
International Journal of Partial Differential Equations and Applications, 2017, Vol. 5, No. 1, 1-9
Available online at http://pubs.sciepub.com/ijpdea/5/1/1
©Science and Education Publishing
DOI:10.12691/ijpdea-5-1-1

Artificial Neural Network for Solving Fuzzy Differential
Equations under Generalized H – Derivation

Mazin H. Suhhiem*

Department of Statistics, University of Sumer, Alrifaee, Iraq
*Corresponding author: mazin.suhhiem@yahoo.com

Abstract The aim of this work is to present a novel approach based on the artificial neural network for finding the
numerical solution of first order fuzzy differential equations under generalized H-derivation. The differentiability
concept used in this paper is the generalized differentiability since a fuzzy differential equation under this
differentiability can have two solutions. The fuzzy trial solution of fuzzy initial value problem is written as a sum of
two parts. The first part satisfies the fuzzy condition, it contains no adjustable parameters. The second part involves
feed-forward neural networks containing adjustable parameters. Under some conditions the proposed method
provides numerical solutions with high accuracy.

Keywords: fuzzy differential equation, artificial neural network, generalized H-derivation, error function, trial
solution

Cite This Article: Mazin H. Suhhiem, “Artificial Neural Network for Solving Fuzzy Differential Equations
under Generalized H – Derivation.” International Journal of Partial Differential Equations and Applications,
vol. 5, no. 1 (2017): 1-9. doi: 10.12691/ijpdea-5-1-1.

1. Introduction

Nowadays, fuzzy differential equations (FDEs) is a
popular topic studied by many researchers since it is
utilized widely for the purpose of modeling problems in
science and engineering. Most of the practical problems
require the solution of a FDE which satisfies fuzzy initial
or fuzzy boundary conditions, therefore, a fuzzy initial or
fuzzy boundary problem should be solved. However,
many fuzzy initial or fuzzy boundary value problems
could not be solved exactly, sometimes it is even
impossible to find their analytical solutions. Thus,
considering their approximate solutions is becoming more
important [1].

The theory of FDE was first formulated by Kaleva and
Seikkala. Kaleva had formulated FDE in terms of the
Hukuhara derivative (H-derivative). Buckley and feuring
have given a very general formulation of a first-order
fuzzy initial value problem. They first find the crisp
solution, make it fuzzy and then check if it satisfies the
fuzzy differential equation [2].

In recent years artificial neural network (ANN) for
estimation of the ordinary differential equation (ODE) and
partial differential equation (PDE) has been used. We
briefly review some articles in the literature concerning
the differential equations. In (1990) lee, Kang [3] used
parallel processor computers to solve a first order
differential equation with Hopfield neural network models.
In (1994) Meade, Fernandez [4,5] solved linear and
non-linear ODEs by using feed-forward neural networks
(FFNN) architecture and B-splines of degree one. In (1997)
Lagaris, Likas, et al. [6,7] used ANN for solving ODEs

and PDEs with the initial / boundary value problems. In
(1999) Liu, Jammes [8] developed some properties of the
trial solution to solve the ODEs by using ANN. In (2003)
Ali, Ucar, et al. [9] solved the vibration control problems
by using ANN. In (2004) Tawfiq [10] presented and
developed supervised and unsupervised algorithms for
solving ODE and PDE. In (2006) malek, shekari [11]
presented numerical method based on ANN and
optimization techniques which the higher-order ODE
answers approximates by finding a package form
analytical of specific functions. In (2008) Pattanaik,
Mishra [12] applied and developed some properties of
ANN for solution of PDE in RF Engineering. In (2010)
Baymani, Kerayechian, et al. [13] proposed ANN
approach for solving stokes problems. In (2011) Oraibi
[14] designed FFNN for solving ordinary initial value
problem. In (2012) Ali [15] designed fast FFNN to solve
two point boundary value problems. In (2013) Hussein [16]
designed fast FFNN to solve singular boundary value
problems. In (2014) Tawfiq, Al-Abrahemee [17] designed
ANN to solve singular perturbation problems, and other
researchers.

Numerical solution of FDE by using ANN is the subject
of a very modern because it only goes back to 2010. In
(2010) Effati and pakdaman [18] used ANN for solving
FDE, they used for the first time the ANN to approximate
fuzzy initial value problems. In (2012) Mosleh, Otadi [19]
used ANN for solving fuzzy Fredholm integro-differential
equations. In (2013) Ezadi, Parandin, et al. [20] used ANN
based on semi-Taylor series to solve first order FDE. In
(2016) Suhhiem [21] developed and used fuzzy ANN for
solving fuzzy and non-fuzzy differential equations.

