
International Transaction of Electrical and Computer Engineers System, 2014, Vol. 2, No. 3, 107-113
Available online at http://pubs.sciepub.com/iteces/2/3/5
© Science and Education Publishing
DOI:10.12691/iteces-2-3-5

Quarter-Pixel Accuracy Motion Estimation (ME) - A
Novel ME Technique in HEVC

Kalyan Kumar Barik1,*, Somnath Sengupta1, Manas Ranjan Jena2

1Department of E&EC, IIT, KHARAGPUR
2Department of ETC, Department of ELTCE, VSSUT, BURLA, ODISHA

*Corresponding author: kalyankumar333@gmail.com

Received May 30, 2014; Revised June 19, 2014; Accepted June 19, 2014

Abstract In this paper, We have focused on the development and implementation of novel low computational
cost motion estimation(ME) algorithm for video coding based on H.265/HEVC standard. Through this algorithm,
new ideas are explored for potentially improving the standard. High-Efficiency Video Coding (HEVC) is a new
video compression standard currently being standardized by the JCTVC (Joint Collaborative Team on Video Coding)
established by ISO/IEO MPEG and ITU-T. HEVC targets 50% coding gain over AVC/H.264 High Profile. In order
to achieve this goal, new tools are being adopted to HEVC. One of the main differences of HEVC from previous
video compression standards is the coding tree structure. In this structure, a frame is first divided into CTUs (coding
tree units). Then a CTU is further divided into CUs (coding units) in a quad-tree structure. Unless a CU is further
divided into four smaller CUs, it is predicted with one of several PU (prediction unit) types. Currently, CTU size can
be as large as 64x64 and SCU (smallest CU) can be as small as 8x8. At the encoder side, decisions can be made to
support only a subset of these PU types and CU sizes. This will present a trade-off between hardware complexity
and coding efficiency. Since motion estimation is one of the most critical blocks in video encoders, trade-offs in
motion estimation (ME) block are very important for the overall encoder design. However, it is important to
consider the memory cost (in terms of area and data bandwidth) of these tools in hardware. This paper presents
HEVC ME using Quarter –pixel accuracy prediction using 8-tap and 7- tap filter for luma interpolation using 2D
Logarithmic search and goal is to reduce number of motion vector (MC) to increase compression gain, PSNR and to
reduce memory area and data band data bit rate.

Keywords: ME, HEVC, AVC, MC, MV, coding block, coding unit, SAO

Cite This Article: Kalyan Kumar Barik, Somnath Sengupta, and Manas Ranjan Jena, “Quarter-Pixel
Accuracy Motion Estimation (ME) - A Novel ME Technique in HEVC.” International Transaction of Electrical
and Computer Engineers System, vol. 2, no. 3 (2014): 107-113. doi: 10.12691/iteces-2-3-5.

1. Introduction
Recent advances in digital technologies have paved the

way to the development of numerous real-time
applications deemed too complex in the past. Digital video
has been a regular presence in our lives for many years
now. Whether used for digital television, in personal
computers, hand held devices or other multimedia
applications, its use has grown tremendously in the last
years and it seems that this growth is not slowing down. A
vast array of those applications requires transmission and
storage of digital videos. Examples include but are not
limited to: digital TV, video streaming, multimedia
communications, remote monitoring, videophones and
video conferencing. Advances in digital video can be
classified as one of the most influential modern
technologies; this is due to the fast wide spread use of
digital video applications into everyday life. Consequently,
over the last three decades, high-quality digital video has
been the goal of companies, researchers and
standardisation bodies [1,9].

The main idea behind video compression is to remove
redundancies from the signals. This is carried out in the
spatial domain within individual frames and in the
temporal domain between neighbouring frames. Due to
the fact video frames are typically displayed at a frame
rate of 20 to 33 frames per second to the user, it is easy to
understand that neighbouring frames often show high
resemblance, hence removing the temporal redundancy
can accomplish high compression ratios in practice. This
is normally achieved in two steps: first, a Motion
Estimation (ME) technique is used to calculate the motion
distance, where blocks are defined areas within the frame.
Secondly, with the available motion information, the
residual between the current encoded frame and the
previous frame is compensated and what is called Motion
Compensation (MC) [9].

