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1. Introduction 

Molecular recognition phenomena involving the 
association, usually by noncovalent interactions, of ligands 
to macromolecules with high affinity and specificity play 
a key role in biology [1,2,3]. Noncovalent interactions are 
a number of relatively weak chemical interactions that 
stabilize the conformations and the interactions between 
molecules. Noncovalent interactions are abundant in 
nature [4,5] and are very important in many research areas 
such as chemistry, [5,6,7,8,9] biology, [10] biochemistry, 
[5,11] molecular recognition, [12] drug design, [13,14,15] 
materials science, [16,17,18] and beyond. 

Although in medicinal chemistry the fundamental 
microscopic interactions giving rise to bimolecular 
association are relatively well understood, designing 
computational schemes to accurately calculate absolute 
binding free energies remains very challenging, being one 
of the main objectives of structure-based drug design to 
reliably and accurately predict the binding affinity of 
compounds that bind to a target protein. 

Computational approaches currently used for screening 
large databases of compounds to identify potential lead 
drug molecules must rely on very simplified approximations 
to achieve the needed computational efficiency [19]. 
Nonetheless, the calculated free energies ought to be very 
accurate to have any predictive value. Furthermore, the 
importance of solvation in scoring ligands in molecular 
docking has been stressed previously [20], as water plays 
an important role in the formation of protein-ligand 
complexes by forcing hydrophobic groups together 
abolishing disruptive effects on the hydrogen bonded 
network in water, which is also known as the hydrophobic 
effect. Before a protein-ligand complex is formed, the 
individual partners that are not a part of hydrophobic 
surface are involved in hydrogen bonds with the 
surrounding water. Once the complex is formed, these 
hydrogen bonds are replaced with hydrogen bonds 
between the ligand and the protein. The contribution of 

hydrophobic interactions to protein-ligand binding is 
normally regarded to be proportional to the size of the 
hydrophobic surface buried during complex formation 
[21,22]. Hydrophobic interactions are also regarded to be 
the main driving force of conformational change of the 
receptor upon ligand binding [23]. 

It has also been suggested that the electrostatic 
interactions mainly determines molecular recognition and 
noncovalent binding [23], but this is by no means a 
general rule, as there are equal evidence to the importance 
of shape complementarity [24]. Molecular recognition  
can be therefore attributed to contributions of electrostatic 
and van der Waals interactions, solvation/desolvation  
and flexibility of ligand and protein. In this context,  
there can be hydrogen bonds resulting from electrostatic 
attraction between an electronegative atom and hydrogen 
that is connected to an electronegative atom, which is 
usually oxygen or nitrogen and less frequently fluorine,  
or some π-π-interactions, or stacking. This also implies 
that it is very important for theoretical calculations to  
have the protonation states of arginine, lysine, aspartic  
and glutamic acids, as well as histidine correctly 
determined for an accurate description of electrostatic 
interactions. Distances of hydrogen bonds are normally 
2.5-3.2 Å and angles of 130º-180º are typically found [25]. 
The strength of a hydrogen bond depends on its 
directionality and its surroundings. The hydrogen bonds  
in the interior of proteins are stronger than the ones  
in the solvent-exposed regions [26]. In addition ionic 
bonds are very important to ligand-protein binding, but 
their strength is considerably reduced in water due to 
shielding. 

The van der Waals interactions, or London dispersion 
forces are used to model the attractive and repulsive forces 
between molecules. If two atoms are too close to each 
other they will repel each other, which make it possible to 
define a fixed radius for the "size" of each atom (van der 
Waals radius). The contact distance between two atoms is 
then the sum of their van der Waals radii. Van der Waals 
interactions can be very important when two surfaces of 
molecules fit well together. 
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At the same time, the change in the degrees of freedom 
of the ligand and protein upon binding results in a change 
of the entropy [27]. It can be viewed as the ligand and 
protein both losing three degrees of translational and 
rotational freedom, while six new vibrational degrees of 
freedom are created for the complex [28].  

One of the especially important directions is the chemistry 
of large systems with noncovalently interacting constituents 
such as biomolecular complexes, [29] host−guest complexes, 
[30,31,32] molecule−surface interactions, [33,34,35] or 
behavior of large molecular ensembles. [36,37] These 
applications motivate the development of scalable and 
robust computational methods [38,39,40,41,42] that can 
simulate complex processes for large numbers of atoms. 
These methods typically rely on approximations that are 
parametrized either by using experimental data, or, more 
recently, by reference quality calculations. 