In 2008, the concept of the generalized Hukuhara –
differentiability is studied by Chalco-Cano and Roman

2 International Journal of Partial Differential Equations and Applications

Flores [22,23] to solve FDE. In this work, for solving FDE
Under Generalized H – Derivation, we present modified
method which relies on the function approximation
capabilities of FFNN and results in the construction of a
solution written in a differentiable, closed analytic form.
This form employs FFNN as the basic approximation
element, whose parameters (weights and biases) are
adjusted to minimize an appropriate error function. To
train the ANN which we design, we employ optimization
techniques, which in turn require the computation of the
gradient of the error with respect to the network
parameters. In this proposed approach the model function
is expressed as the sum of the two terms: the first term
satisfies the fuzzy initial / fuzzy boundary conditions and
contains no adjustable parameters. The second term can be
found by using FFNN, which is trained so as to satisfy the
FDE. It is necessary to note that the solution of the FDE
by using ANN based on conversion the FDE into a system
of ODEs.

2. Basic Definitions

In this section, the basic notations which are used in
fuzzy calculus are introduced
Definition (1), [19]: The r-level (or r-cut) set of a fuzzy
set A� labeled by Ar, is the crisp set of all x in X (universal
set) such that : µA�(x) ≥ r ; i. e.

 { X : () , [0,1]}.r AA x x r rµ∈ ≥ ∈=


 (1)

Definition (2), [20]: Extension Principle
Let X be the Cartesian product of universes X 1, X 2, …,

X m and A�1, A�2, …, A�m be m - fuzzy subset in X 1, X2, …,
X m respectively, with Cartesian product A� = A� 1 × A� 2 ×
… × A� m and f is a function from X to a universe
Y, ()()1 2 mX ,X ,y f ...,X= . Then, the extension

principle allows to define a fuzzy subset B� = f (A�)
in Y by B� = {(y, µB� (y)) : ()1 2 mX ,X ,y f ...,X= ,
()1 2 mX ,X ,...,X X∈ }, where

()

() (){ }1 11 m(x , ,x) ()1 m
1

sup Min , , ,

()
0,

B

mA Af y

µ y

x x

if f y
otherwise

µ µ−… ∈

−

 …
= ≠ ∅






 

(2)

and f −1 is the inverse image of f.
For m = 1, the extension principle will be:

 () ()() (){ }y, : y f x , x X ,BB f A yµ= = = ∈




where

 ()
() 1

1x ()
sup , ()

0, .

Af y
B

µ x if f y
µ y

otherwise

−
−∈

 ≠ ∅= 






 (3)

Definition (3), [1]: Fuzzy Number

A fuzzy number u� is completely determined by an
ordered pair of functions �u (r), u (r)�, 0≤ r ≤ 1, which
satisfy the following requirements :

1) u (r) is a bounded left continuous and non decreasing
function on [0,1].

2) u (r) is a bounded left continuous and non increasing
function on [0,1].

3) u (r) ≤ u (r), 0≤ r ≤ 1.
The crisp number a is simply represented by :

 () () , 0 r 1.u r u r a= ≤ ≤=

The set of all the fuzzy numbers is denoted by E1.
Remark (1), [19]: For arbitrary u� = �u, u�, v� = �v, v� and
K ∈ R, the addition and multiplication by K can be
defined as :
1)

 ()() () ()u v r u r v r+ = + (4)

2)

 ()() () ()u v r u r v r+ = + (5)

3)

 ()() () ()() (), , 0Ku r Ku r Ku r Ku r if K= = ≥ (6)

4)

()() () ()() (), , 0.Ku r Ku r Ku r Ku r if K= = < (7)

For all r ∈ [0,1].
Remark (2), [2]:

The distance between two arbitrary fuzzy numbers u� =
�u, u� and v� = �v, v� is given as :

 () () () () ()

1
1 1 22 2

0 0
, () dr () r .dD u v u r v r u r v r

 
 = − + −
  
∫ ∫  (8)

Remark (𝟑𝟑), [2]: (E1,D) is a complete metric space.
Remark (𝟒𝟒), [1]: The operations of fuzzy numbers (in
parametric form) can be generalized from that of
crisp intervals. Let us have a look at the operations
of intervals. ∀a1, b1 , a2, b2 ∈ R , A = [a1, b1] and
B= [a2, b2].

Assuming A and B numbers expressed as interval, main
operations of intervals are:
1) Addition: A + B = [a1, b1] + [a2, b2]= [a1 + a2, b1 + b2].
2) Subtraction: A - B= [a1, b1]- [a2, b2] = �a1 - b2, b1 - a2 �.
3) Multiplication:

{ }
{ }

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

min , , , ,

ma ,
A.B

x , ,

a a a b b a b b

a a a b b a b b

 
 
 

=


4) Division: A/B =[min{a1 / a2, a1 / b2, b1 / a2, b1 / b2},
max{a1 / a2, a1 /b2, b1 / a2, b1 / b2}] excluding the case
a2 =0 or b2 =0.

5) Inverse: [] 1
1

1
1

1 1 1 1

1 1 1 1, min , ,max ,A a b
a b a b

−−     
    
   

=


=


excluding the case a1 =0 or b1 =0.

 International Journal of Partial Differential Equations and Applications 3

In the case of 0 ≤ a2 ≤ b2, multiplication operation can
be simplified as:

 { } { }1 2 1 2 1 2 1 2min , ,maxA B ,. a a a b b a b b=   

when previous sets A and B is defined in the positive real
number R+, the operations of multiplication, division and
inverse are written as :
𝟑𝟑 ́) Multiplication: A.B = [a1, b1]. [a2, b2] = [a1 a2, b1 b2]

𝟒𝟒 ́) Division : A /B = [a1, b1] / [a2, b2] = 1 1

2 2
,

a b
b a
 
 
 

.

