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Abstract  This paper proposes an optimal Active Disturbance Rejection Control (ADRC) based on using Asexual 
Reproduction Optimization (ARO) to control the temperature of a nonlinear CSTR. The parameters of non-
isothermal continuous stirred tank reactor (CSTR) are varying with time caused by fouling and the deactivation and 
regeneration of the catalyst. Furthermore, in the exothermal region, dynamic behavior of this reactor is unstable. 
Therefore, designing an efficient controller in this complicated situation is difficult and challenging. ADRC is used 
as a robust method to control the temperature of CSTR in the situation that the CSTR parameters are varying with 
time. The parameters of ADRC are difficult to adjust and if these parameters tuned properly, it performs more 
efficiently in setpoint tracking and disturbance rejection. In this paper Controller design is represented as an 
optimization problem. The parameters of ADRC are tuned by ARO and then by Particle Swarm Optimization (PSO). 
The performance of ADRC tuned by ARO (ADRC-ARO) is compared with the performance of ADRC tuned by 
PSO (ADRC-PSO) and PID controller. The simulation results that the proposed ADRC-ARO method reveals 
robustness and better performance in both setpoint tracking and disturbance rejection with faster response time and 
less settling time. 
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1. Introduction 
One of the most important and fundamental process in 

chemical industries is continuous stirred tank reactor 
(CSTR). CSTR is a highly nonlinear system and its 
parameters affect its complex dynamic severely. Due to 
fouling and deactivation and regeneration of the catalyst 
the parameters of CSTR are varying with time. In addition, 
in the exothermal operating region of CSTR the dynamic 
behavior of this reactor is unstable. So design a proper 
controller for such CSTR systems is rather complicated 
and requires more efforts. Various methods have been 
developed to control the CSTR system [1-6]. In [1] 
Power-shaping control is proposed to control the CSTR. 
In [4,5] a design method based on using artificial bee 
colony (ABC) algorithms and a robust predictive control 
approach are proposed respectively to control an unstable 
nonlinear CSTR. 

In this paper, we focus on a novel optimal Active 
Disturbance Rejection Control (ADRC) strategy to control 

the temperature of CSTR system. ADRC paradigm was 
proposed by Professor Han [7,8,9]. The key idea of the 
ADRC is to estimate the disturbances and the unknown 
parts of the model (denoted as total disturbances) and 
compensate them by suitable input signal in real time [9]. 
In ADRC approach, Extended State Observer (ESO) is 
employed to estimate the total disturbances of the system 
as an extra state. So the most important part of the ADRC 
is Extended State Observer (ESO). In comparison with 
other approaches ESO has exhibited advantages, because 
it requires little knowledge of the plant. Enormous 
successful applications of ADRC prove the capability of 
this method for control design [10,11,12,13]. 

In this work, we proposed a design for the 2nd-order 
ADRC to control the temperature of a non-isothermal 
CSTR with time varying parameters. There are numerous 
parameters typically used in the 2nd-order ADRC 
controller, and some of them influence the control 
performance more than others. So it is very important, 
how to optimize the parameters, as shown in [14-17]. In 
this paper, an objective function is proposed to optimize 
parameters of ADRC. Then Asexual Reproduction 
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Optimization (ARO) and Particle Swarm Optimization 
(PSO) are employed to solve the optimization problem. 
Then the performance of ADRC tuned by ARO (ADRC-
ARO) is compared with the performance of ADRC tuned 
by PSO (ADRC-PSO) in controlling the temperature of 
CSTR in both constant and time varying parameters. 

The rest of this paper is organized as follows. In section 
2 ADRC design is introduced. First an objective function 
is proposed and then ARO and PSO method are 
introduced to minimize this objective function. In section 
3 the detailed CSTR system description with constant and 
time varying parameter CSTR are presented and the 
controllers are applied to the CSTR. And the illustrative 
results are provided. Finally the conclusion is presented in 
section 4. 

2. Methodology Description 

2.1. Active Disturbance Rejection Control  
ADRC is a robust control method that rejects 

disturbances, ADRC focuses more around the expansion 
of the model with an additional and imaginary state 
variable, indicating everything that are not included in the 
mathematical equation of the system. ESO (Extended 
State Observer), the brain of the ADRC, estimates internal 
and external disturbances and unmodeled part of the 
system as an extra state. This extra state is canceled by a 
proper control signal before it influences the system as 
shown in Figure 1. 