Due to their technological and fundamental importance, 
noncovalent interactions are studied very extensively using a 
broad range of experimental, theoretical, and computational 
approaches. [16,43,44] In particular, theory and computations 
are indispensable not only for understanding, interpretation, 
and validation of experimental measurements but also for 
obtaining information that is complementary to what is 
accessible in experiments. [45] Noncovalent interaction 
studies therefore often combine experiments with theory 
[46,47] in order to gain more comprehensive insights and 
deeper fundamental understanding.  

There are many distinct types of noncovalent interactions 
that differ in their origin or nature of the interacting species. 
Hydrogen bonding and stacking (or π−π interaction) are 
perhaps the most studied as they play important roles in 
the structural biology of nucleic acids and proteins. In 
addition, many more interaction patterns were identified 
over the years, such as halogen bond, sigma hole 
interaction, blue-shifting hydrogen bond, dihydrogen bond, 
or anion/cation-π interaction to name just a few. For a 
more complete classification of noncovalent interactions see, 
for example, ref [45]. From the theoretical viewpoint, 
noncovalent interactions are best understood in terms of 
electrostatic, induction (or polarization), dispersion, and 
exchange-repulsion components, whose balance determines 
the total intermolecular interaction potential. [48] Electrostatic 
interactions originate from the classical Coulomb interaction 
of the monomer electron distributions (unperturbed by the 
interaction). Induction is the change in the electrostatic 
interaction due to polarization of the monomer charge 
density by the interacting molecules. Dispersion arises 
from the interaction of the instantaneous fluctuations of 
the electronic density and the multipoles induced by this 
fluctuation. At short distance, the attractive forces are 
opposed by the repulsive exchange repulsion due to the 
Pauli principle. Consequently, the dispersion is essentially 
a correlation effect, and it belongs to the most difficult 
cases for accurate description by the basis set quantum 
chemical approaches. The mentioned four components are 
well-defined within the framework of symmetry-adapted 
perturbation theory (SAPT, [49]) and provide a solid and 
insightful background for analysis of intermolecular 
interactions. [50] Note, however, that most benchmark 
quantum chemistry methods provide only the total 
interaction energies, and it is difficult to decompose them 
to the mentioned basic components. 

2. Goals of Ligand Docking and Binding 
Studies 

Molecular docking is a key tool in structural molecular 
biology and computer-assisted drug design as it tries to 
predict the structure of the intermolecular complex formed 
between two or more constituent molecules, trying to 
predict the position and orientation of a ligand (a small 
molecule) when it is bound to a protein in order to know 
the predominant binding mode(s) of a ligand with a 
protein of known three-dimensional structure. Successful 
docking methods search high-dimensional spaces 
effectively and use a scoring function that correctly ranks 
candidate dockings. Docking can be used to perform 
virtual screening on large libraries of compounds, rank the 
results, and propose structural hypotheses of how the 
ligands inhibit the target, which is invaluable in lead 
optimization. The setting up of the input structures for the 
docking is just as important as the docking itself, and 
analyzing the results of stochastic search methods can 
sometimes be unclear.  

Many approaches to studying protein-ligand interactions 
by computational docking are currently available. As 
stated upwards, given the structures of a protein and a 
ligand, the ultimate goal of all docking methods is to 
predict the structure of the resulting complex and to 
predict the biological activity of a given ligand. This 
requires a suitable representation of molecular structures 
and properties, search algorithms to efficiently scan the 
configuration space for favorable interaction geometries, 
and accurate scoring functions to evaluate and rank the 
generated orientations. For many of the available methods, 
tests on experimentally known complexes have appeared 
in the literature and some of them have been used in 
predictive studies on antibody-ligand interactions to 
provide structural insights where adequate experimental 
information is missing. For example, computational 
investigations have applied molecular docking and 
molecular dynamics (MD) simulations to comprehend the 
binding properties of gp120 and its interaction with the 
CD4 receptor and co-receptor in the immune cell [51] and 
a mathematical model that describes the binding of HIV-1 
virus to T cells has also been developed to determine the 
analytical thresholds for the dosage and dosing interval of 
HIV fusion inhibitor enfuvirtide [52]. 

There are two different problems in this task: the posing 
and the scoring. In the first case, the process of 
determining whether a given conformation and orientation 
of a ligand fits the active site is usually a fuzzy procedure 
that returns many alternative results. And in the second 
case, the pose score is a measure of the fit of a ligand into 
de active site. Scoring during posing phase usually 
involves simple energy calculations (electrostatic, van der 
Waals, ligand strain). Further re-scoring might attempt to 
estimate more accurately the free energy of binding (ΔG, 
and therefore KA) perhaps including properties such as 
entropy and solvation. 