𝟓𝟓 ́) Inverse: A-1 = [a1, b1]-1 =
1 1

1 1, .
b a
 
 
 

Definition (𝟒𝟒), [20]: Triangular Fuzzy Number
Among the various shapes of fuzzy numbers, triangular

fuzzy numbers is the most popular one. A triangular fuzzy
number is a fuzzy number represented with three points as
follows : A� = (a1, a2, a3), where a1 ≤ a2 ≤ a3.

This representation is interpreted as membership
functions :

 ()

1

1
1 2

2 1

3
2 3

3 2

3

0,

,
μ

,

0, .

A

if x a
x a

if a x a
a a

x
a x

if a x a
a a

if x a

<
 − ≤ ≤
 −=  − ≤ ≤
 −


>



 (9)

Now if you get crisp interval by r- cut operation,
interval [A]r shall be obtained as follows ∀ r ∈ [0,1] from:

31

2 1 3 2
r, r.

–
a AA a

a a a a
−−

= =
−

We get: A= �a2 – a1�r + a1, A= �a2 – a3�r + a3.
Thus:

 () ()r 2 1 1 2 3 3[] , ,A A A a a r a a a r a   = − + += −  (10)

which is the parametric form of triangular fuzzy number A�.
Definition (𝟓𝟓), [19]: Fuzzy Function

A classical function F: X → Y maps from a fuzzy
domain A�⊆ X into a fuzzy range B Y⊆ if and only if
∀ x ∈ X, μB��F (x)�

 ≥ μA�(x) .
Remark (𝟓𝟓), [18]:

(1) The function F: R → E1 is called a fuzzy function.
(2) We call every function defined in set A� ⊆ E1 to

B� ⊆ E1 a fuzzy function.
Definition (𝟔𝟔), [18]: The fuzzy function F: R → E1 is
said to be continuous if :

For an arbitrary t1 ∈ R and ϵ > 0 there exists a δ > 0
such that :

 1 1((), ()) ,t t D F t F tδ− < ⇒ < 

where D is the distance between two fuzzy numbers.
Definition (7), [18]: Let I be a real interval. The r-level
set of the fuzzy function y ∶ I → E1 can be denoted by :

 () () []r r r
1 2[y(t)] y t , y t t I, r 0,1 = ∈ ∈  (11)

The Seikkala derivative yˊ(t) of the fuzzy function
y(t) is defined by :

 () () []r r r
1 2[y (t)] (y) t , (y) t t I, r 0,1 . = ∈ ∈ ˊ ˊ ˊ (12)

Definition (8), [18]: let u, v ∈ E1 . If there exist w∈ E1

such that u= v + w, then w is called the H-difference
(Hukuhara-difference) of u, v and it is denoted by w=
u ⊝ v.

In this work the ⊝ sign stands always for H-difference,
and let us remark that u ⊝ v ≠ u + (-1) v.
Definition (9), [22,23]: H – Differentiability

Let F: (a,b) → E1 and t0 ∈ (a,b).We say that F is
H-differential (Hukuhara-differential) at t0, if there exists
an element Fˊ(t0) ∈ E1 such that for all h >
0 (sufficiently small), ∃ F (t0 +h)⊝F(t0), F(t0) ⊝F (t0 - h)
and the limits (in the metric D)

 (13)

then Fˊ(t0) is called fuzzy derivative (H-derivative) of F
at t0, where D is the distance between two fuzzy numbers.

It is necessary to note that the definition (9) is the
classical definition of the H-derivative (or differentiability
in the sense of Hukuhara).
Definition (10), [22,23]: Generalized H – Differentiability

Let F ∶ T → E1 and t0 ∈ T ⊂ R. F is differentiable at t0,
if

(1) there exist an element Fˊ(t0) ∈ E1, such that for
all h > 0 sufficiently small, there are
F(t0 + h) ⊝F(t0), F(t0)⊝F(t0 − h) and the limits (in the
metric D)

 (14)

(in this case, F is called (1)-differentiable)
or

(2) there exist an element Fˊ(t0) ∈ E1, such that for
all h > 0 sufficiently small, there are F(t0)⊝F(t0 +
h), F(t0 − h) ⊝ F(t0) and the limits (in the metric D)

 (15)

(in this case, F is called (2)-differentiable)
Where the relation (1) is the classical definition of the H-
derivative.
Theorem (1): Let F ∶ I → E1 be a function and denote
[F(t)]r = [fr(t), gr(t)], for each r ∈ [0,1]. Then

(i) If F is differentiable in the first form (1) of definition
(10), then fr and gr are differentiable functions and

 () ()r
r r[F t] f t ,g (t) =  
ˊ ˊˊ

4 International Journal of Partial Differential Equations and Applications

(ii) If F is differentiable in the second form (2) of
definition (10), then fr and gr are differentiable functions and

 () ()r
r r[F t] g (t), f t =  
ˊ ˊˊ

Proof: see [22].

