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Abstract  This work is concerned with the influence of Hall current on unsteady incompressible MHD fluid with 
slip conditions. The effects of Hall current on uniform suction or injection are also seen. As a special case of this 
problem for no slip condition, the effects of Hall current on Couette flow are discussed. The resulting unsteady 
problems for velocity are solved by means of Laplace transform, however, the inversion procedure for obtaining the 
solution is not a trivial matter. The characteristics of the complex transient velocity, complex overall transient 
velocity, complex steady state velocity are analyzed and discussed for both the cases. Graphical results for the Hall 
parameter reveal that it has significant influence on the real and imaginary parts of the velocity profiles. 
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1. Introduction 
The study of Hall current is very important in the 

presence of a magnetic field [1] A current induced in a 
direction normal to the electric and magnetic fields is 
called Hall current. Magnetohydrodynamic (MHD) flows 
with Hall effect are encountered in power generators, 
MHD accelerators, refrigeration coils, electric 
transformers etc. Considerable efforts have been devoted 
to study the effects of Hall current in various directions. 
The effect of Hall current on the MHD boundary layer 
flow is considered by authors [2-13]. Furthermore, the 
heat transfer and Hall effect in the stretching flow are 
examined in the Refs. [14-20]. Exact solutions of Navier - 
Stokes equations are rare due to their inherent nonlinearity. 
Exact solutions are important because they serve as 
accuracy checks for numerical solutions. Complete 
integration of these equations is done by computer 
techniques, but the accuracy of the results can be 
established only by comparison with exact solutions. In 
the literature, there are a large number of Newtonian fluid 
flows for which exact solutions are possible [21,22,23,24,25] 
The effects of transverse magnetic field on the flow of an 
electrically conducting viscous fluid have been studied 
extensively in view of numerous applications to 
astrophysical, geophysical and engineering problems [26-31]. 
If the working fluid contains concentrated suspensions 
then the wall slip can occur [32]. Khaled and Vafai [23] 
studied the effect of the slip on Stokes and Couette flows 
due to an oscillating wall. 

However, the literature lacks studies that take into 
account the possibility of fluid slippage at the walls. 
Applications of these problems appear in microchannels 

or nanochannels and in applications where a thin film of 
light oil is attached to the moving plates or when the 
surface is coated with special coating such as a thick 
monolayer of hydrophobic octadecyltrichlorosilane [33]. 
Yu and Ameel [34] imposed non-linear slip boundary 
conditions on flow in rectangular microchannels. 

In this study, the effects of Hall current on the flow of 
an incompressible, unsteady, viscous, MHD fluid with slip 
conditions are considered. Unsteady and steady velocity 
profiles with mass transfer are presented and solved 
exactly. There is mass injection from one plate and the 
same amount of suction on the other plate. When the fluid 
motion is set up from rest, the velocity field contains 
transients, determined by the initial conditions which 
gradually disappeared in time. The effects of Hall current 
and time on the transient velocity and on overall transient 
velocity has been seen graphically for injection / suction 
both. The effect of slip parameter on steady state velocity 
for injection / suction is also shown graphically in the 
presence of Hall effects. As a limiting case by taking slip 
parameter 0λ → , the effects of Hall parameter on overall 
transient velocity for Couette flow problem are also 
discussed in detail. 

2. Theoretical Derivation 
Consider an MHD incompressible, viscous, unsteady 

flow problem with Hall effects, in which there is slip 
between the bottom wall and fluid and also between top 
wall and fluid. There is mass injection velocity vw  at the 
bottom wall and mass suction velocity vw  at the top wall, 

0vw >  correspond to injection and 0vw <  correspond to 
suction. 
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The governing equation for this problem can be 
obtained as 

( )
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ϕ
ν

ϕ

+∂ ∂ ∂
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where / ,ν µ ρ=  N σ= 2
0B / ρ , µ  is the dynamic 

viscosity, ν  is the kinematic viscosity, ρ  is the density 
of the fluid, σ  is the electric conductivity of the fluid, 

0B  is the applied magnetic field, N  is the MHD factor or 
parameter, ϕ  is the Hall parameter. For the boundary 
conditions we consider the existence of slip between the 
velocity of the fluid at the walls and speed of the walls. 