The predicted binding and docked energies are the sum 
of the intermolecular energy and the torsional free-energy 
penalty, and the docking ligand's internal energy, 
respectively, and the inhibition constant (Ki) is usually 
calculated as follows: 
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 exp(  1000) / (  )i calK G x R x TK= ∆  (1) 

where ΔG is the docking energy, Rcal is 1.98719, and TK 
is 298. [53,55,56,57] 

For that reason, docking calculations currently have 
limited success beyond the lead identification stage,  
where more accurate lower-throughput computational 
methods are needed. In this regard, the Molecular 
Mechanics/Generalized Born Surface Area (MMGBSA) 
and Molecular Mechanics/Poisson-Boltzmann Surface 
Area (MM-PBSA) methods calculate binding free 
energies using molecular mechanics (force fields) and 
continuum (implicit) solvation models [58]. They have 
been successfully applied across a range of targets and are 
implemented in software programs such as Amber [59], 
Delphi [60] and Schrödinger [61] among others. 

In any case, computational modeling has become a 
powerful tool in understanding detailed protein-ligand 
interactions at molecular level and in rational drug design. 
To study the binding of a protein with multiple molecular 
species of a ligand, one must accurately determine both 
the relative free energies of all of the molecular species in 
solution and the corresponding microscopic binding free 
energies for all of the molecular species binding with the 
protein. In this paper, we aim to provide a brief overview 
of the recent development in computational modeling of 
the solvent effects on the detailed protein-ligand 
interactions involving multiple molecular species of a 
ligand related to rational drug design. In particular, we 
first briefly discuss the main challenges in computational 
modeling of the detailed protein-ligand interactions 
involving the multiple molecular species and then focus 
on the FPCM model and its applications. The FPCM 
method allows accurate determination of the solvent 
effects in the first-principles quantum mechanism (QM) 
calculations on molecules in solution. The combined use 
of the FPCM-based QM calculations and other 
computational modeling and simulations enables us to 
accurately account for a protein binding with multiple 
molecular species of a ligand in solution. Based on the 
computational modeling of the detailed protein-ligand 
interactions, possible new drugs may be designed 
rationally as either small-molecule ligands of the protein 
or engineered proteins that bind/metabolize the ligand. 
The computational drug design has successfully led to 
discovery and development of promising drugs. [62] 

Nowadays, molecular docking plays an important role 
in drug design and discovery with the universal 
application of docking programs, such as Glide, [63] 
Autodock, [64] FlexX, [65] and GOLD. [66] When these 
programs are utilized prior to experimental screening, they 
are usually considered as powerful computational filters to 
reduce labor and cost. All of these docking programs 
explore various docked conformations and determine the 
tightness of interactions between the protein and the 
ligand, but the performance on predicting the 
experimentally observed binding poses is not always 
satisfying. As is widely accepted, the real bottleneck on 
obtaining the reliable docking result lies in the scoring 
functions. [67-72] As a matter of fact, considerable efforts 
have been devoted to the development of approximate 
computational methods for describing protein−ligand 
interactions more accurately, but it still lacks a universal 

scoring function which works reliably for all or most of 
protein−ligand systems. [73,74] For some particular 
protein−ligand systems, most of the widely used docking 
programs are incapable of predicting the correct binding 
modes, imposing great challenge on the effectiveness of 
computer-aided drug design. Therefore, improved 
methods for predicting protein−ligand binding affinities 
are desperately needed. 