3. Artificial Neural Networks [10]

Artificial neural networks (ANNs) are learning
machines that can learn any arbitrary functional mapping
between input and output. They are fast machines and can
be implemented in parallel, either in software or in
hardware. In fact, the computational complexity of ANN
is polynomial in the number of neurons used in the
network. Parallelism also brings with it the advantages of
robustness and fault tolerance. (i.e.) ANN is a simplified
mathematical model of the human brain. It can be
implemented by both electric elements and computer
software. It is a parallel distributed processor with large
numbers of connections It is an information processing
system that has certain performance characters in common
with biological neural networks. ANN has been developed
as generalizations of mathematical models of human
cognition or neural biology, based on the assumptions:

1) Information processing occurs at many simple
elements called neurons that is fundamental to the
operation of ANNs.

2) Signals are passed between neurons over connection
links.

3) Each connection link has an associated weight which,
in a typical neural net, multiplies the signal transmitted.

4) Each neuron applies an activation function (usually
nonlinear) to its net input (sum of weighted input signals)
to determine its output signal.

Note: The units in a network are organized into a given
topology by a set of connections, or weights, shown as
lines in a diagram.

3.1. Characterize of Artificial Neural
Network [10]

ANN is Characterized by:
1) Architecture: it is pattern of connections between the

neurons.
2) Training Learning Algorithm: it is method of

determining the weights on the connections.
3) Activation function: The output of a neuron depends

on the neuron's input and on its activation function.

3.2. Typical Architecture of ANN [10]
ANNs are often classified as single layer or multilayer.

In determining the number of layers, the input units are
not counted as a layer, because they perform no
computation. Equivalently, the number of layers in the net
can be defined to be the number of layers of weighted
interconnects links between the slabs of neurons. This
view is motivated by the fact that the weights in a net
contain extremely important information.

3.3. The Bias [21]
In sections (3.4) and (3.5), we describe the main

implementation of the back-propagation algorithm for
multi-layer feed forward neural network (FFNN). The
most implementations of this algorithm employ an
additional class of weights known as biases (Figure 1).
Biases are values that are added to the sums calculated at
each node(except input nodes) during the feed-forward
phase. The negative of a bias is sometimes called a
threshold. For simplicity, biases are commonly visualized
simply as values associated with each node in the
intermediate and output layers of a network, but in
practice are treated in exactly the same manner as other
weights, with all biases simply being weights associated
with vectors that lead from a single node whose location is
outside of the main network.

Figure 1. (2 × m × 1) Totally connected FFNN

 International Journal of Partial Differential Equations and Applications 5

3.4. Multilayer Feed Forward Architecture
[21]

In a layered neural network the neurons are organized
in the form of layers. We have at least two layers: an input
and an output layer. The layers between the input and the
output layer (if any) are called hidden layers, whose
computation nodes are correspondingly called hidden
neurons or hidden units. Extra hidden neurons raise the
network's ability to extract higher-order statistics from
(input) data. The source nodes in the input layer of the
network supply respective elements of the activation
pattern (input vector), which constitute the input signals
applied to the neurons (computation nodes) in the second
layer (i. e., the first hidden layer). The output signals of
the second layer are used as inputs to the third layer, and
so on for the rest of the network. A layer of nodes projects
onto the next layer of the neurons (computation nodes),
but not vice versa. In other words, this network is a feed
forward neural network (Figure 1). i.e., when any output
of the neurons is input of neurons of the same level or
preceding levels, the network is described as feed forward,
if there is at least one connected exit as entrance of
neurons of previous levels or of the same level, including
themselves, the network is denominated of feedback. The
feedback networks that have at least a closed loop of back
propagation are called recurrent. The neurons in each
layer of the network have as their inputs the output signals
of the preceding layer only. The set of output signals of
the neurons in the output (final) layer of the network
constitutes the overall response of the network to the
activation pattern supplied by the source nodes in the
input (first) layer. The ANN is said to be totally connected
in the sense that every node in each layer of the network is
connected to every other node in the adjacent forward
layer, otherwise the network is called partially connected.
In this work, totally connected multilayer FFNN is used.

3.5. Back propagation Training Algorithm [21]
Training a network by back propagation involves three

stages:
𝟏𝟏)The feed forward of the input training pattern.
𝟐𝟐) The back propagation of the associated error.
𝟑𝟑) The adjustment of the weights.
The term back propagation refers to the process by

which derivatives of the neural network error with respect
to the neural network weights and biases can be computed.
This process can be used with a number of different
optimization strategies. In another word the standard back
propagation is based on the gradient descent, back
propagation also known as the Generalized Delta Rule. It
is the most widely used supervised training algorithm for
ANN. Back propagation is a well-known training method
for the multilayer FFNN and it has many industrial
applications in function approximation, pattern association,
and pattern classification. Because of its importance, we
will discuss it in some detail

3.6. Activation Function [21]
The activation function (sometimes called a transfer

function) can be a linear or nonlinear function. There are

many different types of activation functions. Selection of
one type over another depends on the particular problem
that the neuron (or ANN) is to solve. The activation
function denoted by S: R → R defines the output of a
neuron, which is bounded monotonically increasing,
differentiable and satisfies: Limx⟶+∞ s(x) =1 and
Limx⟶−∞ s(x) =0.

