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Abstract  This article takes advantage of the mathematical software Maple for the auxiliary tool to study six types 
of definite integrals. The infinite series forms of these definite integrals can be obtained by using Parseval’s theorem. 
In addition, we propose some examples to do calculation practically. The research methods adopted in this study 
involved finding solutions through manual calculations and verifying these solutions using Maple. 
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1. Introduction 
In calculus and engineering mathematics courses, we 

learnt many methods to solve the integral problems 
including change of variables method, integration by parts 
method, partial fractions method, trigonometric 
substitution method, and so on. In this paper, we study the 
following six types of definite integrals which are not easy 
to obtain their answers using the methods mentioned 
above.  
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where r  is a real number. We can obtain the infinite 
series forms of these definite integrals by using Parseval’s 

theorem; these are the major results of this paper (i.e., 
Theorems 1 and Theorems 2). The study of related 
integral problems can refer to [1-26]. On the other hand, 
we provide some definite integrals to do calculation 
practically. The research methods adopted in this study 
involved finding solutions through manual calculations 
and verifying these solutions by using Maple. This type of 
research method not only allows the discovery of 
calculation errors, but also helps modify the original 
directions of thinking from manual and Maple calculations. 
For this reason, Maple provides insights and guidance 
regarding problem-solving methods.  

2. Main Results 
Firstly, we introduce a notation and a definition and 

some formulas used in this article. 

2.1. Notation 

Let ibaz +=  be a complex number, where 1−=i , 
ba, are real numbers. We denote a  the real part of z  by 

)Re(z , and b  the imaginary part of z  by )Im(z . 

2.2. Definition 
Suppose )(xf  is a continuous function defined 

on ]2,0[ π , the Fourier series expansion of 

)(xf is )sincos(
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2.3. Formulas  

2.3.1. Euler’s Formula  

xixeix sincos += , where x is any real number. 

2.3.2. DeMoivre’s Formula 

nxinxxix n sincos)sin(cos +=+ , where n  is any 
integer, and x  is any real number. 

2.3.3. ([27]) 
)sinh( iqp + qpiqp sincoshcossinh += , 

where qp,  are real numbers. 

2.3.4. ([27]) 
)cosh( iqp + qpiqp sinsinhcoscosh += , 

where qp,  are real numbers. 

2.3.5. Taylor Series Expansion of Hyperbolic Tangent 
Function ([28]) 
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numbers for all positive integers n . 

2.3.6. Taylor Series Expansion of Hyperbolic 
Cotangent Function ([28]) 
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complex number, π<< z0 . 
Next, we introduce an important theorem used in this 

study. 

2.4. Parseval’s Theorem ([29]) 
If )(xf is a continuous function defined on ]2,0[ π , 

and )2()0( πff = . Suppose the Fourier series 
expansion of )(xf is 

)sincos(
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Before deriving the first major result of this paper, we 
need a lemma. 

2.5. Lemma 1  
Suppose qp,  are real numbers with 

0cossinh 22 ≠+ qp . Then  

  (7) 

   (8) 

Proof  

  
(By Formulas 2.3.3 and 2.3.4) 

And 

   

In the following, we find the infinite series forms 
of the definite integrals (1), (2) and (3). 

2.6. Theorem 1  
Suppose r  is a real number with 2/π<r . Then the 

definite integrals  
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   (11) 
Proof Because 
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(By Formula 2.3.5) 
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(By DeMoivre’s formula) 
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(By Euler’s formula) (12) 

By Parseval’s theorem, we obtain 

  
Similarly, because 

  

(By Formula 2.3.5) 
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Also using Parseval’s theorem, we have  

  
On the other hand, from the summation of Eq. (9) and 

(10) and using Eq. (8), we obtain 

   
Before deriving the second major result of this study, 

we also need a lemma. 

2.7. Lemma 2  
Suppose qp,  are real numbers with 

0sinsinh 22 ≠+ qp . Then  

  (14) 

  (15) 
Proof  

  
And 

  
In the following, we determine the infinite series forms 

of the definite integrals (4), (5) and (6). 

2.8. Theorem 2  
Suppose r  is a real number with π<< r0 . Then the 

definite integrals  

  (16) 

  (17) 

 (18) 
Proof Because 
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(By Formula 2.3.6) 

  (19) 
Using Parseval’s theorem, we have  

  
Similarly, because 

    
(By Formula 2.3.6) 

 .  (20) 

Also by Parseval’s theorem, we obtain  

  
In addition, from the summation of Eq. (16) and (17) 

and using (15), we have 

  

3. Examples 
In the following, for the definite integrals in this study, 

we provide some examples and use Theorems 1 and 2 to 
determine their infinite series forms. On the other hand, 
we employ Maple to calculate the approximations of these 
definite integrals and their solutions for verifying our 
answers. 