Among the approximate methods, the molecular 
mechanics/Poisson−Boltzmann surface area (MM/PBSA) 
approach is attractive because it does not contain any 
parameters that vary for different protein−ligand systems 
and it involves a set of physically well-defined energy 
terms. [58,75-80] The validity of such an approach has 
been explored in previous studies. [75,81,82] In particular, 
Kuhn et al. validated the MM/PBSA approach on different 
biological systems by putting forward the idea of using 
single-minimized structure instead of MD trajectories. [83] 
Moreover, Hou et al. systematically evaluated the 
performance of MM/PBSA on predicting the absolute 
binding affinity for protein−ligand complexes and the 
accuracy of identifying the correct binding poses 
generated from molecular docking programs. [84,85] The 
accuracy of MM/PBSA approach for predicting 
protein−ligand binding affinity relies on the accuracy of 
force field, in addition to other factors. It is known that 
current nonpolarizable force fields, for example, 
CHARMM and AMBER, often fail to give accurate 
representation of the electrostatics of the specific protein 
environment, which is highly inhomogeneous and protein-
specific. Recently, polarized protein-specific charges 
(PPC) based on a fragmentation scheme [86,87,88] for 
electronic structure calculation of biomolecules and the 
continuum dielectric model for the solvent in a 
selfconsistent fashion was developed. [89] Since PPC 
correctly describes the polarized electrostatic state of a 
protein at a given structure, it is able to give a more 
accurate description of the mutual electrostatic 
polarization effect for protein−ligand binding, resulting in 
better description of electrostatic interactions between 
protein and ligand. It has been demonstrated in a number 
of applications that PPC gives significantly better 
agreement with experimental data than standard 
nonpolarizable force fields in protein−ligand binding 
affinity calculations using MM/PBSA. [90] The effect of 
bridging water molecules between the protein and ligand 
attracts more and more attention recently. These water 
molecules are considered to play an important role in 
mediating the interaction between protein and ligand. 
[67,91-98] While only a few scoring functions explicitly 
take the water mediated protein−ligand interactions into 
consideration, [99,100,101,102] explicitly including the 
bridging water molecules in molecular docking and 
scoring function may be crucial for correctly predicting 
the binding poses.  

Although the influence of water on the stabilization of 
drug-receptor complexes is well known (the hydrophobic 
effect) [103], the effect of water on binding kinetics has 
only recently been recognized [104-111]. At small length 
scales, on the order of several angstroms, the motion of a 
few water molecules can be enough to influence binding 
kinetics. Using a combination of experiment and computer 
simulations, Schmidtke and co-workers showed that, 
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when a ligand and a receptor interact via hydrogen bonds 
shielded from water by surrounding hydrophobic regions, 
the resulting complex tends to be more kinetically stable 
than if the hydrogen bonds were less shielded [111] 
(Figure 1). The difficulty with which water diffuses into 
and away from these largely hydrophobic sites appears to 
create a kinetic barrier to ligand binding and unbinding. At 
larger length scales involving nanometer-scale volumes of 
water, collective water motion out of a hydrophobic 
region, or ‘dewetting’, can present a barrier to drug entry 
[107,110,112]. 

Recently, Setny and co-workers explicitly demonstrated 
the existence of a dewetting barrier to ligand binding in 
computer simulations of a model system [107]. As the 
ligand approached the receptor a barrier arose between a 
wet and dry binding pocket. Surmounting this dewetting 
barrier presented the major bottleneck to ligand entry. In 
simulations of beta blockers binding to b-adrenergic 
receptors we observed a qualitatively similar phenomenon 
where entry of the hydrophobic ligand into a hydrophobic 
extracellular vestibule was correlated with the collective 
evacuation of water from that site and from around the 
ligand [110]. This dehydration step corresponded to the 
largest energetic barrier along the drug binding pathway. 

By their very nature, computational methods, in particular 
molecular dynamics simulations, provide detailed structural 
information on metastable intermediate states and transition 
states, at atomic spatial and femtosecond temporal resolution 
[113]. Owing to increases in computational power, it has 
recently become possible to simulate the full process of 
spontaneous ligand–receptor association — which typically 
occurs on the microsecond timescale — in atomic detail, 
providing direct access to detailed information on binding 
mechanisms that have been difficult to access 
experimentally [106,110,114,115]. In recent work from 
our group, molecular dynamics simulations of the 
spontaneous binding of several drug molecules to kinases 
and GPCRs achieved bound poses virtually identical to 
the crystallographically determined bound structures. 
Estimates of on-rates from simulation were also in 
approximate agreement with experimental measurements 
[110,115]. Although the physicochemical models 
underlying molecular dynamics simulations remain 
imperfect, these and other studies demonstrate the 
beneficial use of such simulations in probing drug binding 
pathways. 

Various other computational methods, ranging from 
coarse grained molecular dynamics simulations [116,117,118] 
to biased enhanced-sampling simulations [119-124], have 
also been used to characterize binding pathways. Because 
ligand dissociation is slower — often taking seconds to 
hours — it can usually be observed computationally only 
by use of these latter techniques. It is important to note, 
however, that in the absence of external driving forces the 
unbinding process is the reverse of the binding process, 
following the same pathway and traversing the same 
barriers in the opposite order. 