 

Figure 1. ADRC block diagram 

The adaptive capability and robustness of ADRC make 
it a powerful technique for control in cases where the full 
information of the system is not accessible 

An nth order system is chosen as an instance, which 
could be represented by the following state space 
equations: 
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Where y is the output, b is a constant, u is the input, f is 
the total disturbance containing internal disturbance and 
external disturbance, w is the external disturbance and t is 
time. This model is canonical, and many physical 
nonlinear systems can be found in this shape.  

ESO (Extended State Observer), the most important 
part of the ADRC, estimates the total disturbance of the 
plant and cancels it online before it affects the system. The 
central idea in ESO is to use a completed state space 
model of ( )1 2, , , , ,nf x x x w t… . 

The ESO dynamics are proposed as following equation: 
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In equation (2): 

 1 1 2 2 1ˆ ˆ ˆ, , , ˆ
n n nz x z x z x fz += = … = =  (3) 

State variable 1nz +  is the estimate of f  and iβ  are 
observer gains. Variable 1E is defined as follows: 

 1 1E z y= −  (4) 

iβ  Coefficients are chosen so that the matrix oA  is 
negative definite: 
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For a second order system that stated by following 
equation we have:  

 ( ), , ,y f y y w t bu= +   (6) 

Observer structure is: 
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f̂  is the estimation of the total disturbance. The control 
signal then can be built according to the following 
equation: 

 0 3u z
u

b
−

=  (9) 

Reduces (6) to a simple double-integral plant: 

 0y u=  (10) 

This can be easily controlled. The difference between 
this and all of the previous methods is that no analytical 
model of 𝑓𝑓 is assumed here. The only thing required is the 
knowledge of the order of the plant model and the 
approximate value of b in (6) [8]. For the control signal u0 
is in the form of: 

 ( ) ( )0 2 1 , , 0d d p p du y k z r k z r k k= − − − − >   (11) 

Where r is the setpoint. The controller parameters, dk  
and pk , will be tuned by proposed methods in the next 
sections. Equation 11 shows that instead of using speed of 
output signal an estimate of it, 2z , is used. So ADRC has 
no need to speed of the output signal and this is an 
advantage of ADRC algorithms.  
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It is proven in [18] ADRC is stable if the characteristic 
polynomial for the state feedback design (11) 

2
d ps k s k+ +  is Hurwitz. So when the parameters of dk  

and pk  are positive ADRC is stable. 
The gains observer: 

 1 2 3[ , , ]To o oβ β β  (12) 

To simplify the tuning process, we consider the 
parameters as: 

 2 3[3 ,3 , ]To o oL ω ω ω=  (13) 

oisω  observer bandwidth. 
A number of studies have attempted to tune parameters 

of the ADRC [14,15,16,17]. In this paper ARO and PSO, 
as two optimization methods, are used to determine the 
best value of b and dk  and pk  to achieve a proper 
response in a control problem. In the next section a proper 
objective function will be proposed. 

2.2. Objective Function for Optimal ADRC 
There are several limitations for overshoot and control 

signal. Therefore, in this paper integral of the squared 
derivative of error is added to The Integral of the Squared 
Error (ISE) to guarantee the smoothness of the response 
and the control signal and minimize the overshoot. So the 
proposed objective function is: 

 2 2

0 0

. . /J e dt de dt
∞ ∞

λ= +∫ ∫  (14) 

Where λ  is the smoothness weight coefficient of the 
response that varies between 0 and 1 and it is adjustable. If 
we need a smooth response without overshoot, we use λ  
near 1. If we just focus on fast response and don’t mind 
about overshoot it should be near 0. In next sections two 
optimization methods are used to minimize this objective 
function. 

2.3. Asexual Reproduction Optimization  
Asexual Reproduction Optimization (ARO) is an 

individual and a model free optimization technique. It is 
proposed in 2010. ARO inspired from the budding 
procedure of asexual reproduction. ARO principally is an 
evolutionary algorithm. [19,20] 

Each individual produces a childthat in ARO called bud. 
Then, they participate in a competition with each other 
and more deserving person is selected based on a 
performance directory that has been defined as an 
objective function optimization problem. 

A binary string indicates each individual which is a 
decision variable vector, X = (x1, x2, . . .,xn); → X ∈Rn. 
Each variable is characterized as the chromosome which 
prepared by a number of bits, called genes. Thus, for a 
chromosome with a length of L the first bit is the sign of 
the individual. The second and third bit of L shows the 
integer part, L1, and decimal part, L2, of the chromosome, 
respectively. So L = L1 + L2 + 1 and the length of each 
individual in the n-the dimensional space is Li = n × L 
[19,20]. 

