of the 
AIC, BIC and LL is the AR (2)-EGARCH (1,1) model 
without trading volume. 

4. Conclusion 

In this study, we modeled the effects of trading volume 
on stock return volatility using the AR (2)-EGARCH (1,1) 
and AR (2)-TGARCH (1,1) models under the student’s t-
distribution and GED. We observe that including the 
trading volume in the AR (2)-EGARCH (1,1) and AR (2)-
TGARCH (1,1) model slightly decreases the value of the 
parameter 𝜸𝜸𝟏𝟏  implying that the trading volume leads to 
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less asymmetric volatility on the market. The parameter 𝜹𝜹 
is positive but not statistically significant hence, we 
conclude that the trading volume does not explain 
volatility in the NSE. The degree of persistence slightly 
increased with the inclusion of trading volume in the 
conditional variance equations of all the models 
considered and thus, this is consistent regardless of the 
error term distribution assumption. The persistence 
implies that volatility shocks today will influence the 
expectation of volatility many periods in the future. 
Therefore, the trading volume as a proxy of information 
flow can generally be considered to be a poor source of 
volatility in the stock returns. The result agrees with the 
findings as in [24] and [25]. The AR (2)-EGARCH (1,1) 
model without trading volume was suggested to be a more 
suitable model to capture the main features of the NSE 
return such as the volatility clustering, the stock returns 
volatility and the leverage effect. 
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