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Abstract  Option price and random arbitrage returns change on different time scales allow the development of an 
asymptotic pricing theory involving the options rather than exact prices. The role that random arbitrage opportunities 
play in pricing financial derivatives can be determined. In this paper, we construct Green’s functions for terminal 
boundary value problems of the fractional Black-Scholes equation. We follow further an approach suggested in 
literature and focus on the pricing bands for options that account for random arbitrage opportunities and got similar 
result for the fractional Black- Scholes option pricing. 
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1. Introduction 
Fractional calculus has become of increasing use for 

analyzing not only stochastic processes driven by 
fractional Brownian processes [16], but also non -random 
fractional phenomena in physics [8], like the study of 
porous systems, for instance, and quantum mechanics [14]. 
Whichever the framework is, we believe that the very 
reason for introducing and using fractional derivative is to 
deal with non-differentiable functions. In financial 
literature for example, stochastic volatility models the 
Merton jump-diffusion model [9], non-Gaussian option 
pricing models [4,5], amongst others have been proposed. 
Each of these is based on the assumption of the absence of 
arbitrage. However, it is well-known that arbitrage 
opportunities always exist in the real world (see Refs. 
[6,15]). Of course, arbitragers ensure that the prices of 
securities do not get out of line with their equilibrium 
values, and therefore virtual arbitrage is always short-lived. 
An arbitrage possibility is essentially equivalent to the 
possibility of making a positive amount of money out of 
nothing without taking any risk. It is thus essentially a 
riskless money making machine. An arbitrage possibility 
is a serious case of mispricing in the market. It is well-
known that arbitrage opportunities always exist in the real 
world [10]. Of course, arbitragers ensure that the prices of 
securities do not get out of line with their equilibrium 
values, and therefore virtual arbitrage is always short-lived. 
The first attempt to take into account virtual arbitrage in 
option pricing was made by Physicists Refs [1,7,13]. The 
authors assume that arbitrage returns exist, appearing and 
disappearing over a short time scale. Asma et al [2] 
applied the homotopy perturbation method for fractional 
Black-Scholes equation by using He’s polynomials and 

Sumudu transform to obtain the solution of fractional 
Black-Scholes equation. At this point, Belgacem et al. [3,9] 
had applied the Laplace transform and extended the theory 
and the applications of the Sumudu transform to the 
solution of fractional differential equations. 

In this work, a technique is proposed for the 
construction of Green’s functions for terminal boundary 
value problems of the fractional Black-Scholes equation. 
The technique is based on the method of integral Laplace 
transform and the method of variation of parameters. It 
provides closed form analytic representations for the 
constructed Green’s functions [12]. We follow further an 
approach suggested in Ref. [15] and focus on the pricing 
bands for options that account for random arbitrage 
opportunities and got similar result for the fractional 
Black- Scholes option pricing. 

2. Derivation of the Black-Scholes 
Equation 

We base our derivation on replicating portfolio that 
ensures that no arbitrage opportunities are allowed. As in 
the discrete case, consider a portfolio ⋀ = {⋀𝑡𝑡}𝑡𝑡>0, which 
is 𝐹𝐹𝑡𝑡 - measurable ( we can choose as we go, but at any 
point in time the choice is deterministic), ⋀𝑡𝑡  denotes the 
proportion of shares invested at time 𝑡𝑡 , the rest of the 
money is invested in the money market account, giving 
risk-free rate of return, 𝑟𝑟, say. In what follows, we state: 
Theorem 2.1 

Let a generic payoff function 𝐺𝐺(𝑡𝑡) = 𝑉𝑉(𝑠𝑠, 𝑡𝑡), the PDE 
associated with the price of derivative on the stock price is 
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Proof:  
The stock price 𝑆𝑆𝑡𝑡  follows the fractional Brownian 

motion process [9] 

 ( ) ( ), 0 ,H
dS dt dB t S s
S

µ σ= + =  (2.2) 

and the wealth of an investor 𝑋𝑋𝑡𝑡 , follows a diffusion 
driven by (with time suppressed) 

 ( ) .dX dS r X S dt= ∆ + − ∧  (2.3) 

Putting equation (2.2) into equation (2.3) yields; 

 ( ){ } ( )},HdX rX S r dt S dB tµ σ= + ∧ − + ∧  (2.4) 

where 𝜇𝜇 − 𝑟𝑟 is the risk premium. Suppose that the value of 
this claim at time 𝑡𝑡 is given by 

 ( ) ( ), , .tG t V S t S S= =  (2.5) 

Applying the fractional Ito’s formula on equation 2.5, 
we have  
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 (2.6) 

To track 𝐺𝐺(𝑡𝑡)  at all times, we have under the 
assumption of complete market that 

 ( ) ( ) [ ]( ) , 0, .X t G t V S t t T= = ∀ ∈  (2.7) 

Thus 

 
( )

2
2 2 2 1

2
H

t

V V Vs H s t
t S S
rV S r

µ σ

µ

−∂ ∂ ∂
+ +

∂ ∂ ∂
= + ∧ −

 (2.8) 
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While equation (2.6) with t
v
s
∂

∧ =
∂

 gives 
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Thus, the fractional Black-Scholes equation for valuing 
an option with value V is obtained. 