In ARO each solution in the search space is an 
organism in its environment that resources are limited and 
the most deserving organism can stay alive. To start the 
algorithm, an individual is accidentally initiated in the 
space S. The individual reproduces an offspring labeled 
bud by a particular operator known as reproduction 
mechanism. According to a performance index or a fitness 
function the parent and its offspring compete to stay alive. 
If the bud wins the competition, its parent will be rejected. 
Therefore, the bud is replaced with its parent and it 
becomes the new parent. If the parent wins the bud will be 
thrown away. When the stopping criteria are satisfied the 
algorithm is stopped. [19,20]. 

2.4. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) algorithm was 

introduced for the first time in 1995. PSO is a population-
based evolutionary optimization algorithm. It is inspired 
from social behavior of bird and fish. In this method, a 
swarm has a set of population members that called particle. 
A position and velocity are defined for each particle. The 
position indicates a nominee solution in the solution space. 
The velocity transfers it from one position to another in 
the multidimensional solution space. A fitness function is 
used to calculate the particle value of each position, until 
the convergence criteria are satisfied [21]. 

3. Case Study: Nonlinear Non-isothermal 
Continuous Stirred Tank Reactor, 
Implementation and Results 

3.1. Case Study Descriptions 
In this section, first ADRC that is tuned by ARO will be 

applied to a non-isothermal CSTR with constant 
parameters and its performance will be compared to 
ADRC tuned by PSO and both of them will be compared 
with PID control. Then, all of them will be applied to an 
exothermic CSTR with time varying parameters including 
activation energy and heat transfer coefficient. 

Consider a simple liquid-phase, irreversible chemical 
reaction where chemical species A reacts to form species 
B. The reaction can be written as A B→ . We assume that 
the rate of reaction is first-order with respect to 
component A: 

 Ar kC=  (15) 

Where r is the rate of reaction of A per unit volume, k is 
the reaction rate constant, and AC  is the molar 
concentration of species A. For single-phase reactions, the 
rate constant is typically a strong function of reaction 
temperature given by the Arrhenius relation[6]: 

 0 exp( / )k k E RT= −  (16) 

Where 0k  is the frequency factor, R is the gas constant, 
and E is the activation energy. 

The diagram of the CSTR is shown in Figure 2. The 
inlet flow consists of pure species A with molar 
concentration AC . Cooling coils, fix the reaction mixture 
at the desired operating temperature by removing heat that 
is produced in the reaction.  
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Figure 2. Non-isothermal CSTR 

The process model consists of two nonlinear ordinary 
differential equations are given [6]: 
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Where TC, coolant temperature, is the manipulated 
variable; and T, reactor temperature, is the controlled 
variable. To produce a desire component concentration, 
coolant flow rate influences the reactor temperature and 
reaction rate. Here it is assumed that the coolant flow rate 
is fixed. Due to physical limitations and reactor safety it is 
necessary to control the temperature accurately. Other 
parameters are given in Table 1. [6] 

The MATLAB software is employed for simulation 
and numerical solving the equations of the system’s 
dynamics described by Eq. (17), Eq. (18). Also, it is 
considered the continuous implementation with the 
sampling time 0.001secT = . The values of equilibrium 
points are given in Table 1. 

Table 1. Parameters of non-isothermal CSTR 
Parameter Value Parameter Value 

Feed 
concentrationCAf 

1mol/lit Feed flow rateq 100 
lit/min 

Feed temperature 

fT  350K Activation energy 
E
R

 8750 k 

Mixture densityρ 1000kg/m3 Rate constant 0k  7.2×1010 
min-1 

Reactor volume V 100lit Overall heat transfer 
coefficient UA 

5×104 
j/min.k 

Heat capacity 

pC  0.239 j/g.k 
Coolant 

temperature cT ss  300 k 

Hear of reaction -
ΔH 

5×104 
j/min.k 

Concentration of A 

AC ss  
0.5 

mol/lit 

Reactor 
temperature Tss 350 k   

3.2. Case Study 1: Temperature Control of 
Non-isothermal CSTR with Constant 
Parameters 

The open-loop step responses to step changes in Tc is 
shown in Figure 3. It is seen that the process is strongly 
nonlinear and highly unstable. 

In order to control the temperature of this oscillating 
plant, ADRC-ARO, ADRC-PSO and PID approaches are 

applied. In Figure 4 the setpoint tracking behaviors of 
ADRC-ARO and ADRC-PSO and PID are compared. For 
setpoint changes, as shown in Table 2, ADRC-ARO 
shows a faster response than the ADRC-PSO control 
strategies. PID shows faster response than ADRC-ARO 
but it delivers a very big overshoot and longer settling 
time in setpoint changes. 

