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1. Introduction 

Nowadays, fuzzy differential equations (FDEs) is a 
popular topic studied by many researchers since it is 
utilized widely for the purpose of modeling problems in 
science and engineering. Most of the practical problems 
require the solution of a FDE which satisfies fuzzy initial 
or fuzzy boundary conditions, therefore, a fuzzy initial or 
fuzzy boundary problem should be solved. However, 
many fuzzy initial or fuzzy boundary value problems 
could not be solved exactly, sometimes it is even 
impossible to find their analytical solutions. Thus, 
considering their approximate solutions is becoming more 
important [1].  

The theory of FDE was first formulated by Kaleva and 
Seikkala. Kaleva had formulated FDE in terms of the 
Hukuhara derivative (H-derivative). Buckley and feuring 
have given a very general formulation of a first-order 
fuzzy initial value problem. They first find the crisp 
solution, make it fuzzy and then check if it satisfies the 
fuzzy differential equation [2]. 

In recent years artificial neural network (ANN) for 
estimation of the ordinary differential equation (ODE) and 
partial differential equation (PDE) has been used. We 
briefly review some articles in the literature concerning 
the differential equations. In (1990) lee, Kang [3] used 
parallel processor computers to solve a first order 
differential equation with Hopfield neural network models. 
In (1994) Meade, Fernandez [4,5] solved linear and  
non-linear ODEs by using feed-forward neural networks 
(FFNN) architecture and B-splines of degree one. In (1997) 
Lagaris, Likas, et al. [6,7] used ANN for solving ODEs 

and PDEs with the initial / boundary value problems. In 
(1999) Liu, Jammes [8] developed some properties of the 
trial solution to solve the ODEs by using ANN. In (2003) 
Ali, Ucar, et al. [9] solved the vibration control problems 
by using ANN. In (2004) Tawfiq [10] presented and 
developed supervised and unsupervised algorithms for 
solving ODE and PDE. In (2006) malek, shekari [11] 
presented numerical method based on ANN and 
optimization techniques which the higher-order ODE 
answers approximates by finding a package form 
analytical of specific functions. In (2008) Pattanaik, 
Mishra [12] applied and developed some properties of 
ANN for solution of PDE in RF Engineering. In (2010) 
Baymani, Kerayechian, et al. [13] proposed ANN 
approach for solving stokes problems. In (2011) Oraibi 
[14] designed FFNN for solving ordinary initial value 
problem. In (2012) Ali [15] designed fast FFNN to solve 
two point boundary value problems. In (2013) Hussein [16] 
designed fast FFNN to solve singular boundary value 
problems. In (2014) Tawfiq, Al-Abrahemee [17] designed 
ANN to solve singular perturbation problems, and other 
researchers.  

Numerical solution of FDE by using ANN is the subject 
of a very modern because it only goes back to 2010. In 
(2010) Effati and pakdaman [18] used ANN for solving 
FDE, they used for the first time the ANN to approximate 
fuzzy initial value problems. In (2012) Mosleh, Otadi [19] 
used ANN for solving fuzzy Fredholm integro-differential 
equations. In (2013) Ezadi, Parandin, et al. [20] used ANN 
based on semi-Taylor series to solve first order FDE. In 
(2016) Suhhiem [21] developed and used fuzzy ANN for 
solving fuzzy and non-fuzzy differential equations.  

In 2008, the concept of the generalized Hukuhara – 
differentiability is studied by Chalco-Cano and Roman 
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Flores [22,23] to solve FDE. In this work, for solving FDE 
Under Generalized H – Derivation, we present modified 
method which relies on the function approximation 
capabilities of FFNN and results in the construction of a 
solution written in a differentiable, closed analytic form. 
This form employs FFNN as the basic approximation 
element, whose parameters (weights and biases) are 
adjusted to minimize an appropriate error function. To 
train the ANN which we design, we employ optimization 
techniques, which in turn require the computation of the 
gradient of the error with respect to the network 
parameters. In this proposed approach the model function 
is expressed as the sum of the two terms: the first term 
satisfies the fuzzy initial / fuzzy boundary conditions and 
contains no adjustable parameters. The second term can be 
found by using FFNN, which is trained so as to satisfy the 
FDE. It is necessary to note that the solution of the FDE 
by using ANN based on conversion the FDE into a system 
of ODEs. 