The sigmoid function, is by far the most common form
of activation function used in construction of ANNs. An
example of the sigmoid function is the logistic function
defined the range from 0 to 1, an important feature of the
sigmoid function that it is differentiable.

It is sometimes desirable to have the activation function
range from -1 to 1 allowing an activation function of the
sigmoid type to assume negative values, for example, the
hyperbolic tangent function which is smooth function.

During this work, we take s(x) = tanh(x) as an
activation function, depending on the results of [21] which
evidence that an transfer function tanh(x) enables the
training algorithm to learn faster.
Theorem (2): The World Approximation Builder

The multi-Layer perceptron (MLP) network with one
hidden Layer with a sigmoid functions in the middle layer
and linear transformation functions in output layer are able
to approximate all functions in any degree of the integral
of the square. (see [3]).

4. Technique of The Proposed Method

4.1. First Order Fuzzy Differential Equation
A fuzzy differential equation of the first order is in the form:

 () []y (t) F x, y(x) , x a,b= ∈ˊ (16)

with the fuzzy initial condition y(a) = y0 , where y is a
fuzzy function of X and F (x, y (x)) is a fuzzy function of
the crisp variable X and the fuzzy variable y while y ́
is the fuzzy derivative (If we consider yˊ(x) in the
second form (2) of definition (10) According to our
proposed method) of y and y0 is a fuzzy number

It is clear that the fuzzy function F(x, y) is the mapping
F: R × E1 → E1 [18].

Now it is possible to replace (16) by the following
equivalent system:

() () ()

() () ()
0

0

y (x) F x, y x, y, y , y a y

y (x) F x, y x, y, y , y a y

H

G

= = =

= = =

ˊ

ˊ
 (17)

where

() (){ }
() (){ }

x, y, y min F x,u : u y, y

x, y, y max F x,u : u y, y .

H

G

 = ∈  

 = ∈  
 (18)

The parametric form of system (17) is given by:

() ()
() ()

0

0

y (x,r) x, y x, r , y(x, r) , y(,) y

y (x,r) x, y x, r , y(x, r) , y(,) y

H a r r

G a r r

 = = 
 = = 

ˊ

ˊ
 (19)

where X ∈ [a, b] and r ∈ [0, 1]. Now with a discretization

6 International Journal of Partial Differential Equations and Applications

of the interval [a, b], a set of points xi , i = 1,2,3, … g are
obtained. Thus for an arbitrary xi ∈ [a, b], the system (19)
can be rewritten as:

()
()

i i i i

i i i i

y (x ,) x , y x , r , y(x , r) 0

y (x ,) x , y x , r , y(x , r) 0

r H

r G

 − = 
 − = 

ˊ

ˊ
 (20)

with the initial conditions: y(a, r) = y0(r), y(a, r) = y0(r),
r ∈ [0, 1].

In this work, the function approximation capabilities of
feed-forward neural networks is used by expressing the
trial solution for the system (19) as the sum of two terms
(see eq 22). The first term satisfies the initial conditions
/boundary conditions and contains no adjustable
parameters. The second term involves a feed-forward
neural network to be trained so as to satisfy the fuzzy
differential equations. Since it is known that a multilayer
perceptron with one hidden layer can approximate any
function to arbitrary accuracy, the multilayer perceptron is
used as the type of the network architecture.

If y
t
(x, r, p) is a trial solution for the first equation in

system (19) and yt(x, r, p) is a trial solution for the second
equation in system (19) where p and p are adjustable
parameters.

Indeed, y
t
(x, r, p) and yt(x, r, p) are approximation of

y(x, r) and y(x, r) respectively, then a discretize version of
the system (19) can be converted to the following
optimization problem:

()

()

2
i t i

t i
t ig

p i 1 2
i t i

t i
t i

x , y (x , ,),
y (x , ,) H

y x , r,
min

x , y (x , ,),
y (x , ,)

y x , r,

r p
r p

p

r p
r p G

p

=

     −        
 

    + −         

∑
ˊ

ˊ

(21)

�Here p�⃗ = (p, p) contains all adjustable parameters�
subject to the initial conditions: y

t
(a, r, p) = y0(r) ,

yt(a, r, p) = y0(r).
Each trial solution ty (x, r, p) and yt(x, r, p) employs one
feed-forward neural network for which the corresponding
networks are denoted by N(x, r, p) and N(x, r, p) with
adjustable parameters p and p respectively. The trial
solutions ty and yt should satisfy the initial conditions,
and the networks must be trained to satisfy the differential
equations. Thus ty and yt can be chosen as follows:

() ()
() ()

t

t

y (, ,) y , N(, ,)

y (, ,) y , N(,)

,

x r p a r x a x r p

x r p a r x a x r p

= + −

= + −
 (22)

where N(x, r, p) and N(x, r, p) are single-output
feed-forward neural network with adjustable parameters
p and p respectively. Here X and r are the network inputs.
It is easy to see that in (22), ty and yt satisfy the initial

conditions.