Figure 5 shows the disturbance rejection performance 
of ADRC-ARO and ADRC-PSO controller strategies. 
Because the performance of PID was so poor in 
disturbance rejection it is preferred not to compare it with 
other methods. For -30K change in inlet feed temperature 
at t=100, as disturbance, ADRC-ARO exhibits a faster 
response toward setpoint when compared to ADRC-PSO.  

In comparison with ADRC-PSO and PID, ADRC-ARO 
shows better performance with much faster response to the 
setpoint. 

 

Figure 3. Reactor temperature variation with step changes in cooling 
water temperature Tc from i) 300 K to 305 K and ii) 300 K to 290 K. 

 

Figure 4. Setpoint tracking of CSTR with constant parameters 

 

Figure 5. The disturbance rejection performance for -30 K step change 
in the inlet feed temperature (Tf) of the CSTR at t=100sec 

Table 2. Set point tracking performance of controllers 
Controller Settling time (2%) from 350K to 360K Rise time 

ADRC-ARO 49.4 Sec 10.3 Sec 
ADRC-PSO 88.1 Sec 18.9 Sec 

3.3. Case Study 2: Temperature Control of 
the Non-isothermal CSTR with Time Varying 
Parameters 
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In this section, the previously ADRC-ARO and ADRC-
PSO and PID control strategies will be applied to the non-
isothermal CSTR with time varying parameters. Two case 
studies will be examined in which the CSTR shows strong 
nonlinearities. First, it is supposed that the heat transfer 
coefficient and so the overall heat transfer coefficient is 
varying with time due to fouling, then the Time varying 
activation energy caused by deactivation and regeneration 
of the catalyst are considered to show the robustness 
capability of ADRC approach. 

3.3.1. Time Varying Heat Transfer Coefficient 
Fouling is one of the most serious issues in heat transfer 

equipment. In the period of process operation, when a 
material is deposited on a heat transfer surface, Fouling 
happens. In practical applications, heat transfer surfaces 
usually become polluted with deposits and this makes 
extra resistance to the stream of heat. There are two usual 
cases fouling film over a period of time. One is asymptotic 
fouling. In this case, the resistances to heat transfer 
increases fast when the operation starts and becomes 
asymptotic to a steady state value at the end. The other 
one is linear fouling, where the fouling resistance 
increases linearly during the entire process operation. In 
this paper, we consider just second case that the fouling 
film increase linearly over the period of process operation. 
Therefore, the overall heat transfer coefficient is given by 
following equation [22]: 

 ( ) ( ) ( ),  1 0.01 ,  1d h h cU t U t t t= Φ Φ = − Φ =  (19) 

( )c tΦ  and ( )h tΦ  are time-varying parameters which 
indicate the catalyst deactivation / regeneration and heat 
transfer fouling [22]. 

The open-loop step responses to step changes in Tc is 
shown in Figure 6. It is seen that the process is strongly 
nonlinear and non-stationary. 

 

Figure 6. The open - loop response of the CSTR with the time varying 
heat transfer coefficient to step changes in cooling water temperature Tc 
from i) 300 K to 305 K and ii) 300 K to 290 K 

 

Figure 7. Setpoint tracking performance of CSTR with time varying heat 
transfer coefficient 

 

Figure 8. The disturbance rejection performance for -30 K step change 
in the inlet feed temperature (Tf) of the CSTR with time-varying heat 
transfer coefficient at t=100sec. 

Figure 7 shows that the setpoint tracking performance 
of ADRC-ARO and ADRC-PSO are only slightly affected 
by the time varying heat transfer coefficient. PID 
controller, however, severely affected by fouling. In 
setpoint tracking ADRC-ARO has faster response with 
less settling time than ADRC- PSO. In disturbance 
rejection in Figure 8, ADRC-ARO exhibits faster response 
than ADRC-PSO. So ADRC-ARO for both setpoint 
tracking and disturbance rejection acts efficiently. 

3.3.2. Time Varying Activation Energy 
The temperature dependence of the rate expression is 

usually represented by the rate constant through the 
Arrhenius in (16). 

