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Abstract The scattering task of stationary and impulse sound signals by the viscous-elastic and elastic cylindrical
layers is studied with the help of Fourier series and fundamental solutions of the Helmholtz equation in circular
cylindrical coordinates system. The reflection’s characteristics of sound (harmonic and impulse) are calculated in the

large range of angles (including inverse direction).
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1. Introduction

The problems of scattering of stationary and non-
stationary sound signals discussed in various publications
[1-13]. In these papers the ideal or elastic bodies of
infinite circular cylinders form are substantially examined.
In the present work the scattering of stationary and
impulse sound signals by the viscous-elastic cylindrical
layers are studied.
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Figure 1.The system of the viscous-elastic and elastic cylindrical layers
irradiated by plane sound wave in liquid

The first part of the article substantiates the scattering
of the stationary and non-stationary (impulse) sound
signals by the viscous-elastic cylindrical layers. Firstly we
will consider a harmonic uninterrupted sound signal of
frequency o, which irradiates a system of the elastic and
viscous-elastic cylindrical layers (Figure 1). The wave

vector k of this wave is orthogonal as regards the axis z
of system of the cylindrical layers (the plane task, Figure 1).

The system consists of four layers: external thin
viscous-elastic layer (5), the viscous-elastic more thick
layer (4), elastic layer (3), the inside viscous-elastic layer
(2). There is vacuum on the inside region of the system
(region 1), and water - on the outside region (region 6).
All layers are of various characteristics of material: the
density, the elastic modules and the loss coefficients. The
wave numbers of flexural waves and the corresponding
arguments of the Bessel’s and the Naman’s cylindrical
functions by the loss in the viscous-elastic layers are complex.

The following designations of the sound pressures, scalar
and vector displacement potentials one can find [2-7,11,12,13]:

1. on the inside region of the layers (region 1) - is the

vacuum, the wave process is absent;
2. the viscous-elastic layer 2 is are described by scalar

potential @, and vector potential 7%

3. the elastic layer 3 - scalar potential ®5and vector
potential ¥'3;

4. the viscous-elastic layer 4 - ®, and ¥4 ;

]

. the viscous-elastic layer 5 - ®g and ¥s;
6. outside region 6 is are described by irradiate sound
pressures p; and scattering sound pressures p .
For plane task all vector potentials have only one
nonzero component y, ,named as v .
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All potentials and sound pressures are also expanded by
independent solutions of the Helmholtz equation in
circular cylindrical coordinates system [1-7, 10,11,12,13]:
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where k, —kgand k5 —kg — is a longitudinal and flexural
wave numbers in elastic, viscous-elastic layers and outside
liquid region correspondingly; &, =1 for m=0, ¢, =2
for m=0 ; I K L Qs Py R S T
Vi Wi X Yo s Vim - Wims Xam» Yim — are the unknown

coefficients of expanding, which are calculated basing at
the boundary conditions [3-13]:
1. a strains on the boundary (vacuum - viscous-elastic
layer 2, r = Ry) :is equal to zero:
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2. continuity of displacements and strains at external
boundary of the viscous-elastic layer 2 and at
boundary of the elastic layer 3 (r =R,):
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3. continuity of displacements and strains at external
boundary of the elastic layer 3 and at boundary of the
viscous-elastic layer 4 (r = R3):
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4. continuity of displacements and strains at external
boundary of the viscous-elastic layer 4 and at
boundary of the viscous-elastic layer 5 (r = R4):
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5. tangent strains are equal to zero, a normal component
of a displacement vector is continuous, a normal
strains is equal to total scattering pressure in liquid at
an external boundary of the viscous-elastic layer 5
and liquid (r =Rg):
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where Ay, tp, Ay, iy, A5, tis — Lame constants of the
viscous-elastic layers; A, 3 — Lame constants of the

elastic layer; po— 0 solidity of the liquid environment;

@ = the circular frequency.

If we substitute (1) <+ (10) in the boundary conditions
(12) +(27), and the trigonometrical functions cosmg and
sinmg are opthogonal, we’ll get the algebraical system of
17 order to define the unknown coefficients of expanding
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of the fixed index. We are interested in the coefficients A,
(10). Based in (10) and by using the asymptotic of Hankel

function of the first kind H,(T}) (kr) we get the far sound

field characteristic of the Fraunhofer region (the angular
scattering characteristic) D(¢p) [9,10,11]:

D(p) = —exp(~ix / 4)(kg) i (-i)" A, cosmg. (28)

m=0
At Figure 2 are shown the modulus of the angular
scattering characteristics D(¢p) for the different wave
sizes kgRs . Figure 2 (a): kgRs ~3,78; Figure 2 (b):
ksRg = 7,56; Figure 2 (c): kgRg ~11,35.