Thus the corresponding error function that must be
minimized over all adjustable neural network parameters
will be:

()

()

2
t i

i t i

2
t i

i t i

y (x , ,)
H x , y (x , ,)

x
E

y (x , ,)
G x , y (x , ,)

x

i

r p
r p

r p
r p

 ∂  −  ∂ = ∑  
 ∂ + −  ∂  

 (23)

where xi´s are points in [a, b].
For solving FDE which described in this subsection we

use two ANNs, each network is of dimension 2 × m × 1:
two input units x and r, one hidden layer with m units and
one linear output unit.

For every entries x and r the input neurons makes no
changes in its input, so the inputs to the hidden neurons
are :

j1 j2 jj

j j1 j2 j

net xw w b

net

r

xw w b j 1,2,r m,

= + +

= =+ …+
 (24)

wj1 and wj2 are the weight parameters from the input
layer to the jth unit in the hidden layer in the first network,
wj1 and wj2 are the weight parameters from the input
layer to the jth unit in the hidden layer in the second
network, bj and bj are the jth weight biases for the jth
units in the hidden layers in the first and second network.

The outputs in the hidden neurons are:

() ()
() ()

j j1 j2 jj

jj j1 j2 j

z s net s xw w b

z

r

s net s xw w b .r

= + +

= + +

=

=
 (25)

The output neurons makes no changes in its inputs, so
the inputs to the output neurons are equal to outputs:

()
()

m m
j j j j1 j2 jj 1 j 1

m m
j j j j1 j2 jj 1 j 1

(, ,) v z v s xw rw b

(, ,) v z v s xw rw b

+

+

N x r p

N x r p

= =

= =

= = +

= = +

∑ ∑

∑ ∑
(26)

where vj and vj are the weight parameters from the jth
units in the hidden layers to the output layer in the first
and second network.

4.2. Reducing a FDE to a System of ODEs
[22,23]

The solution of the fuzzy differential equation (16) is
depend on the choice of the derivative (in the first form or
in the second form of definition (10).

Let us explain the proposed method, if we denote

 () ()r r r r r r
1 2 0 01 02[y(x)] y x , y x , [y] [y , y] = = 

and

 ()
() ()()
() ()()

r r r
1 1 2r
r r r
2 1 2

F x, y x , y x ,
[F(x, y x)]

F x, y x , y x

 
 =  
  

 (27)

we have the following results :

 International Journal of Partial Differential Equations and Applications 7

Case I. If we consider yˊ(x) in the first form (1) of
definition (10), then we have to solve the following
system of ODEs

()() () ()() ()

()() () ()() ()

r r r r r r
1 1 1 2 1 01

r r r r r r
2 2 1 2 2 02

d y x F x, y x , y x y y
dt
d y x F x, y x , y x y y
dt

.

a

a

= =

= =

Case II. If we consider yˊ(t) in the second form (2) of
definition (10) then we have to solve the following system
of ODEs

()() () ()() ()

()() () ()() ()

r r r r r r
1 2 1 2 1 01

r r r r r r
2 1 1 2 2 02

d y x F x, y x , y x y y
dt
d y x F x, y x , y x y y
dt

.

a

a

= =

= =

The existence and uniqueness of the two solutions (for
problem (16)) which described above are given by the
following theorem
Theorem (3): Let F ∶ I × E1 → E1 be a continuous
fuzzy function such that there exists k > 0 such that
D�F(x, w), F(x, z)� ≤ k D(w, z) for all t ∈ I and w, z ∈
E1 then the problem (16) has two solutions (one (1)-
differentiable and the other one (2)-differentiable) on
I, where I = [a, b].
Proof: see [23].

To illustrate how we can find the two solutions for a
fuzzy differential equation under generalized H-derivation,
we present the following example :
Consider the fuzzy initial value problem

 () ()y' y x , y 0 [0.96 0.04r,1.01 0.01r]= − = + −

(1) According to subsection (4.2), Case I., after reducing
the above problem, we have the following system of ODEs

()() () ()

()() () ()

r r r
1 1 1

r r r
2 2 2

d y x y x , y 0 0.96 0.04r
dt
d y x y x , y 0 1.01 0.01r
dt

= − = +

= − = −

Which gives the following fuzzy analytical solution

 () () ()x xy x,α [0.96 0.04α e , 1.01 0.01α e].− −= + −

(2) According to subsection (4.2), Case II., after reducing
the above problem, we have the following system of ODEs

()() () ()

()() () ()

r r r
1 2 1

r r r
2 1 2

d y x y x , y 0 0.96 0.04r
dt
d y x y x , y 0 1.01 0.01r
dt

= − = +

= − = −

Which gives the following fuzzy analytical solution

 ()
() ()
() ()

x x

x x

0.985 0.015r e 1 r 0.025e ,
y x,α .