Although the activation energy is not affected by 
temperature in the moderate temperature range, there are 
some exceptions. Other factors known to affect the 
activation energy include pressure and catalyst in the 
reaction. In the presence of a catalyst, an important factor 
which affects the rate of reaction is the deactivation of the 
catalyst by poisoning. There is no exact theoretical 
expression for the deactivation process. However, some 
empirical expressions have been reported. In this case 
study, the general equation for k is given by [23]: 

 0 expexp . ( )c
Ek k t

RT
φ = − 

 
 (20) 

 ( ) exp( )c t tφ α= −  (21) 

3.3.2.1. Catalyst Deactivation ( 0α > ) 
In the presence of a catalyst, the reaction rate is greatly 

influenced by the catalyst condition. During the period of 
reaction, because of poisoning, the catalyst may be 
deactivated. The catalyst deactivation is usually 
unpredictable, so an empirical correlation is used just for 
the simulation purpose.  

 

Figure 9. The open-loop response of the CSTR with time varying 
activation energy due to catalyst deactivation coefficient to step changes 
in cooling water temperature Tc from i) 300 K to 305 K and ii) 300 K to 
290 K. 
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The open-loop responses to step changes in Tc is shown 
in Figure 9.  

The setpoint tracking and disturbance rejection of 
different controllers are shown in Figure 10 and Figure 11. 
We can see that the performance of the ADRC-ARO is 
much better than ADRC-PSO and PID in setpoint tracking. 
In Figure 11 the temperature of the inlet feed (Tf) is 
decreased by -30k and shows that both ADRC-ARO and 
ADRC-PSO methods reject it in less than 30 second. 
Obviously the performance of ADRC-ARO in setpoint 
tracking and disturbance rejection is better than ADRC-
PSO. 

 

Figure 10. Setpoint tracking performance of CSTR with time varying 
activation energy due to catalyst deactivation ( 0α > ) 

 

Figure 11. The disturbance rejection performance for -30 K step change 
in the inlet feed temperature (Tf) of the CSTR with time-varying 
activation energy due to catalyst deactivation at t=100sec. 

3.3.2.2. Catalyst Regeneration ( )0α <  
Catalyst regeneration is a last case that is considered in 

this work. During this process, the catalyst is reactivated 
and the reaction rate can get to be very large. Catalyst 
regeneration could be an extremely serious situation. A 
great amount of heat is produced; however, it cannot be 
removed in time. This may result in the reactor to lose 
temperature control and equipment damage. Once in a 
while a blast may cause extreme harm. The open-loop 
simulation shown in Figure 12 exhibits this point. 

 

Figure 12. The open-loop response of the CSTR with time varying 
activation energy due to catalyst regeneration to step changes in cooling 
water temperature Tc from i) 300 K to 305 K and ii) 300 K to 290 K. 

In Figure 13 and Figure 14 the performance of 
controllers in setpoint tracking and disturbance rejection 
are demonstrated. Figure 13 shows that the performance 
of the ADRC-ARO is much better than ADRC-PSO and 
ADRC-PSO is better than PID because it has less settling 
time and overshoot. In Figure 13 Similar to constant 
parameter and time varying heat transfer coefficient, PID 
method starts with a big overshoot and is affected more 
from regeneration. So unlike ADRC-ARO and ADRC-
PSO, performance of PID is seriously influenced by this 
change which is so dangerous and can damage to the 
reactor. Overall the performance of ADRC-ARO is more 
superior than other controllers mentioned in this paper. 

 

Figure 13. Setpoint tracking performance of CSTR with time varying 
activation energy due to catalyst regeneration 

 

Figure 14. The disturbance rejection performance for -30K change in the 
inlet feed temperature (Tf) of the CSTR with time-varying activation 
energy due to catalyst regeneration at t=100sec. 

4. Conclusion 
In this paper, an optimal active disturbance rejection 

controller, ADRC-ARO, was proposed to control the 
temperature of the CSTR. The ADRC-ARO is applied to a 
non-isothermal CSTR. First, the performance of this 
approach was studied in CSTR with constant parameters 
and then with time varying parameters including heat 
transfer coefficient due to fouling and activation energy 
caused by deactivation and regeneration of the catalyst. 
The performance of ADRC-ARO was compared with 
ADRC-PSO approach. ADRC-ARO revealed 
Improvement specially in setpoint tracking with faster 
response time and less settling time in all case studies in 
this paper. Then both approaches have been compared 
with PID control. Obviously, ADRC-ARO and ADRC-
PSO performed better than PID, this comparison applied 
just because we have seen the extreme scope of the 
nonlinearity by PID control. Finally, it has been proven 
that ADRC-ARO has an excellent performance in 
controlling the non-isothermal CSTR in the situation when 
the PID controller failed. It has been demonstrated that the 
ADRC-ARO controller is robust enough in an extensive 
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range of operating conditions. Generally, if the parameters 
of ADRC tuned properly, it performs more efficiently in 
setpoint tracking and rejecting external and un-modeled 
disturbances. 
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