2. Basic Definitions  

In this section, the basic notations which are used in 
fuzzy calculus are introduced 
Definition (1), [19]: The r-level (or r-cut) set of a fuzzy 
set A� labeled by Ar, is the crisp set of all x in X (universal 
set) such that : µA�(x) ≥ r ; i. e. 

 { X : ( ) , [0,1]}.r AA x x r rµ∈ ≥ ∈=


 (1) 

Definition (2), [20]: Extension Principle  
Let X be the Cartesian product of universes X 1, X 2, …, 

X m and A�1, A�2, …, A�m be m - fuzzy subset in X 1, X2, …, 
X m respectively, with Cartesian product A�  = A� 1 × A� 2 ×  
… ×  A� m and f  is a function from X to a universe  
Y, ( )( )1 2 mX ,X ,y f ...,X= . Then, the extension  

principle allows to define a fuzzy subset B�  = f (A�)  
in Y by B�  = {( y, µB�  ( y )) : ( )1 2 mX ,X ,y f ...,X= , 
( )1 2 mX ,X ,...,X X∈ }, where 
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and f −1 is the inverse image of f.  
For m = 1, the extension principle will be:  
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Definition (3), [1]: Fuzzy Number 

A fuzzy number u�  is completely determined by an 
ordered pair of functions �u (r), u (r)�, 0≤ r ≤ 1, which 
satisfy the following requirements :  

1) u (r) is a bounded left continuous and non decreasing 
function on [0,1].  

2) u (r) is a bounded left continuous and non increasing 
function on [0,1].  

3) u (r) ≤ u (r), 0≤ r ≤ 1. 
The crisp number a is simply represented by :  

 ( ) ( ) , 0 r 1.u r u r a= ≤ ≤=  

The set of all the fuzzy numbers is denoted by E1. 
Remark (1), [19]: For arbitrary u� = �u, u�, v� = �v, v� and 
K ∈  R, the addition and multiplication by K can be 
defined as :  
1)  

 ( )( ) ( ) ( )u v r u r v r+ = +  (4) 

2)  

 ( )( ) ( ) ( )u v r u r v r+ = +  (5) 

3)  

 ( )( ) ( ) ( )( ) ( ), , 0Ku r Ku r Ku r Ku r if K= = ≥  (6) 

4)  

 
( )( ) ( ) ( )( ) ( ), , 0.Ku r Ku r Ku r Ku r if K= = <  (7) 

For all r ∈ [0,1].  
Remark (2), [2]: 

The distance between two arbitrary fuzzy numbers u� = 
�u, u� and v� = �v, v� is given as :  

 ( ) ( ) ( ) ( ) ( )

1
1 1 22 2

0 0
, ( ) dr ( ) r .dD u v u r v r u r v r

 
 = − + −
  
∫ ∫  (8) 

Remark (𝟑𝟑), [2]: (E1,D) is a complete metric space. 
Remark (𝟒𝟒), [1]: The operations of fuzzy numbers (in 
parametric form) can be generalized from that of  
crisp intervals. Let us have a look at the operations  
of intervals.  ∀a1, b1 , a2, b2 ∈ R , A = [a1, b1]  and  
B= [a2, b2 ]. 

Assuming A and B numbers expressed as interval, main 
operations of intervals are:  
1) Addition: A + B = [a1, b1] + [a2, b2 ]= [a1 + a2, b1 + b2 ]. 
2) Subtraction: A - B= [a1, b1]- [a2, b2 ] = �a1 - b2, b1 - a2 �. 
3) Multiplication:  
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4) Division: A/B =[ min{a1 / a2, a1 / b2, b1 / a2, b1 / b2}, 
max{a1 / a2, a1 /b2, b1 / a2, b1 / b2}] excluding the case  
a2 =0 or b2 =0.  
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excluding the case a1 =0 or b1 =0. 
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In the case of 0 ≤ a2 ≤ b2, multiplication operation can 
be simplified as: 

 { } { }1 2 1 2 1 2 1 2min , ,maxA B ,. a a a b b a b b=     

when previous sets A and B is defined in the positive real 
number R+, the operations of multiplication, division and 
inverse are written as : 
𝟑𝟑 ́) Multiplication: A.B = [a1, b1]. [a2, b2 ] = [a1 a2, b1 b2] 

𝟒𝟒 ́) Division : A /B = [a1, b1] / [a2, b2 ] = 1 1

2 2
,

a b
b a
 
 
 

.  

