@article{ijp2019742,
author={Li, XiaoLin},
title={Planck Gravitation Theory},
journal={International Journal of Physics},
volume={7},
number={4},
pages={118--125},
year={2019},
url={http://pubs.sciepub.com/ijp/7/4/2},
issn={2333-4576},
abstract={A new gravitation theory, Planck gravitation theory. Gravitation is a quantum force in 4-dimensional space. Gravitation is not actually related to the mass of particles. Every quantum particle produces the same strength of gravitation, regardless of the type of particle. The origin of gravitation is quantum, and gravitation is already a quantum force. In 4-dimensional space, gravitation is inversely proportional to the cubic of distance, not square of distance. The strength of gravitation is entirely determined by the Planck Length. The Planck Length is the identification constant of gravitation. The author's earlier projection gravitation theory is only a derivation of the Planck gravitation theory. Planck gravitation is separated into two different patterns in 3-dimensional space. For particles with rest mass, Planck gravitation translates into projection gravitation, which is inversely proportional to the square of distance. The Newton gravitation is a low-speed approximation of the projection gravitation. For particles with zero rest mass, gravitation is inversely proportional to the cubic of distance. For example, the gravitation of photons is inversely proportional to the cubic of distance. Every quantum particle is an empty hole in space, and the radius of empty hole is Planck Length. This brings the effect of the quantization of space-time. Planck gravitation theory can solve the problem of ultraviolet divergence in quantum field theory without the need for renormalization. If the Planck gravitation theory is true, human need to rethink the gravitation, and need to rethink the way of gravitation quantization. The author finally discusses the projection action, which is the key to human understanding of the truth about gravitation.},
doi={10.12691/ijp-7-4-2}
publisher={Science and Education Publishing}
}