0.985 0.015r e 1 r 0.025e

−

−

 + − −
 =
 + + − 

5. Numerical Example

To show the behavior and properties of the proposed
method, one problem will be solved in this section. We

have used a multilayer perceptron having one hidden layer
with ten hidden units and one output unit. The activation
function of each hidden unit is hyperbolic tangent
activation function. The analytical solutions ya (x, r) and
ya (x, r) have been known in advance. Therefore, we test
the accuracy of the obtained solutions by computing the
deviation (absolute error):

()
()

t

t

e(,) y x, r y (x, r) ,

e(,) y x, r y (x, r)

a

a

x r

x r

= −

= −

Where yt (x, r) and yt (x, r) are the trial solutions.
In order to obtain better results, more hidden units or

training points may be used. To minimize the error
function we have used BFGS quasi-Newton method (For
more details, see [21]).
Example (1): Consider the following fuzzy initial value
problem:

 wiy y x 1, [0,1]th x= − + + ∈ˊ

y(0) = [0.96 + 0.04r, 1.01 – 0.01r], where r ∈ [0, 1].
The analytical solution (According to subsection(4.2),

Case II.) for this problem are :

() () ()
() () ()

x x

x x

y x, r x 0.985 0.015r e 1 r 0.025e

y x, r x 0.985 0.015r e 1 r 0.025 .e

a

a

−

−

= + + − −

= + + + −

The trial solution (According to the proposed method in
this work) for this problem are :

() ()
() ()

t

t

y , (0.96 0.04r) xN , ,

y , (1.01 0.01r) xN , , .

x r x r p

x r x r p

= + +

= − +

The ANN trained using a grid of ten equidistant points in
[0, 1].

The error function that must be minimized for this
problem will be :

()
() ()

()
() ()

11 10
i j j1 i j1 j2 ji 1 j 1

10
i j i j1 j2 jj 1

2
i

10
i j j1 i j1 j2 jj 1

10
i j i j1 j2 jj 1

2
i

E ([x v w s' x w rw b

1 x v s x w rw b

–x 0.01 0.01]

x v w s' x w rw b

1 x v s x w rw b

–x 0.04 0

[

).04] .

r

r

= =

=

=

=

= + +

+ + + +

− +

+ +

+ + +

+ −

+

+

∑ ∑

∑

∑

∑

 (28)

Then we use (28) to update the weights and biases.
analytical and trial solutions for this problem can be found
in Table 1 and Table 2.

6. Conclusion
In this paper, we have presented numerical method

based on artificial neural network for solving first order
fuzzy initial value problem under generalized H-derivation.
The method which we have used allows us to translate the
FDE into system of ODEs and then solve this system. we

8 International Journal of Partial Differential Equations and Applications

demonstrate the ability of ANN to approximate the
solution of FDEs. Therefore, we can conclude that the
method which we proposed can handle effectively all
types of FDEs and provide accurate approximate solution
throughout the whole domain and not only at the training

set. As well, one can use the interpolation techniques to
find the approximate solution at points between the
training points or at points outside the training set. Further
research is in progress to apply and extend this method to
solve higher order FDEs.

Table 1. Analytical and trial solutions for example (1), x = 2

r ya (x, r) yt (x, r) e (x, r) ya (x, r) yt (x, r) e (x, r)

0 1.948578852 1.948579274 0.000000422 2.318031656 2.318032417 0.000000761

0.1 1.967254495 1.967254967 0.000000472 2.299762019 2.299762662 0.000000643

0.2 1.985930138 1.985930525 0.000000387 2.281492381 2.281492466 0.000000085

0.3 2.004605781 2.004605986 0.000000205 2.263222744 2.263223455 0.000000711

0.4 2.023281424 2.023282053 0.000000629 2.244953107 2.244953513 0.000000406

0.5 2.041957068 2.041957703 0.000000635 2.226683470 2.226683566 0.000000096

0.6 2.060632711 2.060632805 0.000000094 2.208413832 2.208413946 0.000000114

0.7 2.079308354 2.079308402 0.000000048 2.190144195 2.190144557 0.000000362

0.8 2.097983997 2.097984071 0.000000074 2.171874558 2.171875271 0.000000713

0.9 2.116659640 2.116660365 0.000000725 2.153604920 2.153604974 0.000000054

1 2.135335283 2.135335791 0.000000508 2.135335283 2.135336111 0.000000828

Table 2. Analytical and trial solutions for example (1), r = 0.5

x ya (x, r) yt (x, r) e (x, r) ya (x, r) yt (x, r) e (x, r)

0 0.98 0.98 0 1.005 1.005 0

0.1 0.984236500 0.984236574 0.000000074 1.011865774 1.011865864 0.000000090

0.2 0.997322738 0.997322850 0.000000112 1.027857807 1.027858634 0.000000827

0.3 1.018388849 1.018388968 0.000000119 1.052135319 1.052136129 0.000000810

0.4 1.046644837 1.046645251 0.000000414 1.083940454 1.083941124 0.000000670

0.5 1.081372664 1.081372866 0.000000202 1.122590696 1.122591654 0.000000958

0.6 1.121919064 1.121919133 0.000000069 1.167472034 1.167472118 0.000000084

0.7 1.167689005 1.167689342 0.000000337 1.218032823 1.218032891 0.000000068

0.8 1.218139735 1.218140638 0.000000903 1.273778258 1.273778484 0.000000226

0.9 1.272775348 1.272775429 0.000000081 1.334265426 1.334265671 0.000000245

1 1.331141823 1.331142019 0.000000196 1.399098868 1.399099381 0.000000513

References
[1] Mosleh M., Otadi M, "Simulation and Evaluation of Fuzzy

Differential Equations by Fuzzy Neural Network", Applied Soft
Computing, 12, 2817-2827, 2012.