𝟓𝟓 ́) Inverse: A-1 = [a1, b1]-1 = 
1 1

1 1, .
b a
 
 
 

 

Definition (𝟒𝟒), [20]: Triangular Fuzzy Number  
Among the various shapes of fuzzy numbers, triangular 

fuzzy numbers is the most popular one. A triangular fuzzy 
number is a fuzzy number represented with three points as 
follows : A� = (a1, a2, a3), where a1 ≤ a2 ≤ a3. 

This representation is interpreted as membership 
functions : 
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Now if you get crisp interval by r- cut operation, 
interval [A]r  shall be obtained as follows ∀ r ∈  [0,1] from: 

31

2 1 3 2
r, r.

–
a AA a
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We get: A= �a2 – a1�r + a1, A= �a2 – a3�r + a3.  
Thus:  

 ( ) ( )r 2 1 1 2 3 3[ ] , ,A A A a a r a a a r a   = − + += −   (10) 

which is the parametric form of triangular fuzzy number A�.  
Definition (𝟓𝟓), [19]: Fuzzy Function  

A classical function F: X → Y maps from a fuzzy 
domain A�⊆ X into a fuzzy range B Y⊆  if and only if 
∀ x ∈ X, μB��F (x)� 

 ≥  μA�(x) .  
Remark (𝟓𝟓), [18]: 

(1) The function F: R →  E1 is called a fuzzy function.  
(2) We call every function defined in set A� ⊆  E1  to 

B� ⊆ E1 a fuzzy function.  
Definition (𝟔𝟔), [18]: The fuzzy function F: R →  E1  is 
said to be continuous if :  

For an arbitrary t1 ∈ R and ϵ > 0 there exists a δ > 0 
such that : 

 1 1( ( ), ( )) ,t t D F t F tδ− < ⇒ <   

where D  is the distance between two fuzzy numbers. 
Definition (7), [18]: Let I be a real interval. The r-level 
set of the fuzzy function y ∶ I → E1 can be denoted by : 

 ( ) ( ) [ ]r r r
1 2[y(t)] y t , y t t I, r 0,1 = ∈ ∈   (11) 

The Seikkala derivative yˊ(t) of the fuzzy function 
y(t) is defined by : 

 ( ) ( ) [ ]r r r
1 2[y (t)] (y ) t , (y ) t t I, r 0,1 . = ∈ ∈ ˊ ˊ ˊ  (12) 

Definition (8), [18]: let u, v ∈ E1 . If there exist w∈ E1  

such that u= v + w, then w is called the H-difference 
(Hukuhara-difference) of u, v and it is denoted by w= 
u ⊝ v. 

In this work the ⊝ sign stands always for H-difference, 
and let us remark that u ⊝ v ≠ u + (-1) v.  
Definition (9), [22,23]: H – Differentiability 

Let F: (a,b) →  E1  and t0 ∈  (a,b).We say that F is  
H-differential (Hukuhara-differential) at t0, if there exists 
an element Fˊ(t0) ∈ E1  such that for all h >
0 (sufficiently small), ∃ F (t0 +h)⊝F(t0), F(t0) ⊝F (t0 - h) 
and the limits (in the metric D) 

  (13) 

then Fˊ(t0) is called fuzzy derivative (H-derivative) of F 
at t0, where D is the distance between two fuzzy numbers.  

It is necessary to note that the definition (9) is the 
classical definition of the H-derivative (or differentiability 
in the sense of Hukuhara ). 
Definition (10), [22,23]: Generalized H – Differentiability 

Let F ∶ T → E1 and t0 ∈ T ⊂ R. F is differentiable at t0, 
if 

(1) there exist an element Fˊ(t0)  ∈ E1, such that for 
all h > 0  sufficiently small, there are 
F(t0 + h) ⊝F(t0), F(t0)⊝F(t0 − h) and the limits (in the 
metric D ) 

  (14) 

(in this case, F is called (1)-differentiable) 
or 

(2) there exist an element Fˊ(t0)  ∈ E1, such that for 
all h > 0  sufficiently small, there are F(t0)⊝F(t0 +
h), F(t0 − h) ⊝ F(t0) and the limits (in the metric D ) 

  (15) 

(in this case, F is called (2)-differentiable) 
Where the relation (1) is the classical definition of the H-
derivative.  
Theorem (1): Let F ∶ I → E1  be a function and denote 
[F(t)]r = [ fr(t), gr(t)], for each r ∈ [0,1]. Then 

(i) If F is differentiable in the first form (1) of definition 
(10), then fr  and gr  are differentiable functions and  

 ( ) ( )r
r r[F t ] f t ,g (t) =  
ˊ ˊˊ  
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(ii) If F is differentiable in the second form (2) of 
definition (10), then fr  and gr  are differentiable functions and  

 ( ) ( )r
r r[F t ] g (t), f t =  
ˊ ˊˊ  

Proof: see [22]. 