3. Construction of Green’s Function for 
the Fractional Black-Scholes Equation 

For a call option with maturity date 𝑇𝑇, strike price 𝐾𝐾, 
and payoff function 𝐺𝐺 , the value price 𝑉𝑉 =  𝑉𝑉(𝑆𝑆, 𝑡𝑡) 
satisfies the following fBm, [9], 

 
2
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 (3.1) 

with homogeneous boundary value problem corresponding 
to 

 ( ) ( ),0 ,V s h s=  (3.2) 

and 

 ( , )  ( , ) .V t and V t−∞ < ∞ ∞ < ∞  (3.3)  

We set 𝑆𝑆 = 𝑒𝑒𝑥𝑥 ⟹ 𝑥𝑥 = 𝑙𝑙𝑙𝑙 𝑠𝑠  ,𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉(𝑒𝑒𝑥𝑥 , 𝑡𝑡)  and 
ℎ(𝑒𝑒𝑥𝑥) = 𝑔𝑔(𝑥𝑥), to get   
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(3.4) 

Let ⅄ = 𝐻𝐻𝑡𝑡2𝐻𝐻−1𝜎𝜎2  and 𝛼𝛼 = 𝐻𝐻𝑡𝑡2𝐻𝐻−1𝜎𝜎2 − 𝑟𝑟 , then we 
have 

 u
t

∂
= −

∂
⅄

2
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2 αu u ru
xx

σ ∂ ∂
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∂∂
 

 ( ) ( ),0 , ( , )  ( , ) .xu x h e V t and V t= −∞ < ∞ ∞ < ∞  (3.5) 

Applying Laplace transform to (3.5) gives  

 −⅄ ( )
2

2
2 α ,0 ,d u du ru u x su

dxdx
σ + + = − +  

or for 𝑐𝑐 = 1
⅄
 

 ( ) ( )
2

2 c .xd u du r s u ch e
dxdx

+ + − =  (3.6)  

To find a fundamental set of solutions to the 
homogeneous equation corresponding to (3.6), consider its 
characteristic equation: 
 ( )2 0.k c k c r sα+ + − =  

Solving, we have 

( ) ( )2 24
2 2 4

c c c r s c ck c r s
α α α α − ± − − −

= = ± − +  
 

 

For simplicity, set 𝑐𝑐 = 1, then 𝑘𝑘 = −𝛼𝛼
2

± ��𝛼𝛼
2

4
− 𝑟𝑟 + 𝑠𝑠�. 

Thus the roots are 𝑘𝑘1 = 𝛾𝛾 + 𝜔𝜔  and 𝑘𝑘2 = 𝛾𝛾 − 𝜔𝜔  where 
𝜔𝜔 = (𝑠𝑠 + 𝛽𝛽)1

2� , while the parameters 𝛾𝛾 = −𝛼𝛼
2

 and 

𝛽𝛽 = 𝛼𝛼2

4
− 𝑟𝑟. This yields two linearly independent solutions 

to the homogeneous equation corresponding to (3.6) as  

 ( ) ( )1 , expU x s xγ ω= +  

and 

 ( ) ( )2 , expU x s xγ ω= −  

with their linear combination given as 
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( ) ( ) ( ) ( ), , exp ( , ) expU x s A x s x B x s xγ ω γ ω= + + − (3.7) 

Now representing according to the method of variation 
of parameters, the general solution to (3.6). Following the 
procedure of this method, one arrives at the well-posed 
system 
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of linear algebraic equations in the derivatives with 
respect to x of the coefficients A(x,s) and B(x,s) of the 
linear combination in (3.7). The solution of the above 
system is obtained as 

 ( )exp[ ]
( , ) ( )

2
΄ xx

A x s h e
γ ω
ω

− − +
=  

and 

 ( )exp[ ]
( , ) ( ).