The residence time of a ligand−protein complex is a 
crucial aspect in determining biological effect in vivo. 
Despite its importance, the prediction of ligand koff still 
remains challenging for modern computational chemistry. 
We have developed aMetaD, a fast and generally applicable 
computational protocol to predict ligand−protein unbinding 

events using a molecular dynamics (MD) method based on 
adiabatic-bias MD and metadynamics. This physics-based, 
fully flexible, and pose-dependent ligand scoring function 
evaluates the maximum energy (RTscore) required to 
move the ligand from the bound-state energy basin to the 
next. Unbinding trajectories are automatically analyzed 
and translated into atomic solvation factor (SF) values 
representing the water dynamics during the unbinding 
event. This novel computational protocol was initially 
tested on two M3 muscarinic receptor and two adenosine 
A2A receptor antagonists and then evaluated on a test set 
of 12 CRF1R ligands. The resulting RTscores were used 
successfully to classify ligands with different residence 
times. Additionally, the SF analysis was used to detect key 
differences in the degree of accessibility to water 
molecules during the predicted ligand unbinding events. 
The protocol provides actionable working hypotheses that 
are applicable in a drug discovery program for the rational 
optimization of ligand binding kinetics. [125] 

Residence time can also be modulated by leveraging 
water dynamics. Increasing the number of shielded 
hydrogen bonds, or accentuating the hydrophobic 
shielding of existing hydrogen bonds by designing a 
broader ligand, could tend to increase residence time 
(Figure 1). At larger length scales where the driving force 
of drug binding is controlled by dewetting, adding 
hydrophobic groups to the ligand might lower the 
dewetting barrier [107,112]. 

With experimental methods for determining drug 
binding kinetics becoming faster and less expensive, the 
availability of such data will surely become more 
widespread and the drive to incorporate it into drug 
discovery programs will increase. A greater understanding 
of the molecular determinants of binding kinetics will be 
crucial for maximizing the impact kinetics data has on 
drug discovery. 

 
Figure 1. Shielded hydrogen bonds confer longer residence time. (a) 
Schematic of a drug (yellow) bound to a receptor (green), forming, 
among other interactions, a hydrogen bond (red dashed line). (b) 
Compared with (a) the greater curvature of the binding site shields the 
hydrogen bond from water access, creating a larger barrier to drug 
dissociation. (c) For a less-curved binding site, as in (a), increasing the 
ligand size (blue) also shields the hydrogen bond. The difficulty with 
which water diffuses into and away from a shielded hydrogen bond 
directly impacts drug residence time, by creating a kinetic barrier to 
ligand binding and unbinding [111] 
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A more nuanced route to modulating residence times 
could involve changing interactions between the drug and 
those fluctuating parts of the receptor that often appear to 
be the bottlenecks to drug binding. In these cases, small, 
rational changes to the drug — for instance adding a group 
to make a specific interaction, as in the extra methyl group 
of the InhA inhibitor PT70 [126], or removing a group to 
break a specific interaction — could result in large 
changes in residence time. Notably, the atomic groups 
modified in this way need not be those that confer (the 
bulk of) binding affinity; in the same way that solubilizing 
groups can often be added, in an almost orthogonal 
manner, to a drug binding-core template. Such a design 
strategy is also promising from the viewpoint of subtype 
selectivity, especially for receptors in which the binding 
site is well conserved among subtypes. 

3. Ligand Docking. 

For a docking process to be successful, it is necessary 
that both the right conformation of the ligand–receptor 
complex is predicted, and that the ranking of final 
structures is correct. The procedure needs to be able to 
differentiate among similar conformations of the same 
system, as well as to predict the relative stability of 
different complexes. There are several different scoring 
functions for this purpose (for recent comparisons of 
scoring functions see [67,72,127]). As most contain 
empirically fitted parameters, their performance on any 
particular problem will depend on the set of structures 
used for the calibration. So far, no scoring function has 
proven to be reliable for every docking case tested. The 
main constraint on their improvement rests with the need 
for speed; when ranking hundreds, if not thousands, of 
complexes a compromise in accuracy must be made. 
Knowledge-based functions used in the ranking of 
molecular interactions may not be general and accurate 
enough, because of the limited number of interactions that 
can be inferred from crystal structures and the inadequate 
description of repulsive forces. MM based functions, on 
the other hand, inherit all common problems of molecular 
mechanics parameters, and recent calculations have shown 
that they may result in large electrostatic errors. 
[128,129,130] Several pilot studies on the use of semi-
empirical quantum mechanical methods for a more 
accurate description of the interactions of proteins with 
small ligands have been recently published. [131,132,133] 
Taking account of these factors, the type of scoring 
functions currently implemented in docking programs 
cannot be expected to distinguish energetically between 
close conformations of the same molecule, or even to rank 
properly a group of ligands of similar activity. Although 
the combination of several scoring functions into a 
consensus score has been shown to provide better results, 
[73,134,135,136] this merely produces a ranking of 
complexes without offering final energies.  