3. Artificial Neural Networks [10]  

Artificial neural networks (ANNs) are learning 
machines that can learn any arbitrary functional mapping 
between input and output. They are fast machines and can 
be implemented in parallel, either in software or in 
hardware. In fact, the computational complexity of ANN 
is polynomial in the number of neurons used in the 
network. Parallelism also brings with it the advantages of 
robustness and fault tolerance. (i.e.) ANN is a simplified 
mathematical model of the human brain. It can be 
implemented by both electric elements and computer 
software. It is a parallel distributed processor with large 
numbers of connections It is an information processing 
system that has certain performance characters in common 
with biological neural networks. ANN has been developed 
as generalizations of mathematical models of human 
cognition or neural biology, based on the assumptions: 

1) Information processing occurs at many simple 
elements called neurons that is fundamental to the 
operation of ANNs.  

2) Signals are passed between neurons over connection 
links.  

3) Each connection link has an associated weight which, 
in a typical neural net, multiplies the signal transmitted.  

4) Each neuron applies an activation function (usually 
nonlinear) to its net input (sum of weighted input signals) 
to determine its output signal.  

Note: The units in a network are organized into a given 
topology by a set of connections, or weights, shown as 
lines in a diagram.  

3.1. Characterize of Artificial Neural 
Network [10] 

ANN is Characterized by:  
1) Architecture: it is pattern of connections between the 

neurons. 
2) Training Learning Algorithm: it is method of 

determining the weights on the connections.  
3) Activation function: The output of a neuron depends 

on the neuron's input and on its activation function. 

3.2. Typical Architecture of ANN [10] 
ANNs are often classified as single layer or multilayer. 

In determining the number of layers, the input units are 
not counted as a layer, because they perform no 
computation. Equivalently, the number of layers in the net 
can be defined to be the number of layers of weighted 
interconnects links between the slabs of neurons. This 
view is motivated by the fact that the weights in a net 
contain extremely important information. 

3.3. The Bias [21] 
In sections (3.4) and (3.5), we describe the main 

implementation of the back-propagation algorithm for 
multi-layer feed forward neural network (FFNN). The 
most implementations of this algorithm employ an 
additional class of weights known as biases (Figure 1). 
Biases are values that are added to the sums calculated at 
each node(except input nodes) during the feed-forward 
phase. The negative of a bias is sometimes called a 
threshold. For simplicity, biases are commonly visualized 
simply as values associated with each node in the 
intermediate and output layers of a network, but in 
practice are treated in exactly the same manner as other 
weights, with all biases simply being weights associated 
with vectors that lead from a single node whose location is 
outside of the main network. 

 

Figure 1. (2 × m × 1) Totally connected FFNN 
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3.4. Multilayer Feed Forward Architecture 
[21] 

In a layered neural network the neurons are organized 
in the form of layers. We have at least two layers: an input 
and an output layer. The layers between the input and the 
output layer (if any) are called hidden layers, whose 
computation nodes are correspondingly called hidden 
neurons or hidden units. Extra hidden neurons raise the 
network's ability to extract higher-order statistics from 
(input) data. The source nodes in the input layer of the 
network supply respective elements of the activation 
pattern (input vector), which constitute the input signals 
applied to the neurons (computation nodes) in the second 
layer (i. e., the first hidden layer). The output signals of 
the second layer are used as inputs to the third layer, and 
so on for the rest of the network. A layer of nodes projects 
onto the next layer of the neurons (computation nodes), 
but not vice versa. In other words, this network is a feed 
forward neural network (Figure 1). i.e., when any output 
of the neurons is input of neurons of the same level or 
preceding levels, the network is described as feed forward, 
if there is at least one connected exit as entrance of 
neurons of previous levels or of the same level, including 
themselves, the network is denominated of feedback. The 
feedback networks that have at least a closed loop of back 
propagation are called recurrent. The neurons in each 
layer of the network have as their inputs the output signals 
of the preceding layer only. The set of output signals of 
the neurons in the output (final) layer of the network 
constitutes the overall response of the network to the 
activation pattern supplied by the source nodes in the 
input (first) layer. The ANN is said to be totally connected 
in the sense that every node in each layer of the network is 
connected to every other node in the adjacent forward 
layer, otherwise the network is called partially connected. 
In this work, totally connected multilayer FFNN is used. 