Motion estimation (ME) and motion compensation is
seen as one of the most important methods of exploiting
redundancy in motion pictures. Its importance is so high
that 50% to 70% of encoder complexity is dedicated to the
motion estimation process. However, as we move towards
higher resolution videos, computational complexity is
becoming a bigger concern [2]. This is why motion

108 International Transaction of Electrical and Computer Engineers System

estimation is seen as a major savings area in terms of
computational expense. An important technique that can
be used in ME is the Fractional Motion Estimation (FME).
The FME allows an even greater efficiency by applying an
interpolation process between integer position samples in
reference frames, allowing a search for better matches in
fractional positions. The FME is composed by two units:
the Interpolation Unit, that generates the fractional
position samples (sub-pixels), and the Search Unit, which
searches for better matches composed by sub-pixels. One
of the new FME is “Quarter-pixel accuracy motion
estimation”, which is used for the most efficient video
coding standards H.264/MPEG-4(AVC) and
H.265/HEVC [4,5].

2. Motion Estimation in HEVC
High-Efficiency Video Coding (HEVC) is a new video

compression standard currently being standardized by the
JCTVC (Joint Collaborative Team on Video Coding)
established by ISO/IEO MPEG and ITU-T. HEVC targets
50% coding gain over AVC/H.264 High Profile [2]. In
order to achieve this goal, new tools are being adopted to
HEVC. The main goals of H.265/HEVC standardization
effort have been to enhance compression performance and
provide a “network-friendly” video representation. H.265
utilizes variable block sizes and quarter-pixel motion
compensation with multiple reference frames to achieve
high coding efficiency. It has motion compensation units
in sizes of 8x8, 16x16, 32x32 and 64x64 where
H.264/AVC supports only 4x4 to 16x16 [6]. Such wide
block choices improve coding efficiency at the cost of
largely increased motion estimation time [3]. In
H.265/HEVC encoding, the most computationally critical
part is motion estimation [9].

H.265/HEVC also has quarter-pixel motion vector
accuracy as another of its important feature, which
requires interpolation of pictures by a factor of four, which
is done by a 7-tap bilinear filter and a 8-tap DCT (Discrete
Cosine Transform) based finite impulse response (FIR)
filter [2]. This increased accuracy of motion vectors and
the subsequent coding gain is significant. On the other
hand, the filtering process and the extra quarter-pixel
motion estimation search demands substantial amount of
computation. The computational complexity becomes
even worse with larger search ranges, bi-directional and/or
when multiple reference frames are used. Such high
computational complexity is often a bottle-neck for real-
time conversational applications.

2.1. Sub-Pixel Interpolation Based Motion
Estimation

Sub-pixel interpolation is one of the most
computationally intensive parts of High Efficiency Video
Coding (HEVC) video encoder and decoder. The
fractional sample interpolation for luma samples in HEVC
[3] uses separable application of an eight-tap filter for the
half-sample positions and a seven-tap filter for the quarter
sample positions. This is in contrast to the process used in
H.264/MPEG-4 AVC [5], which applies a two-stage
interpolation process by first generating the values of one
or two neighbouring samples at half-sample positions

using six-tap filtering, rounding the intermediate results,
and then averaging two values at integer or half- sample
positions. In H.264, 4x4 and 16x16 block sizes are used.
However, in HEVC, prediction unit (PU) sizes can be
from 4x4 to 64x64.Therefore, HEVC sub-pixel
interpolation is more complex than H.264 sub-pixel
interpolation [8].

HEVC instead uses a single consistent separable
interpolation process for generating all fractional positions
without intermediate rounding operations, which improves
precision and simplifies the architecture of the fractional
sample interpolation. The interpolation precision is also
improved in HEVC by using longer filters, i.e., seven-tap
or eight-tap filtering rather than the six tap filtering used
in H.264/MPEG-4 AVC [2,10,11]. Using only seven taps
rather than the eight used for half-sample positions was
sufficient for the quarter-sample interpolation positions
since the quarter-sample positions are relatively close to
integer sample positions, so the most distant sample in an
eight-tap interpolator would effectively be farther away
than in the half sample case (where the relative distances
of the integer-sample positions are symmetric).