When receptor flexibility is included during the 
docking process, the risks associated with inadequate 
conformation of the protein target are reduced. [137,138,139] 
Although originally restricted to the docking of rigid 
ligands into rigid receptors, recent advances in docking 
algorithms have allowed incorporation of ligand flexibility 

and, to less extent, protein mobility, during the docking 
procedure. Most modern algorithms account for ligand 
flexibility; this can be addressed by systematic methods 
(i.e., incremental search), stochastic methods (i.e., Monte 
Carlo simulation), and deterministic search (i.e., MD 
simulation). [140] Programs that incorporate protein 
receptor flexibility, at least partially, began to appear more 
recently. [66,141,142,143] The size and complexity of 
proteins makes it difficult to fully account for their 
mobility during a docking process and, therefore, its 
treatment is usually restricted to selected residues. 

Docking the ligand against each protein structure in the 
ensemble constitutes the most comprehensive, although 
expensive, approach. While this strategy is not a realistic 
option for the virtual screening of a large library, it is a 
valid approach for difficult docking problems where even 
minor conformational changes of the receptor are 
expected to have a major influence on the binding process. 
Carlson et al. [144] developed ‘‘dynamic’’ pharmacophore 
models of HIV-1 integrase using several snapshots from 
an MD simulation. 

Although computationally expensive, docking against 
individual protein structures has proven to be effective not 
only in finding the correct docking pose* within a flexible 
receptor (both in evaluative and predictive contexts), but 
has been found useful also for discovering alternative 
binding modes otherwise not apparent from the rigid 
picture of proteins extracted from crystal structures. This 
method can have important applications in lead 
optimization and refinement, despite not being useful for 
the virtual screening of large libraries. Inclusion of protein 
flexibility does not necessarily lead to improvements in 
the final docking results. Increased capacity of the 
receptor to accommodate several ligand conformations 
may lead to the generation of very similar complexes not 
distinguishable by modern scoring functions. Therefore, 
the validity of the final predictions should be assessed 
experimentally. 

Molecular dynamics simulations present an attractive 
alternative for structural refinement of the final docked 
complexes. They incorporate flexibility of both ligand and 
receptor, improving interactions and enhancing 
complementarity between them, and thus accounting for 
induced fit. Moreover, the evolution of the complexes 
over the simulation time course is an indication of their 
stability and reliability; incorrectly docked structures are 
likely to produce unstable trajectories, leading to the 
disruption of the complex, while realistic complexes will 
show stable behavior. In addition, the ability to incorporate 
explicit solvent molecules and their interactions in the 
simulations of the docked systems is very important for 
understanding the role of water and its effect on the 
stability of the ligand–protein complexes. [145] 

While knowledge of the relative stability of different 
complexes may be an adequate result for an initial 
screening protocol, estimates of the absolute binding free 
energy may be necessary in later stages of docking or 
during lead refinement, when only few selected ligands 
remain. If stringent rankings or accurate energies are 
needed, different MD-based calculations can be carried 
out on the final complexes to estimate the binding free 
energy. [58,77,146-155] Thermodynamic integration (TI) 
and free energy perturbation (FEP) are among the most 
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rigorous methods currently available for the calculation of 
free energies. Despite providing very accurate free energies, 
they are not widely applied as they are computationally 
expensive. [152,154,155] The main limitation of these 
approaches is the exhaustive conformational sampling 
required to obtained a proper averaged ensemble, and their 
slow convergence. Inefficiencies in configurational sampling 
because of the appearance/disappearance of atoms 
(explained in more detail below) restrict their use to small 
transformations, and limit analysis to a few closely related 
compounds. One of the most important limitations in free 
energy calculations is the sampling of the conformational 
space. [156] Exploration of the appropriate conformations 
is not guaranteed simply by longer simulations. To avoid 
convergence problems and inadequate sampling during the 
simulations, only transformations between similar molecules 
are feasible, constraining the type of ligands that can be 
compared. This, together with the computational cost of 
such approaches, has prevented the wide application of 
FEP for determining binding free energies, despite its 
accuracy. 