3.5. Back propagation Training Algorithm [21]  
Training a network by back propagation involves three 

stages:  
𝟏𝟏)The feed forward of the input training pattern.  
𝟐𝟐) The back propagation of the associated error. 
𝟑𝟑) The adjustment of the weights.  
The term back propagation refers to the process by 

which derivatives of the neural network error with respect 
to the neural network weights and biases can be computed. 
This process can be used with a number of different 
optimization strategies. In another word the standard back 
propagation is based on the gradient descent, back 
propagation also known as the Generalized Delta Rule. It 
is the most widely used supervised training algorithm for 
ANN. Back propagation is a well-known training method 
for the multilayer FFNN and it has many industrial 
applications in function approximation, pattern association, 
and pattern classification. Because of its importance, we 
will discuss it in some detail  

3.6. Activation Function [21]  
The activation function (sometimes called a transfer 

function) can be a linear or nonlinear function. There are 

many different types of activation functions. Selection of 
one type over another depends on the particular problem 
that the neuron (or ANN)  is to solve. The activation 
function denoted by S: R → R  defines the output of a 
neuron, which is bounded monotonically increasing, 
differentiable and satisfies: Limx⟶+∞  s(x)  =1 and 
Limx⟶−∞  s(x) =0.  

The sigmoid function, is by far the most common form 
of activation function used in construction of ANNs. An 
example of the sigmoid function is the logistic function 
defined the range from 0 to 1, an important feature of the 
sigmoid function that it is differentiable.  

It is sometimes desirable to have the activation function 
range from -1 to 1 allowing an activation function of the 
sigmoid type to assume negative values, for example, the 
hyperbolic tangent function which is smooth function.  

During this work, we take s(x)  = tanh(x)  as an 
activation function, depending on the results of [21] which 
evidence that an transfer function  tanh(x)  enables the 
training algorithm to learn faster.  
Theorem (2): The World Approximation Builder  

The multi-Layer perceptron (MLP) network with one 
hidden Layer with a sigmoid functions in the middle layer 
and linear transformation functions in output layer are able 
to approximate all functions in any degree of the integral 
of the square. (see [3]).  

4. Technique of The Proposed Method  

4.1. First Order Fuzzy Differential Equation  
A fuzzy differential equation of the first order is in the form: 

 ( ) [ ]y (t) F x, y(x) , x a,b= ∈ˊ  (16) 

with the fuzzy initial condition y(a) = y0 , where y  is a 
fuzzy function of X  and F (x, y (x)) is a fuzzy function of 
the crisp variable X  and the fuzzy variable y  while y  ́
is the fuzzy derivative (If we consider yˊ(x) in the 
second form (2) of definition (10) According to our 
proposed method ) of y  and y0 is a fuzzy number  

It is clear that the fuzzy function F(x, y) is the mapping 
F: R × E1 → E1 [18]. 

Now it is possible to replace (16) by the following 
equivalent system: 

 
( ) ( ) ( )

( ) ( ) ( )
0

0

y (x) F x, y x, y, y , y a y

y (x) F x, y x, y, y , y a y

H

G

= = =

= = =

ˊ

ˊ
  (17) 

where 

 
( ) ( ){ }
( ) ( ){ }

x, y, y min F x,u : u y, y

x, y, y max F x,u : u y, y .

H

G

 = ∈  

 = ∈  
 (18) 

The parametric form of system (17) is given by:  

 
( ) ( )
( ) ( )

0

0

y (x,r) x, y x, r , y(x, r) , y( , ) y

y (x,r) x, y x, r , y(x, r) , y( , ) y

H a r r

G a r r

 = = 
 = = 

ˊ

ˊ
 (19) 

where X ∈ [a, b] and r ∈ [0, 1]. Now with a discretization 
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of the interval [a, b], a set of points xi , i = 1,2,3, … g are 
obtained. Thus for an arbitrary xi ∈ [a, b], the system (19) 
can be rewritten as: 

 
( )
( )

i i i i

i i i i

y (x , ) x , y x , r , y(x , r) 0

y (x , ) x , y x , r , y(x , r) 0

r H

r G

 − = 
 − = 

ˊ

ˊ
 (20) 

with the initial conditions: y(a, r) = y0(r), y(a, r) = y0(r), 
r ∈ [0, 1]. 