 

Figure 1. Geometry of the problem 
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The initial condition is 
 ( ,0) 0u y =  (4) 
where bottom wall is located at 0y = , top wall is located 
at y h= , λ  is the slip parameter, ( 0λ =  gives the usual 
no slip condition at the wall) and 0U  is the velocity at the 
upper wall. Eqs. (1), (2), (3) and (4) can be non-
dimensionalized by defining 
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Then Eqs. (1), (2), (3) and (4) become 
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where M = ( ) ( )21 / 1N iϕ ϕ+ + , 2 /N Nh ν= , / hλ λ=  

and R ve w= /h ν  (Reynolds number). Decomposing 
( , )U Y T  into two parts say transient part and a steady 

state part, 
 ( , ) ( , ) ( )U Y T U Y T U Yt s= +  (9) 

Then we have two separate problems and the steady 
state part will be 
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The solution of Eq. (10) with BCs (11) and (12) can be 
obtained as 
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where / 2a Re=  and 
2
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If there is no mass transfer at the walls then 0Re = , so 
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, Eq. (13) becomes 
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The transient part problem becomes 

 ( ) ( ) ( )
( )

2, , ,
  ,2

U Y T U Y T U Y Tt t tR M U Y Te tT Y Y

∂ ∂ ∂
+ = −

∂ ∂ ∂
 (15) 

 ( , )
(0, ) 0,

0

U Y TtU Tt Y Y
λ
∂

− =
∂ =

 (16) 

 ( , )
(1, ) 1,

1

U Y TtU Tt Y Y
λ
∂

+ =
∂ =

 (17) 

 ( ,0) ( ).U Y U Yt s= −  (18) 
The solution can be derived by using Laplace 

transformation techniques [35] . The solution can be 
shown as 
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where 1L−  denotes the inverse Laplace transform, 

/ 2a Re=  and 
2

4
Reb s M= + + . The inverse Laplace 

transform of above Eq. (19) shows that we have a simple 
pole at 0s =  and infinite number of poles (located on the 
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negative real axis) at ( )2 2s l a Mn n= − + + , 
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and are given by 
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The transient part velocity becomes 
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where Re s  stands for residue and ( , )U Y st  is given by 
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Where 
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The residue at 0s =  gives steady velocity. 
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The transient part velocity from Eq. (21) becomes 
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Therefore, the overall transient solution from Eq. (9) 
becomes 
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2.1. No Slip Problem 
When there is no slip ( )0λ =  between the fluid and the 

wall than above problem reduces to 
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This is an unsteady MHD incompressible viscous 
Couette flow problem with Hall effects, in which the 
bottom wall is fixed and subjected to a mass injection 
velocity vw , and there is mass suction velocity wv  at the 
top wall. The top plate is stationary when 0t < , there is 
only mass transfer in the transverse direction, say y −  
direction. At 0t = , the top wall is started impulsively to a 
constant velocity 0U . The solution of this problem can be 
derived from above problem by applying no slip condition 

0λ = . Steady state velocity can be deduced from Eq. (13) 
by putting 0λ = . 
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The transient part solution can be obtained from Eq. (27) 
by putting 0λ = . 
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The overall transient solution can be deduced from Eq. 
(28) by putting 0λ = . 
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where M  = ( ) 2
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3. Graphs and Discussion 
In this part we discuss the variation of the real and 

imaginary parts of the complex transient part velocity Ut , 
complex overall transient velocity U , complex steady 
state velocity Us  with distance from the wall Y  for 
different values of Reynolds number Re , Hall parameter 