Recently developed approaches that provide relatively 
good energy values at a moderate cost include MD-based 
methods such as the linear interaction energy (LIE) 
method, [147,157,158,159,160] and the so called MM-
PBSA method. [161]. Aqvist et al. [147] introduced the 
LIE semi-empirical MD approach for the estimation of 
binding free energies. [153,162] This method assumes that 
the binding free energy can be extracted from simulations 
of the free and bound state of the ligand. The energy is 
divided into electrostatic and van der Waals components, 
and the final binding energy is calculated as: 

 elec elec vdW vdW
bind bound free bound freeG V V V Vα β γ∆ = − + + − +  (2) 

where 〈𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 〉 represents the averaged change in 
electrostatic energy and 〈𝑉𝑉𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑉𝑉𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑣𝑣𝑣𝑣𝑣𝑣 〉  the averaged 
change in van der Waals energy in going from an aqueous 
solution to a protein environment. α, β, and γ are 
empirically determined constants. Two different MD 
simulations, one for the ligand bound to the protein and 
another for the free ligand in water, are used to calculate 
the energies. During the early applications of the LIE 
approach, only two coefficients, α and β, were considered. 
Although α, the electrostatic coefficient, appeared to have 
a constant value of 0.5 for several protein systems, as 
predicted by the linear response approximation, [147] the 
van der Waals coefficient, β, seemed to adopt various 
values depending on the characteristics of the protein 
receptor. [157,158,163,164] Kollman and co-workers  
[160] suggested that the value of β depended on the 
hydrophobicity of the binding site, and that it could be 
predicted by calculating the weighted desolvation non-polar 
ratio (WDNR) of the system. Jorgensen’s group extended 
the method to calculate both the hydration and binding 
free energy, adding a new term to account for the solvent 
accessible surface and scaling it by a new empirical 
coefficient. [150,165,166] It was later found, however, 
that the non-polar component γ, although considered zero 
in many cases, [147,148,159] could adopt different values 
[167] and account for the variability earlier assigned to β. 
In a recent study, Aqvist and coworkers [168] performed a 
systematic analysis of several ligands in complex with 

P450cam. Using fixed values for α and β, while 
optimizing γ, not only provided the best absolute binding 
free energies for the ligands but also showed that the 
coefficients of the LIE method are independent of the 
force field used and that only γ might need to be 
optimized to account for the hydrophobicity of the active 
site. 

Do MD simulations after docking add any value to 
results obtained? In terms of structure optimization, MD 
simulations allow flexibility for both the ligand and 
protein receptor, facilitating the relaxation of the complete 
system and accounting for induced-fit effects. The effect 
of solvent molecules can also be treated explicitly; with 
the incorporation of water molecules in the simulated 
system, important stabilizing/destabilizing effects and 
water-mediated interactions can be observed. Furthermore, 
the time-dependent evolution of the system during the 
simulation provides a dynamic picture of the complex and 
helps to discriminate the correctly docked conformations 
from the unstable ones. 

With respect to free energy calculations, it has pointed 
out that scoring functions implemented within docking 
programs are not sufficiently accurate to identify, in every 
case, the most stable conformation of a given ligand or 
drug with the highest binding affinity among a set of 
compounds. Although library-screening processes require 
fast and inexpensive scoring functions, more accurate and 
expensive calculations can be employed in the last stages 
of a docking process, when only a few possible candidates 
are left, or during lead optimization. MD-based methods 
are among the most accurate current techniques available 
for the calculation of free energies. FEP and the more 
recent LIE and MM-PBSA approaches have been used 
successfully to predict both relative and absolute binding 
free energies of many different complexes with errors of 
chemical accuracy, that is, 1–2 kcal/mol. [145] 

Although the physics predicts that a properly set up MD 
simulation of a solvated protein and its unbound ligand 
would eventually lead to the formation of the most stable 
protein–ligand complex, no current simulation protocol 
can deal with the long time span required for a binding 
process to occur for such a large and complex system. In 
addition to time restrictions, the inherent tendency of an 
MD simulated system to get trapped in local minima 
(sampling problem) makes the use of ordinary MD 
simulations as docking techniques infeasible. 