2
΄ xx

x s h eB
γ ω
ω

− −
=  

Upon integration, the coefficients 𝐴𝐴(𝑥𝑥, 𝑠𝑠)  and 𝐵𝐵(𝑥𝑥, 𝑠𝑠) 
are found in the form 

 ( ) ( )1, exp[ ] ( ) ( )
2

x
A x s h e d M sξγ ω ξ ξ

ω
−∞

−
= − + +∫  

and 

 ( ) ( )1, exp[ ] ( ) ( ).
2

x
B x s h e d N sξγ ω ξ ξ

ω
−∞

= − − +∫  

Substitution of these in (3.7) yields the general solution 
of (3.5) in the form: 
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∫ (3.8) 

The constants of integration M(s) and N(s) can be 
obtained upon satisfying the boundary conditions of (3’6) 
as  

 1( ) 0, ( ) exp[ ( ) ] ( ) .
2

N s M s w h e d
w

ξγ ξ ξ
∞

−∞

= = − +∫  

Substituting in (3.8), we obtain the solution to the 
boundary value problem in (3.5) and (3.6) in the form. 
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(3.9) 

Equation (3.9) can be re-written in a compact single-
integral form as 

 exp ( )( , ) exp( ) ( ) .
2

xU x s w x h e d
w

ξγ ξ ξ ξ
∞

−∞

−
= − −∫ (3.10) 

The solution ( , )U x t to the initial boundary value 
problem stated by (3.1) can be obtained from ( , )U x s with 
the aid of the inverse Laplace transform. In doing so, we 
keep in mind that the parameter w has earlier been 
introduced in terms of the parameter s of the Laplace 
transform as  
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(3.11) 

To obtain the solution ( , ),V s t  we make the backward 
substitutions, 
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ξ
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While the interval of integration ( , )−∞ ∞ in (3.11) transforms 
according to the relation Insξ =   to the interval [0, )∞
with respect to s . With all these in mind, one arrives at 
the solution to the terminal-boundary value problem as 
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Revealing the Green’s function to the problem as 

( )2
1
2

1( , , ) exp ( ) .
4

2 ( )

sIn ssG s t s In ts t
s t

γ β

π

= − − 







(3.12) 

4. Fractional B-S Equation with Random 
Arbitrage Return 

The associated option price ( , ),V sε τ obeys the 
following Stochastic P.D.E 
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Subject to the initial condition 

 (0, ) max( ,0).V s s kε = −  

Here ( )tξ is the random arbitrage return that describes 
the fluctuations of return around rdt , [7]. According to 
the law of large numbers V ε converges in probability to 
the Black-Scholes price BSV as 0.ε →  One can split 

( , )V sε τ into the sum of the Black-Scholes price BSV and 

the random field Zε with the scaling factor ,ε giving 

 ( , ) ( , ) ( , ).BSV s V s Z sε ετ τ ε τ= +  (4.2) 

Substituting (4.2) into (4.1), we have; 
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Substituting (4.1) into (4.3), we have  
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Ergodic theory implies that τξ
ε

 
 
 

 in its integral form 

converges to zero as 0,ε → while 

τξ
ε
ε

 
 
   converges 

weakly to a white Gaussian noise ( ).tη  Furthermore, as 

0,ε →  the random field ( , )Z sε τ converges weakly to the 
field ( , )Z sτ that obeys the asymptotic stochastic P.D.E 
given by 
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With initial condition 

 (0, ) 0Z s =  

Where ( )( ) dB
d
τη τ
τ

= . 

Equation (4.4) can be solved in terms of the fractional 
Black-Scholes Green function; 1, 1( , , )G s s τ τ to give  

 1
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0 0 1, 1
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It follows from (4.5) that since ( )tη is the Gaussian 
noise with zero mean, ( , )Z sτ is also the Gaussian field 
with zero mean. 

The pricing bands for the options for the case of 
arbitrage opportunities can be given by 

 ( , ) 2 ( , )BSV s u sτ ε τ±  (4.6) 

Where 

 ( , ) ( , , )U s R s sτ τ=  (4.7) 

and ( , , )R s sτ is the covariance 

 ( , , ) ( , ) ( , ) .R s s Z s Z sτ τ τ=  

The variance ( , )U sτ quantifies the fluctuations around 
the fractional Black-Scholes price. It should be noted that 
it is independent of the detailed statistical characteristics 
of the arbitrage return. 

It is note-worthy that an investor who employs the 
arbitrage opportunities band hedging sells the option for  

 ( , ) 2 ( , ).BSV s u sτ ε τ+  (4.8)
 

5. Conclusion 
In this paper, we have introduced a technique for 

constructing the Green function for the fractional Black-
Scholes equation. We also investigated the implications of 
random arbitrage return for option pricing. We derived the 
asymptotic equation for the random field that quantifies 
the fluctuations around the fractional Black-Scholes price 
and showed that it is independent of the detailed statistical 
characteristics of the arbitrage return. 
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