ϕ , magnetic field parameter N , slip parameter λ  and 
time T . Figure 2 and figure 3 hows the variation of real 
and imaginary parts of the transient part velocity Ut  with 
distance from the wall Y  for several values of Hall 
parameter ϕ  by keeping N , λ  and T  fixed. Figure 2 
shows that when there is mass suction 0Re <  at the top 
wall, with increase in Hall parameter, the real part of the 
transient part velocity increases in magnitude. Figure 3 
shows that when there is mass suction 0Re <  at the top 
wall, with increase in Hall parameter, the imaginary part 
of the transient part velocity also decreases in magnitude. 
Figure 4 shows that when there is mass injection 0Re >  
at the bottom wall, with increase in Hall parameter, the 
real part of the transient part velocity Ut  increases. Figure 
5 shows that when there is mass injection 0Re >  at the 
bottom wall, with increase in Hall parameter, the 
imaginary part of the transient part velocity Ut  decreases 
and will become weaker as compared to the case of real. 
From Figure 6 it is observed that for suction at top wall 
and for fixed values of λ , ϕ  and ,N  the real part of the 
transient part velocity Ut  decreases in magnitude with 
increase in time. From Figure 7 it is observed that for 
suction at top wall and for fixed values of λ , ϕ  and ,N  
the imaginary part of the transient part velocity Ut  also 
decreases in magnitude with increase in time and will 
become weaker as compared to the case of real. From 
Figure 6 and Figure 7 it is seen that the real and imaginary 
parts of the transient part velocity will decay with time, 
which is consistent with what we expected. 

Figure 8 shows that for injection at bottom wall and for 
fixed values of λ , N  and ϕ  the real part of the transient 
part velocity Ut  decreases in magnitude with increase in 
time. Figure 9 shows that for injection at bottom wall and 
for fixed values of λ , N  and ϕ  the imaginary part of the 
transient part velocity Ut  decreases in magnitude with 
increase in time. From Figure 8 and Figure 9 it is seen that 
the real and imaginary parts of the transient part velocity 
will decay with time. From Figure 6, Figure 7 Figure 8 
and Figure 9 it is clear that after a certain time, the 
complex transient part velocity will die away and velocity 
will become developed. Figure 10 and Figure 11 indicates 
variation of the real and imaginary parts of overall 
transient velocity U  with Y  for fixed values of ,λ  N  
and T . Figure 10 shows that for 5 0Re = − < , with 
increase in Hall parameter ϕ , real part of the overall 

transient velocity U  increases. Figure 11 shows that for 
5 0Re = − < , with increase in Hall parameter ϕ , 

imaginary part of the overall transient velocity U  
decreases. Figure 12 shows that for 5 0Re = > , with 
increase in Hall parameter ϕ , the real part of the overall 
transient velocity U  increases. Figure 13 shows that for 

5 0Re = > , with increase in Hall parameter ϕ , the 
imaginary part of the overall transient velocity U  
decreases. The real and imaginary parts of the overall 
transient velocities for 5Re =  at different times are 
depicted in Figure 14 and Figure 15. Figure 14 shows that 
for mass injection at the bottom wall, real part of the 
overall transient velocity U  increases with increase in 
time. Figure 15 shows that for mass injection at the 
bottom wall, imaginary part of the overall transient 
velocity U  decreases with increase in time. Figure 16 and 
Figure 17 illustrates the variation of real and imaginary 
parts of the steady state velocity Us  with Y  for several 

values of slip parameter λ  and for fixed value of N  and 
ϕ . Figure 16 shows that for suction at the top wall with 

increase in slip parameter λ , the real part of the steady 
state velocity Us  increases. Figure 17 shows that for 

suction at the top wall with increase in slip parameter λ , 
the imaginary part of the steady state velocity Us  
increases. 