[2] Buckley J. J., Feuring T., "Fuzzy Differential Equations", Fuzzy
Sets and Systems, 110, 69-77, 2000.

[3] Lee H., Kang I. S., "Neural Algorithms For Solving Differential
Equations", Journal of Computational Physics, 91, 110-131,1990 .

[4] Meade A. J., Fernandes A. A., "The Numerical Solution of Linear
Ordinary Differential Equations by Feed-Forward Neural
Networks", Mathematical and Computer Modelling, Vol. 19, No.
12 , 1-25, 1994.

[5] Meade A. J., Fernandes A. A., "Solution of Nonlinear Ordinary
Differential Equations by Feed-Forward Neural Networks",
Mathematical and Computer Modelling, Vol. 20, No. 9, 19-44,
1994.

[6] Lagaris I. E., Likas A., et al., "Artificial Neural Networks For
Solving Ordinary and Partial Differential Equations", Journal of
Computational Physics, 104, 1-26, 1997.

[7] Lagaris I. E., Likas A., et al., "Artificial Neural Networks For
Solving Ordinary and Partial Differential Equations", IEEE
Transaction on Neural Networks, Vol. 9, No. 5, 987-1000, 1998.

[8] Liu B., Jammes B., "Solving Ordinary Differential Equations by
Neural Networks", Warsaw, Poland, 1999.

[9] Alli H., Ucar A., et al., "The Solutions of Vibration Control
Problems Using Artificial Neural Networks", Journal of the
Franklin Institute, 340, 307-325, 2003.

[10] Tawfiq L. N. M., "On Design and Training of Artificial Neural
Network For Solving Differential Equations", Ph.D. Thesis,
College of Education Ibn AL-Haitham, University of Baghdad,
Iraq, 2004.

[11] Malek A., Shekari R., "Numerical Solution For High Order
Differential Equations by Using a Hybrid Neural Network
Optimization Method", Applied Mathematics and Computation,
183, 260-271, 2006.

[12] Pattanaik S., Mishra R. K., "Application of ANN For Solution of
PDE in RF Engineering", International Journal on Information
Sciences and Computing, Vol. 2, No. 1, 74-79, 2008.

[13] Baymani M., Kerayechian A., et al., "Artificial Neural Networks
Approach For Solving Stokes Problem", Applied Mathematics, 1,
288-292, 2010.

[14] Oraibi Y. A., "Design Feed-Forward Neural Networks For Solving
Ordinary Initial Value Problem", M.Sc. Thesis, College of
Education Ibn Al-Haitham, University of Baghdad, Iraq, 2011.

[15] Ali M. H., "Design Fast Feed-Forward Neural Networks to Solve
Two Point Boundary Value Problems", M.Sc. Thesis, College of
Education Ibn Al-Haitham, University of Baghdad, Iraq, 2012.

[16] Hussein A. A. T., "Design Fast Feed-Forward Neural Networks to
Solve Singular Boundary Value Problems", M.Sc. Thesis, College
of Education Ibn Al-Haitham, University of Baghdad, Iraq, 2013.

 International Journal of Partial Differential Equations and Applications 9

[17] Tawfiq L. N. M., Al-Abrahemee K. M. M., "Design Neural
Network to Solve Singular Perturbation Problems", Applied and
Computational Mathematics, Vol. 3, No. 3, 1-5, 2014.

[18] Effati S., Pakdaman M., "Artificial Neural Network Approach For
Solving Fuzzy Differential Equations", Information Sciences, 180,
1434-1457, 2010.

[19] Mosleh M., Otadi M., "Fuzzy Fredholm Integro-Differential
Equations with Artificial Neural Networks", Communications in
Numerical Analysis, Article ID cna-00128, 1-13, 2012.

[20] Ezadi S., Parandin N., et al., "Numerical Solution of Fuzzy
Differential Equations Based on Semi-Taylor by Using Neural

Network", Journal of Basic and Applied Scientific Research, 3(1s),
477-482, 2013.

[21] Suhhiem M. H., "Fuzzy Artificial Neural Network For Solving
Fuzzy and Non-Fuzzy Differential Equations", Ph.D. Thesis,
College of Sciences, AL-Mustansiriyah University, Iraq, 2016.

[22] Cano Y. C., Flores H. R., "On New Solutions of Fuzzy
Differential Equations", Chaos, Solitons and Fractals, 38, 112-119,
2008.

[23] Cano Y. C., Flores H. R., et al., "Fuzzy Differential Equations
with Generalized Derivative", Fuzzy Sets and Systems, 160, 1517-
1527, 2008.