Figure 1. Integer and fractional sample positions for luma interpolation

2.2. Interpolation Process of Luma Sample
In Figure 2.3 the positions labeled with upper-case

letters Ai,j, represent the available luma samples at integer
sample locations, whereas the other positions labelled with
lower-case letters represent samples at non integer sample
locations, which need to be generated by interpolation.
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0and
are derived from the samples by applying the eight-tap
filter for half-sample positions [5] and the seven-tap filter
for the quarter-sample positions as follows:

 []() ()0, j i, ji 3..3a A qfilter i 8B=−= >> −∑ (2.1)

 []() ()0, j i, ji 3..4b A hfilter i 8B=−= >> −∑ (2.2)

 []() ()0, j i, ji 2..4c A qfilter 1 i B 8=−= − >> −∑ (2.3)

 []() ()0,0 0, ji 3..3d A qfilter j 8B=−= >> −∑ (2.4)

 International Transaction of Electrical and Computer Engineers System 109

 []() ()0,0 0, ji 3..4h A hfilter j 8B=−= >> −∑ (2.5)

 []() ()0,0 0, ji 2..4n A qfilter 1 i 8B=−= − >> −∑ (2.6)

where the constant B ≥ 8 is the bit depth of the reference
samples (and typically B = 8 for most applications) and
the filter coefficient values for luma is given in Table 1
[4,5]. In these formulae >> denotes an arithmetic right
shift operation.

Table 1. Filter coefficients for luma fractional sample interpolation
in HEVC

Index i -3 -2 -1 0 1 2 3 4

hfilter[i] -1 4 -11 40 40 -11 4 1

qfilter[i] -1 4 -10 58 17 -5 1

The samples labelled e0,0, i0,0, p0,0, f0,0, j0,0, q0,0, g0,0, k0,0
and r0,0 can be derived by applying the corresponding
filters to samples located at vertically adjacent a0,j, b0,j and
c0,j positions as follows:

 []()0,0 0,vv 3..3e a qfilter v 6=−= >>∑ (2.7)

 []()0,0 0,vv 3..3f b qfilter v 6=−= >>∑ (2.8)

 []()0,0 0,vv 3..3g c qfilter v 6=−= >>∑ (2.9)

 []()0,0 0,vv 3..4i a hfilter v 6=−= >>∑ (2.10)

 []()0,0 0,vv 3..4j b qfilter v 6=−= >>∑ (2.11)

 []()0,0 0,vv 3..4k c qfilter v 6=−= >>∑ (2.12)

 []()0,0 0,vv 2..4p a qfilter 1 v 6=−= − >>∑ (2.13)

 []()0,0 0,vv 2..4q b qfilter 1 v 6=−= − >>∑ (2.14)

 []()0,0 0,vv 2..4r c qfilter 1 v 6=−= − >>∑ (2.15)

2.3. Interpolation Process of Chrominance
Sample

Figure 2 shows the positions of the integer pixel sample,
1/2 pixel sample, 1/4 pixel sample, 1/8 pixel sample of the
chrominance components of the reference image. It is
supposed that chrominance sample point Bi, j is located at
the integer sample point (xB i,j, yBi, j), then the predicted
value from chrominance point ‘ab0,0’ to ‘hh 0,0’ at non-
integer sample positions can be obtained by the 4-beat
filter with the coefficientient is given in Table 2 [5].

Table 2. Filter coefficients for chroma sample interpolation in
HEVC

Index -1 0 1 2

filter1[i] -2 58 10 -2

filter2[i] -4 54 16 -2

filter3[i] -6 46 28 -4

filter4[i] -4 36 36 -4

The values of 1/2 pixel points ae0,0, ea0,0; 1/4 pixel point
ac0,0, ag0,0, ca0,0, ga0,0; and 1/8 pixel point ab0,0, ad0,0, af0,0,
ah0,0, ba0,0, da0,0, fa0,0, ha 0,0 can be obtained by using filter
interpolation mentioned in the Table 2 on the nearest
integer pixel in the horizontal and vertical directions and
similarly the value of sub-pixel sample point bX0,0, cX0,0,
dX0,0, eX0,0, fX0,0, gX0,0 and hX0,0 (among which, X
presents any one in b, c, d, e, f, g and h) can be obtained
by the 4-beat filter interpolation in the vertical direction.