In this work, the function approximation capabilities of 
feed-forward neural networks is used by expressing the 
trial solution for the system (19) as the sum of two terms 
(see eq 22). The first term satisfies the initial conditions 
/boundary conditions and contains no adjustable 
parameters. The second term involves a feed-forward 
neural network to be trained so as to satisfy the fuzzy 
differential equations. Since it is known that a multilayer 
perceptron with one hidden layer can approximate any 
function to arbitrary accuracy, the multilayer perceptron is 
used as the type of the network architecture. 

If y
t
(x, r, p) is a trial solution for the first equation in 

system (19) and yt(x, r, p) is a trial solution for the second 
equation in system (19) where p  and p  are adjustable 
parameters.  

Indeed, y
t
(x, r, p)  and yt(x, r, p)  are approximation of 

y(x, r) and y(x, r) respectively, then a discretize version of 
the system (19) can be converted to the following 
optimization problem: 

( )

( )

2
i t i

t i
t ig

p i 1 2
i t i

t i
t i

x , y (x , , ),
y (x , , ) H

y x , r,
min

x , y (x , , ),
y (x , , )

y x , r,

r p
r p

p

r p
r p G

p

=

     −        
 

    + −         

∑
ˊ

ˊ

(21) 

�Here p�⃗ = (p, p) contains all adjustable parameters�  
subject to the initial conditions: y

t
(a, r, p)  = y0(r) , 

yt(a, r, p) = y0(r). 
Each trial solution ty (x, r, p) and yt(x, r, p) employs one 
feed-forward neural network for which the corresponding 
networks are denoted by N(x, r, p)  and N(x, r, p)  with 
adjustable parameters p and p  respectively. The trial 
solutions ty  and yt  should satisfy the initial conditions, 
and the networks must be trained to satisfy the differential 
equations. Thus ty  and yt  can be chosen as follows:  

 
( ) ( )
( ) ( )

t

t

y ( , , ) y , N( , , )

y ( , , ) y , N( , )

 

,

x r p a r x a x r p

x r p a r x a x r p

= + −

= + −
 (22) 

where N(x, r, p)  and N(x, r, p)  are single-output  
feed-forward neural network with adjustable parameters 
p and p respectively. Here X and r are the network inputs. 
It is easy to see that in (22), ty  and yt  satisfy the initial 

conditions.  

Thus the corresponding error function that must be 
minimized over all adjustable neural network parameters 
will be: 

 
( )

( )

2
t i

i t i

2
t i

i t i

y (x , , )
H x , y (x , , )

x
E

y (x , , )
G x , y (x , , )

x

i

r p
r p

r p
r p

 ∂  −  ∂ = ∑  
 ∂ + −  ∂  

 (23) 

where xi´s are points in [a, b].  
For solving FDE which described in this subsection we 

use two ANNs, each network is of dimension 2 × m × 1: 
two input units x and r, one hidden layer with m units and 
one linear output unit.  

For every entries x and r the input neurons makes no 
changes in its input, so the inputs to the hidden neurons 
are : 

 
j1 j2 jj

j j1 j2 j

net xw w b

net

r

xw w b j 1,2,r m,

= + +

= =+ …+
 (24) 

wj1  and wj2  are the weight parameters from the input 
layer to the jth unit in the hidden layer in the first network, 
wj1  and wj2  are the weight parameters from the input 
layer to the jth  unit in the hidden layer in the second 
network, bj  and bj  are the jth  weight biases for the jth 
units in the hidden layers in the first and second network.  

The outputs in the hidden neurons are: 

 
( ) ( )
( ) ( )

j j1 j2 jj

jj j1 j2 j

z s net s xw w b

z

r

s net s xw w b .r

= + +

= + +

=

=
 (25) 

The output neurons makes no changes in its inputs, so 
the inputs to the output neurons are equal to outputs: 

 
( )
( )

m m
j j j j1 j2 jj 1 j 1

m m
j j j j1 j2 jj 1 j 1

( , , ) v z v s xw rw b

( , , ) v z v s xw rw b

+

+

N x r p

N x r p

= =

= =

= = +

= = +

∑ ∑

∑ ∑
(26) 

where vj  and vj  are the weight parameters from the jth 
units in the hidden layers to the output layer in the first 
and second network.  