3.1. Example 1  
Taking 3/1=r into Eq. (9), we obtain the definite 

integral 

   (21) 
Next, we use Maple to verify the correctness of Eq. (21). 
>evalf(int((sinh(1/3*cos(x))*cosh(1/3*cos(x)))^2/((sinh

(1/3*cos(x)))^2+(cos(1/3*sin(x)))^2)^2,x=0..2*Pi),18); 
0.349545626476568261 
>evalf(Pi*sum(2^(4*n)*(2^(2*n)-

1)^2*(bernoulli(2*n))^2/((2*n)!)^2*(1/3)^(4*n-
2),n=1..infinity),18); 

0.349545626476568260 
Similarly, if 2/1=r  in Eq. (10), we have 

  (22) 
>evalf(int((sin(1/sqrt(2)*sin(x))*cos(1/sqrt(2)*sin(x)))^

2/((sinh(1/sqrt(2)*cos(x)))^2+(cos(1/sqrt(2)*sin(x)))^2)^2,
x=0..2*Pi),18); 

1.61624943295020547 
>evalf(Pi*sum(2^(4*n)*(2^(2*n)-

1)^2*(bernoulli(2*n))^2/((2*n)!)^2*(1/sqrt(2))^(4*n-
2),n=1..infinity),18); 

1.61624943295020547 
Finally, let 4/3=r in Eq. (11), then 

  (23) 
>evalf(int(((sinh(3/4*cos(x)))^2+(sin(3/4*sin(x)))^2)/((

sinh(3/4*cos(x)))^2+(cos(3/4*sin(x)))^2),x=0..2*Pi),18); 
3.66517840220898049 
>evalf(2*Pi*sum(2^(4*n)*(2^(2*n)-

1)^2*(bernoulli(2*n))^2/((2*n)!)^2*(3/4)^(4*n-
2),n=1..infinity),18); 

3.66517840220898048 

3.2. Example 2  
Let 3=r in Eq. (16), we obtain the definite integral 

    (24) 
>evalf(int((sinh(3*cos(x))*cosh(3*cos(x)))^2/((sinh(3*

cos(x)))^2+(sin(3*sin(x)))^2)^2,x=0..2*Pi),18); 
11.5167959003610174 
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>evalf(Pi*(16/9+sum(2^(4*n)*(bernoulli(2*n))^2/((2*n
)!)^2*3^(4*n-2),n=2..infinity)),18); 

11.5167959003610174 
In addition, if taking 5=r  into Eq. (17), then 

   (25) 
>evalf(int((sin(sqrt(5)*sin(x))*cos(sqrt(5)*sin(x)))^2/((

sinh(sqrt(5)*cos(x)))^2+(sin(sqrt(5)*sin(x)))^2)^2,x=0..2*
Pi),18); 

0.531916497721471181 
>evalf(Pi*(4/45+sum(2^(4*n)*(bernoulli(2*n))^2/((2*n

)!)^2*(sqrt(5))^(4*n-2),n=2..infinity)),18); 
0.531916497721471182 
On the other hand, let 6/13=r in Eq. (18), then  

 (26) 
>evalf(int(((sinh(13/6*cos(x)))^2+(cos(13/6*sin(x)))^2

)/((sinh(13/6*cos(x)))^2+(sin(13/6*sin(x)))^2),x=0..2*Pi),
18); 

5.01918539817249445 
>evalf(2*Pi*(36/169+169/324)+2*Pi*sum(2^(4*n)*(be

rnoulli(2*n))^2/((2*n)!)^2*(13/6)^(4*n-
2),n=2..infinity),18); 

5.01918539817249446 

4. Conclusion 
In this paper, we use Parseval’s theorem to determine 

some types of definite integrals. In fact, the applications of 
this theorem are extensive, and can be used to easily solve 
many difficult problems; we endeavor to conduct further 
studies on related applications. In addition, Maple also 
plays a vital assistive role in problem-solving. In the 
future, we will extend the research topic to other calculus 
and engineering mathematics problems and solve these 
problems by using Maple. These results will be used as 
teaching materials for Maple on education and research to 
enhance the connotations of calculus and engineering 
mathematics. 
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