Figure 2. Positions of Integer Sample Point and Non-integer Sample Point in the Interpolation of Chrominance

3. Simulation Results & Analysis 3.1. Results of Quarter-pixel Motion
Estimation

110 International Transaction of Electrical and Computer Engineers System

To illustrate the implementation result of quarter-pixel
motion estimation in HEVC, experiment have been carried
out using MATLAB. Motion vectors are obtained by
using simple 2D Logarithmic search algorithm. The
characteristics of the motion activities of the blocks in the
current frame are predicted using this temporal
information. As discussed, we implemented the Quarter-
pixel interpolation algorithm with implementation of 2D
Logarithmic search to find the motion vector, predicted
frame with PSNR and residual with motion compensation
and the corresponding 3D mesh plot of residual.

The experiment has been carried out by taking different
CTU size i.e. 8X8, 16X16, 32X32, and 64X64 of different
video frames such are AVI, DIVX and YUV. For 8x8,

16X16, 32X32, and 64X64 CTU size the search block size
10x10, 20x20, 40x40 and 70x70 respectively. ME results
of only 8x8 CTU of AVI, 16x16 CTU of DIVX and 32x32
CTU of YUV video frames are shown in Figure 3, Figure
4, and Figure 5.

3.2. Results of ME by Taking 8x8 CTU of an
AVI Video Frame

In order to find the motion vector, predicted frame with
PSNR and with motion compensation and the
corresponding 3D mesh plot of residual of an AVI video
frames, here the CTU size is considered as 8x8 and the
searching block size around CTU is 10x10.

Figure 3. Results of ME by taking 8x8 CTU of AVI video Frames

 International Transaction of Electrical and Computer Engineers System 111

3.3. Results of ME by Taking 16x16 CTU of a
DivX Video Frame

In order to find the motion vector, predicted frame with
PSNR and with motion compensation and the
corresponding 3D mesh plot of residual of a DIVX video
frames, here the CTU size is considered as 16x16 and the
searching block size around CTU is 20X20.

Figure 4. Results of ME by taking 16x16 CTU of DIVX video Frames

3.4. Results of ME by Taking 32x32 CTU of a
YUV Video Frame

In order to find the motion vector, predicted frame with
PSNR and with motion compensation and the
corresponding 3D mesh plot of residual of a YUV video
frames, here the CTU size is considered as 32x32 and the
searching block size around CTU is 40X40.

112 International Transaction of Electrical and Computer Engineers System

Figure 5. Results of ME by taking 32x32 CTU of YUV video Frames

4. Result Analysis

The H.265 encoding method has been complicated by
the development of new coding tools. Among those tools,
the quarter pixel accuracy motion estimation and
compensation enhance compression gain and to reduce
memory area and data bit rate and it requires the
implementation of complex interpolation filters and
increases the ME complexity. Here the scheme was
divided into four steps; in the first step the sub-pixel ME
for the 8×8 and 16×16, 32x32 and 64x64 block has been
used.

The result shows that with increase of size of CTU
block, the PSNR of predicted frame gradually decreases

and also the number of motion vector reduces as given in
Table 3. The PSNR of original candidate frame was
27.2146dB, 27.7167dB and 28.7961 dB with respect to
reference frame for AVI, DIVX and YUV video frames
respectively.