4.2. Reducing a FDE to a System of ODEs 
[22,23] 

The solution of the fuzzy differential equation (16) is 
depend on the choice of the derivative (in the first form or 
in the second form of definition (10). 

Let us explain the proposed method, if we denote  

 ( ) ( )r r r r r r
1 2 0 01 02[y(x)] y x , y x , [y ] [y , y ] = =   

and  

 ( )
( ) ( )( )
( ) ( )( )

r r r
1 1 2r
r r r
2 1 2

F x, y x , y x ,
[F(x, y x )]

F x, y x , y x

 
 =  
  

 (27) 

we have the following results : 
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Case I. If we consider yˊ(x) in the first form (1) of 
definition (10), then we have to solve the following 
system of ODEs 

 
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

r r r r r r
1 1 1 2 1 01

r r r r r r
2 2 1 2 2 02

d y x F x, y x , y x y y
dt
d y x F x, y x , y x y y
dt

.

a

a

= =

= =
 

Case II. If we consider yˊ(t) in the second form (2) of 
definition (10) then we have to solve the following system 
of ODEs 

 
( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

r r r r r r
1 2 1 2 1 01

r r r r r r
2 1 1 2 2 02

d y x F x, y x , y x y y
dt
d y x F x, y x , y x y y
dt

.

a

a

= =

= =
 

The existence and uniqueness of the two solutions (for 
problem (16)) which described above are given by the 
following theorem 
Theorem (3): Let F ∶  I ×  E1  →  E1  be a continuous 
fuzzy function such that there exists k > 0  such that 
D�F(x, w), F(x, z)� ≤ k D(w, z)  for all t ∈ I  and w, z ∈
E1 then the problem (16) has two solutions (one (1)-
differentiable and the other one (2)-differentiable) on 
I, where I = [a, b].  
Proof: see [23]. 

To illustrate how we can find the two solutions for a 
fuzzy differential equation under generalized H-derivation, 
we present the following example : 
Consider the fuzzy initial value problem 

 ( ) ( )y' y x , y 0 [0.96 0.04r,1.01 0.01r]= − = + −  

(1) According to subsection (4.2), Case I., after reducing 
the above problem, we have the following system of ODEs  

 
( )( ) ( ) ( )

( )( ) ( ) ( )

r r r
1 1 1

r r r
2 2 2

d y x y x , y 0 0.96 0.04r
dt
d y x y x , y 0 1.01 0.01r
dt

= − = +

= − = −
 

Which gives the following fuzzy analytical solution 

 ( ) ( ) ( )x xy x,α [ 0.96 0.04α e , 1.01 0.01α e ].− −= + −  

(2) According to subsection (4.2), Case II., after reducing 
the above problem, we have the following system of ODEs  

 
( )( ) ( ) ( )

( )( ) ( ) ( )

r r r
1 2 1

r r r
2 1 2

d y x y x , y 0 0.96 0.04r
dt
d y x y x , y 0 1.01 0.01r
dt

= − = +

= − = −
 

Which gives the following fuzzy analytical solution 

 ( )
( ) ( )
( ) ( )

x x

x x

0.985 0.015r e 1 r 0.025e ,
y x,α .

0.985 0.015r e 1 r 0.025e

−

−

 + − −
 =
 + + − 

 

5. Numerical Example 

To show the behavior and properties of the proposed 
method, one problem will be solved in this section. We 

have used a multilayer perceptron having one hidden layer 
with ten hidden units and one output unit. The activation 
function of each hidden unit is hyperbolic tangent 
activation function. The analytical solutions ya  (x, r) and 
ya  (x, r) have been known in advance. Therefore, we test 
the accuracy of the obtained solutions by computing the 
deviation (absolute error): 

 
( )
( )

t

t

e( , ) y x, r y (x, r) ,

e( , ) y x, r y (x, r)

a

a

x r

x r

= −

= −
 

Where yt (x, r) and yt (x, r) are the trial solutions.  
In order to obtain better results, more hidden units or 

training points may be used. To minimize the error 
function we have used BFGS quasi-Newton method (For 
more details, see [21]).  
Example (1): Consider the following fuzzy initial value 
problem: 

 wiy y x 1, [0,1]th x= − + + ∈ˊ  

y(0) = [0.96 +  0.04r, 1.01 –  0.01r], where r ∈ [0, 1]. 
The analytical solution (According to subsection(4.2), 