Figure 2. The modulus of the angular scattering characteristics of cylindrical layers " D(¢7)|| for the different wave sizes

The angular scattering characteristics in frequency
range Av =200-+2000 Hz (by step h,, =20 Hz) and in

angle range A(szO +150° (by step hA(p=300). are
represented for the calculation of impulse signals
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a)

scattering charact vy = (vlvz)l'2 ~ v =200 Hz, v, = 2000
Hz). Period number of the filling frequency is equal to 30.
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Figure 3. The irradiate impulse \P'; (t) (a); the modulus of his spectrum |SO (V)| (b)

The irradiate impulse ¥;(t) and the modulus of his
spectrum [Sy(v)| it connect [14]:

2 .
¥i(t) =7 "Re[ "y (v)exp(izzvt)d 2zv). (29)
27v]
The scattering impulse ¥ (t) are represented [14]:
2
Yi(tp)=a[ " 2 S(v.p)exp(izzvt)d (22v), (30)
27v
where S(v,p) = So(v)D(v,9) - the spectral characteristic
of the scattering impulse.

The time characteristic of the scattering impulse it
normalize: the dependence from distance to observation
point is absent (for plane task the dependence are

represented: 1/ V2.

At Figures 3 — 9 the time and spectral characteristics of
irradiate and scattering impulses for the cylindrical
viscous-elastic and elastic layers are shown. The scattering

impulses are calculated by step hA(D:3OO in angle
range ¢ . 0° (inverse direction) . 150(). The scattering

maximum is for ¢ = 90°.
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Figure 4. The normalized scattering impulse (inverse direction) ¥ (t,p) , ¢ = 0° (a), the normalized modulus spectrum |S(v, go)l (b)

Y.(t.e) .} . [S(v. @)

a) b)

t=t"-ts, § __,.....j..._ : v. Hz

igure o. € normalize scatterlng Impulse Y (t, , Q= a); the normalized modulus spectrum Vv,
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Figure 6. The normalized scattering impulse ‘P (t,) , ¢ = 60° (a); the normalized modulus spectrum |S(v, (p)l (b)
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Figure 7. The normalized scattering impulse ‘¥ (t,¢) , ¢ = 90° (a); the normalized modulus spectrum |S(v, gp)| (b)
Y.(Le) 4 IS(v. @)
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Figure 8. The normalized scattering impulse ¥ (t, ) , ¢ = 120° (a); the normalized modulus spectrum |S(v, (p)l (b)
Y.(t.e) .} . IS(v, 9)|
- - t=1"-tei5 ._._.-v-.-;k - : v HZ
a) b)

Figure 9. The normalized scattering impulse ¥ (t, @), ¢ = 150° (a ; the normalized modulus spectrum |S (v, b
s\LY 2
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The interaction of two systems of cylindrical layers

(second parallel by first) is defined by the method for
elliptic cylinders [15].

The results presented in the article are received in the

conducting of scientific research in the fra me work of
State contract P 242 from 21 April 2010 FPP (“Scientific
and scientific - pedagogical personnel of innovative
Russia for the years 2009-2013”).

References

[1] Morz F., Feshbach G. The methods of theoretical physics.
Moscow: Foreign Literature. 1958. V. 1. 1960. V. 2.

[2] Hyonl H., Maue A., Vestpfal K. Theory of Diffraction. Moscow:
Mir. 1964. P.428.

[3] Shenderov E.L. Wave problems of hydroacoustic. L.: Shipbuilding,
1972.P.350.

[4] Dickey J. W., Frisk G. V., Uberall H. Whispering gallery wave

modes on elastic cylinders. // JASA. 1976. V. 59. Ne 6. P. 1339-
1346.

[5]
(6]
[7]

(8]

(9]

[10]
[11]
[12]
[13]

[14]

[15]

105

Metsaveer.Ya,A. Veksler N, D., Stulov A. S. Impulse diffraction
of elastic bodies. Moscow: Nau ka. 1979. P.226.

Veksler N, D. Informational problems of hydroacoustic. Tallinn:
Valgus. 1982. P.180.

Kleshchev A. A. Acoustic Scatterers .//The Second Publication.
Saint-Petersburg. Prima, 2012. P. 267.

Podstrigach Ya. S., Poddubniak A. P. Scattering of sound loops by
elastic sheroidal and cylindrical bodies. Kiev: Naukova dumka.
1986. P. 264.

A.A. Kleshchev, II. Klukin. Fundamentals of hydroacoustic.
Leningrad.: Sudostroenie.1987. P.224.

Shenderov E.L. Radiation and scattering sound. Leningrad:
Sudostroenie. 1989. P.304.

Kleshchev A. A. Diffraction, radiation and propagation of elastic
waves. Saint-Petersburg.: Profprint. 2006. P.160.

Faran J. J. Sound scattering by solid cylinders and spheres. // J. A.
S. A.1951. V. 23. Ne 4. P. 405-418.

Sharfarets B. P. To the problem of scattering amplitude evalution
on radially symmetric elastic inserts in perfect fluid. // Nauchnoe
priborostroenie. 2012. V. 22. Ne 2. P. 82-89.

Kharcevich A. A. Spektrum and Analysis. Moskau: GITTL. 1957.
P. 236.

Kleshchev A.A., , Kuznetsova E. I. The question is interaction of
Acoustic Scatterers. // Acoust. Phys. 2011. V. 57. Ne 4. P. 505-510.



