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Abstract  The effect of space charge rotation has been studied in Vlasov-Poisson potential function with KV 
distribution in quadrupole. Effective potential varies due to rotation and the related parameter has been obtained 
based on focusing and defocusing of beam particles. The changed beam plasma frequencies have been calculated in 
the frame of laboratory coordinates. Also the new Hamiltonian of the system has been derived and finally the 
equipotential lines, electric and magnetic fields have been obtained. The magnetic field remains without any 
changing, but the electric field and equipotential lines changed in static qudrupole. The result of rotational space 
charge in static quadrupole is comparable with rotation of quadrupole system. 
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1. Introduction 
In designing circular accelerators for high-intensity 

beams one has to take into account the combined effect of 
space charge and lattice imperfections. The issue of 
envelope resonances and instabilities has received new 
attention in several papers [1,2,3,4], where as the effect of 
space charge on linear coupling due to skew drift. In this 
paper we discuss about Rotation with Kapchinskiy-
Vladimirskiy Distribution Function (KV) in [5,6] and 
effect on the focusing and defocusing on quadrupole and 
very important on the designing of accelerators. We 
introduce the new density of particles in ellipse formed 
and we find the important effect of this distribution in 
quadrupole because we have two type of quadrupole that 
means one of them is focusing system in particles beam 
and another one is defocusing system in particles beam 
based on choose the density of particles and drive all 
formula in Sec.II. and plot the simple accelerators that 
construct by two focusing and defocusing system quadrupole. 
In Sec. III we discuses about VLASOV’S EQUATION. 

2. Formalism 
We choose a Kapchinskiy-Vladimirskiy equilibrium 

distribution function with uniform density profile in 
configuration space with rotation in ellipse of this 
distribution. 
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The normal Kapchinskiy-Vladimirskiy equilibrium 
distribution function with uniform density distribution 
introduce by: 
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These two type of very effective on the behavior of 
focusing and defocusing of quadrupole depend on the 
charge partial. In Eqs. (1-2) a and b the semi axes of the 
confining ellipse. 

Here, it is assumed that the transverse beam dimensions 
are small in comparison with the radius of the beam pipe 
so that we can ignore image charges. From Poisson’s 
equation we readily obtain the effective potential inside 
the beam valid for a uniform distribution of particles in 
free space with charge q and line density: 

 2 2
0 1 2eff a x a y a xyΨ = + +  (3) 

by change the Cartesian space by this equation we have: 
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In Eq. (4) g denoted by: 
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The matrix transformation for these rotating is: 
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we chose a0, a1 and a2 [4]: 
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Then we have: 
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If 2 0a =  this a one quadrupole same as defocusing 
acting and the Contor Plot for [3] and Hamiltonian Field 
Plot also Gradient Field Plot is in fig1 this is a defocusing 
and if we use the (2) again with 2 0a ≠  we can see this 
effect in Figure 2 this is a focusing system depend on the 
charge of particle. 

 
Figure 1. The ContorPlot for Eq.(2) and HamiltonianFieldPlot also 
GradientFieldPlot show in Figure for defocusing quadrupole with a2 = 0 
also a = 500 µm, b = 700 µm and n0;b = 1011 particles 

From Poisson’s equation we readily obtain the effective 
potential inside the beam valid for a uniform distribution 
of particles in free space with charge q and line density 

0,bN n abπ′=  (trans-formed to the laboratory frame). After 
rotating for Eq.(3) we obtain for effΨ effective potential: 
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Figure 2. The ContorPlot for Eq.(2) and HamiltonianFieldPlot also 
GradientFieldPlot show in Figure for defocusing quadrupole with 

2 0a ≠ a2 = 0 also a = 500 µm, b = 700 µm and n0;b = 1011 particles 

By the way we can calculate the Electric field: 
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and for Kapchinskiy-Vladimirskiy equilibrium 
distribution function have rotation the Electric field is: 
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Figure 3. The ContorPlot for Eq.(7) and HamiltonianFieldPlot also 
GradientFieldPlot show in Figure also also a = 500 µm, b = 700 µm and 
n0;b = 1011 particles 

Eq.(12) plot in Figure 3 and magnetic field in 
quadrupole is [7] plot in Figure 4. The magnetic field in 
the quadrupole is: 
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in Eq.(13) a distance between two pole and I is current in 
quadrupole. 

 

Figure 4. The VectorPlot for Eq.(13) and show magnetic field also also n 
= 1000, I = 50 A and a = 80mm 

3. Vlasov’S Equation 

With 2 2 3
0/p q N m abω ε π γ=   the beam plasma 

frequency in the laboratory frame, one can write the actual 
particle oscillation frequencies xν , yν  in the presence of 
space charge as: 
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We now assume linear and continuous external 
focusing forces for the equilibrium beam, and define 
betatron frequencies in the absence of space charge 

0xν , 0 yν  corresponding to the oscillation frequencies of a 
single particle under the applied focusing field in the x and 
y directions. Considering in addition the self-field effects 
with their defocusing contribution, we can write the full 
Hamiltonian as 
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The transverse energy anisotropy T, hence the ratio of 
oscillation energies in x and y directions, can be written in 
terms of betatron tunes and emittances as: 

 2 2 2 2/ /x y x x y yT a v b v v vε ε= =  (17) 

The anisotropic KV distribution can now be expressed 
in terms of a function of the linear combination of the two 
separate Hamiltonians [8]. 
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which is consistent with a uniform density with in the 
boundary of the confining ellipse. We now introduce a 
lattice error described by a z− component of an error 
vector potential eA



. Considering small-amplitude 
perturbations about 0 0 0, ,f E B  and Expressing: 
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we linearize Vlasov’s equation and keep only first-order 
terms in 1 1 1, ,f E B to obtain [9]: 
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A general remark may be appropriate here. In our 
approach the equilibrium is a beam matched to the ideal 
lattice. Turning on errors instantaneously results in time-
dependent perturbations of this equilibrium. An alternative 
approach would be to search for a matched beam in the 
presence of a gradient or skew error. Plugging into such a 
system the original matched solution (of the ideal lattice) 
would then result in oscillations about the error-matched 
beam another way of looking at the perturbations 
considered here. With 1E φ= −∇



 and 1B A= ∇×


 we find: 
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The perturbed electrostatic potential Φ in turn self 
consistently obtained from the linearized Poisson equation: 
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Equations (21) and (22) from a closed set that can be 
solved with an appropriate boundary  

4. Result 



 International Journal of Physics 40 

 

By rotation we can analyses the β  function 
[10,11,12,13]. The origin of the focusing and defocusing 
are this term x y are describe by Hamiltonian condition 
also Development of the coupled betatron motion 
representation intro discuses in refs [14,15]. 
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