Case II. ) for this problem are : 

 
( ) ( ) ( )
( ) ( ) ( )

x x

x x

y x, r x 0.985 0.015r e 1 r 0.025e

y x, r x 0.985 0.015r e 1 r 0.025 .e

a

a

−

−

= + + − −

= + + + −
 

The trial solution (According to the proposed method in 
this work) for this problem are : 

 
( ) ( )
( ) ( )

t

t

y , (0.96 0.04r) xN , ,

y , (1.01 0.01r) xN , , .

x r x r p

x r x r p

= + +

= − +
 

The ANN trained using a grid of ten equidistant points in 
[0, 1].  

The error function that must be minimized for this 
problem will be : 
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∑ ∑

∑

∑

∑

 (28)  

Then we use (28) to update the weights and biases. 
analytical and trial solutions for this problem can be found 
in Table 1 and Table 2. 

6. Conclusion  
In this paper, we have presented numerical method 

based on artificial neural network for solving first order 
fuzzy initial value problem under generalized H-derivation. 
The method which we have used allows us to translate the 
FDE into system of ODEs and then solve this system. we 
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demonstrate the ability of ANN to approximate the 
solution of FDEs. Therefore, we can conclude that the 
method which we proposed can handle effectively all 
types of FDEs and provide accurate approximate solution 
throughout the whole domain and not only at the training 

set. As well, one can use the interpolation techniques to 
find the approximate solution at points between the 
training points or at points outside the training set. Further 
research is in progress to apply and extend this method to 
solve higher order FDEs.  

Table 1. Analytical and trial solutions for example (1), x = 2 

r ya (x, r) yt (x, r) e (x, r) ya (x, r) yt (x, r) e (x, r) 

0 1.948578852 1.948579274 0.000000422 2.318031656 2.318032417 0.000000761 

0.1 1.967254495 1.967254967 0.000000472 2.299762019 2.299762662 0.000000643 

0.2 1.985930138 1.985930525 0.000000387 2.281492381 2.281492466 0.000000085 

0.3 2.004605781 2.004605986 0.000000205 2.263222744 2.263223455 0.000000711 

0.4 2.023281424 2.023282053 0.000000629 2.244953107 2.244953513 0.000000406 

0.5 2.041957068 2.041957703 0.000000635 2.226683470 2.226683566 0.000000096 

0.6 2.060632711 2.060632805 0.000000094 2.208413832 2.208413946 0.000000114 

0.7 2.079308354 2.079308402 0.000000048 2.190144195 2.190144557 0.000000362 

0.8 2.097983997 2.097984071 0.000000074 2.171874558 2.171875271 0.000000713 

0.9 2.116659640 2.116660365 0.000000725 2.153604920 2.153604974 0.000000054 

1 2.135335283 2.135335791 0.000000508 2.135335283 2.135336111 0.000000828 

Table 2. Analytical and trial solutions for example (1), r = 0.5 

x ya (x, r) yt (x, r) e (x, r) ya (x, r) yt (x, r) e (x, r) 

0 0.98 0.98 0 1.005 1.005 0 

0.1 0.984236500 0.984236574 0.000000074 1.011865774 1.011865864 0.000000090 

0.2 0.997322738 0.997322850 0.000000112 1.027857807 1.027858634 0.000000827 

0.3 1.018388849 1.018388968 0.000000119 1.052135319 1.052136129 0.000000810 

0.4 1.046644837 1.046645251 0.000000414 1.083940454 1.083941124 0.000000670 

0.5 1.081372664 1.081372866 0.000000202 1.122590696 1.122591654 0.000000958 

0.6 1.121919064 1.121919133 0.000000069 1.167472034 1.167472118 0.000000084 

0.7 1.167689005 1.167689342 0.000000337 1.218032823 1.218032891 0.000000068 

0.8 1.218139735 1.218140638 0.000000903 1.273778258 1.273778484 0.000000226 

0.9 1.272775348 1.272775429 0.000000081 1.334265426 1.334265671 0.000000245 

1 1.331141823 1.331142019 0.000000196 1.399098868 1.399099381 0.000000513 
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