 

Figure 2. Variation of Re[ ]Ut with Y  for several values of ϕ  and 

5Re = −  

 

Figure 3. Variation of Im[ ]Ut with Y  for several values of ϕ  and 

5Re = −  
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Figure 4. Variation of Re[ ]Ut with Y  for several values of ϕ  and 

5Re =  

 

Figure 5. Variation of Im[ ]Ut with Y  for several values of ϕ  and 

5Re =  

 

Figure 6. Variation of Re[ ]Ut with Y  for several values of T  and 

5Re = −  

 

Figure 7. Variation of Im[ ]Ut with Y  for several values of T  and 

5Re = −  

 

Figure 8. Variation of Re[ ]Ut with Y  for several values of T and 

5Re =  

 

Figure 9. Variation of Im[ ]Ut with Y  for several values of T and 

5Re =  

 

Figure 10. Variation of Re[ ]Ut with Y  for several values of ϕ and 

5Re = −  

 

Figure 11. Variation of Im[ ]Ut with Y  for several values of ϕ and 

5Re = −  
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Figure 12. Variation of Re[ ]Ut with Y  for several values of ϕ  and 

5Re =  

 

Figure 13. Variation of Im[ ]Ut with Y  for several values of ϕ and 

5Re =  

 

Figure 14. Variation of Re[ ]Ut with Y  for several values of T and 

5Re =   

 

Figure 15. Variation of Im[ ]Ut with Y  for several values of T and 

5Re =   

 

Figure 16. Variation of Re[ ]Ut with Y  for several values of λ  and 

5Re = −  

 

Figure 17. Variation of Im[ ]Ut with Y  for several values of λ  and 

5Re = −  

 

Figure 18. Variation of Re[ ]Ut with Y  for several values of λ  and 

5Re =  

 

Figure 19. Variation of Im[ ]Ut with Y  for several values of λ  and 

5Re =  
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Figure 20. Variation of Re[ ]U  with Y  for several values of ϕ  and 

5Re = −  for Couette flow. 

 

Figure 21. Variation of Im[ ]U  with Y  for several values of ϕ  and 

5Re = −  for Couette flow. 

 

Figure 22. Variation of Re[ ]U  with Y  for several values of ϕ  and 

5Re =  for Couette flow. 

 

Figure 23. Variation of Im[ ]U  with Y  for several values of ϕ  and 

5Re =  for Couette flow. 

Figure 18 shows that for injection at the bottom wall 
with increase in slip parameter λ , the real part of the 
steady state velocity Us  decreases. Figure 19 shows that 
for injection at the bottom wall with increase in slip 
parameter λ , the imaginary part of the steady state 
velocity Us  increases. Figure 20, Figure 21, Figure 22 
and Figure 23 are plotted for Hall current on Couette flow 
with no slip. Figure 20 and Figure 21 indicates variation 
of the real and imaginary parts of overall transient velocity 
U  with Y  for fixed values of N  and T . Figure 20 
shows that for 5 0Re = − < , with increase in Hall 
parameter ϕ , real part of the overall transient velocity U  
increases. Fig 21. shows that for 5 0Re = − < , with 
increase in Hall parameter ϕ , imaginary part of the 
overall transient velocity U  increases. Figure 22 shows 
that for 5 0Re = − > , with increase in Hall parameter ϕ , 
the real part of the overall transient velocity U  increases. 
Figure 23 shows that for 5 0Re = − > , with increase in 
Hall parameter ϕ , the imaginary part of the overall 
transient velocity U  decreases. 

4. Final Remarks 
In this study exact solutions for the velocity field in the 

presence of Hall current, magnetic field, porosity and slip 
parameter are constructed. A uniform magnetic field is 
applied transversely to the flow. The exact solutions of the 
velocity field for flow subjected to the slip conditions 
between the two parallel plates and fluid are obtained by 
means of Laplace transform. The solutions so obtained, 
depending on the initial and the boundary conditions, are 
presented as sum of the steady state transient solutions. 
The results for Couette flow with Hall effects are also 
found by taking 0λ = . Graphical results for mass transfer 
and Hall current reveal that it has significant influence on 
the velocity distribution. The current analysis will be 
useful in dealing with real engineering problems. 
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