Table 3. PSNR of different Video Frames with different size CTU
AVI DIVX YUV

CTU size PSNR(dB) CTU size PSNR(dB) CTU size PSNR(dB)

8X8 33.0892 8X8 34.2917 8X8 30.8412

16X16 31.6316 16X16 32.4501 16X16 29.9705

32X32 29.8129 32X32 30.1317 32X32 29.1448

64X64 28.364 64X64 29.2345 64X64 28.4357

 International Transaction of Electrical and Computer Engineers System 113

5. Comparison with H.264/AVC

Quarter-pixel interpolation using 7-tap and 8-tap filter
in HEVC gives more details in comparison to 6-tap filter
base quarter-pixel interpolation in H.264/AVC. The
computational cost of this process can be reduced utilizing
parallel processing technique in the hardware
implementation. By comparing the PSNR, obviously the
PSNR of predicted frame produced by the use of H.264
Quarter-pixel interpolation filter is much less in
comparison to Quarter-pixel Interpolation filter of HEVC.
The performance of the quarter-pel filters in H.264/AVC
is relatively poor, especially the filters for the quarter-pel
pixels e, g, p and r in the diagonal direction. In general
performance gain (more than 10%) of interpolation filters
in HEVC compared to H.264/AVC comes from the
quarter-pel interpolations.

6. Conclusion

Quarter-pixel interpolation based motion estimation is
an optimized process and normally used to increase the
compression gain in HEVC and which is here
implemented in MATLAB. According to the experimental
results, this implementation of quarter-pixel interpolation
based motion estimation working as like as HEVC
reference software HM 5.2 with the promotion of the next
generation video coding standard HEVC. To enable a
parallel processing, the macro blocks (CTU) are processed
on dedicated and special processor, so the all motion
vectors will be outputted for an individual frame at the
same time. This technique may increases the requirement
of hardware resources but definitely reduces the time and
computation complexity and also increases compression
gain of encoder.

References
[1] Jens-Rainer Ohm and G. J. Sullivan, “High Efficiency Video

Coding : The Next Frontier in Video Compression,” IEEE Signal
Processing Magazine, pp.153-158, January 2013.

[2] Wang Gang, C. Hexin, C. Maianshu, “A Study on Sub-pixel
Interpolation Filtering Algorithim and Hardware Structural Design
Aiming at HEVC,” Telkomnia, Vol.11, No. 12, pp. 7564-7570,
Dec. 2013.

[3] B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, T. Wiegand, “High
Efficiency Video Coding (HEVC) Text Specification Draft 7”,
JCTVC-I1003, May 2012.

[4] M.T. Pourazad, C. Doutre, M. Azimi, P. Nasiopoulos, "HEVC:
The New Gold Standard for Video Compression", IEEE
Consumer Electronics Magazine, July 2012.

[5] G. J. Sullivan, J.-R.Ohm, W.-J. Han, and T. Wiegand, “Overview
of the High Efficiency Video Coding (HEVC) Standard”, IEEE
Trans. Circuits and Systems for Video Technology, Vol. 22, No.
12, pp. 1649-1668, Dec. 2012.

[6] Kim,et al, “Block portioning structure in the HEVC standard,”
IEEE Trans. On circuits and system for video tecnkology, vol. 22,
pp. 1697-1706, Dec. 2012.

[7] Chih-Ming Fu, Elena Alshina, A. Alshin, Y.W. Huang, C.Y.
Chen,” Sample Adaptive Offset in the HEVC Standard,” IEEE
Trans. Circuits and Systems for Video Technology, Vol. 22, No.
12, pp. 1755, Dec. 2012.

[8] F. Bossen, Et. Al, HEVC complexity and implementation
analysis," IEEE Trans-actions on Circuits and Systems for Video
Technology, vol. 22, no. 12, pp. 1685-1696, Dec 2012.

[9] Gary J.Sullivian and Jens-Rainer Ohm. Recent developments in
standardization of High Efficiency Video Coding (HEVC) volume
7798.SPIE, 2010.

[10] T. Wiegand and G. J. Sullivan, “The H.264 video coding
standard”, IEEE Signal Processing Magazine, vol. 24, pp. 148-153,
March 2007.

[11] G. Sullivan, P. Topiwala and A. Luthra, “The H.264/AVC
Advanced Video Coding Standard: Overview and Introduction to
the Fidelity Range Extensions”, SPIE conference on Applications
of Digital Image Processing XXVII, vol. 5558, pp. 53-74, Aug.
2004.