To improve the exploration of the free energy landscape 
and reproduce a possible binding event within feasible 
computation times, it is necessary to increase the sampling 
power of conventional MD simulations. [169,170] The 
two basic approaches developed comprise flattening of the 
energy surface, which allows the system to overcome 
large energy barriers, and the simulation of several copies 
of the system. Multiple-copy simultaneous search [171] 
and locally enhanced sampling [137] are examples of the 
latter approach. Alternatively, in replica exchange MD 
(REMD), [138] several noninteracting replicas of the same 
system are simulated at different temperatures. At 
specified intervals, replicas can exchange temperature, 
thereby overcoming energy barriers when simulated at 
higher temperatures. Thermal heating of selected 
components of the system can also be used to selectively 
enhance the sampling of certain regions, while the barriers 
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separating local minima can be lowered using the local 
elevation approach [172] or the conformational flooding 
technique. [173] These approaches, although faster than 
conventional MD simulations, are still much slower than 
typical docking techniques and could not be applied to 
more than a few examples. 

While atomistic MD simulations are still computationally 
expensive for docking large libraries of compounds, their 
application for hit discovery and optimization is increasing 
steadily. Recently, MD simulations have been employed 
for determining the binding modes of small aliphatic and 
aromatic molecules into the oncoprotein BCL-6 [174] and 
isopropyl alcohol into five different proteins [175]. These 
studies were published 18 years after the minimization-
based MCSS protocol of Miranker and Karplus, which in 
principle allowed also for binding site flexibility by a 
combination of MD and energy minimization. The MD 
protocol developed recently in MacKerell's group is called 
SILCS (Site-Identification by Ligand Competitive Saturation), 
and as in MCSS the attractive interactions between 
fragments are switched off. This simulation stratagem 
makes possible the use of a very high concentration even 
for hydrophobic fragments, which would otherwise 
aggregate in the simulation box [176]. We note en passant 
that this is an interesting example in which a simulation 
protocol allows one to study a molecular system under 
conditions that are not accessible by experiments. 

Parrinello and co-workers [177] employed a new MD 
method, metadynamics [178], to find the correct conformation 
of ligands inside flexible receptors in aqueous solution. A 
metadynamics run is a standard MD simulation that 
implements harmonic restraints on certain collective 
variables (e.g., the distance from the ligand to the binding 
site), which are explored along a time scale. A potential 
term, constructed using a sum of Gaussians, prevents the 
system from re-visiting configurations, so that the system 
is forced to move around the conformational space. One of 
the novelties of this approach is that the free energy surface 
explored during the simulations can be reconstructed from 
the added Gaussians, and the docking energy can be 
determined. Four different systems were analyzed, and 
although the correct geometry was found and the experimental 
binding energy was predicted within 1 kcal/mol in all 
cases, most of the calculations started from the crystal 
configuration, with the ligand already bound within the 
active site. In only one case, b-trypsin with a small and 
almost rigid ligand (benzamidine), was simulation of the 
ligand entering the enzyme presented. Therefore, despite 
its demonstrated ability to reproduce binding energies and 
provide a free energy surface as a function of the 
collective variables, the utility of the method as a 
predictive docking tool to find the correct binding mode of 
a free mobile ligand entering its protein receptor remains 
to be properly tested. 

4. Ligand Binding Affinity 

Binding reactions are ubiquitous in biology. For 
example, any substrate needs to bind to its enzyme to be 
converted to the product, and it can be argued that the 
activation energy is the difference in binding energy of the 
substrate and the rate-limiting transition state. However, 

the arguably most important type of binding reaction is the 
association of a drug candidate to its target receptor. It is 
the prime aim of drug development to find a small 
molecule that binds strongly to a certain 
biomacromolecule. Moreover, it is also important that the 
drug candidate does not bind to other, often similar, 
macromolecules, so that it does not interfere with other 
key functions in the body, and that it has proper transport, 
metabolism, and excretion properties, which often are 
governed by the binding to other biomacromolecules, e.g., 
transporters and metabolic enzymes. Therefore, the study 
of binding affinities is of immense interest in 
pharmaceutical chemistry, and the development of a new 
drug typically involves the synthesis and test of the 
binding of thousands of drug candidates. Naturally, it 
would be of great gain if binding affinities could be 
estimated fast and accurately by computational methods. 

Protein−ligand binding is essential to almost all 
biological processes. The underlying physical and 
chemical interactions determine the specific biological 
recognition at the molecular level. The essential element 
in drug discovery is to find a molecular ligand that either 
inhibits or activates a specific target protein through 
ligand binding. However, finding a ligand that binds a 
targeted protein with high affinity is a major challenge in 
early stage drug discovery. Modern technological 
advances in analytical methods and the availability of 
experimental tools such as X-ray crystallography and 
nuclear magnetic resonance (NMR) [179,180] have 
enabled researchers to obtain atomic resolution structures 
of protein−ligand complexes. The high-resolution 
structures of protein and protein−ligand complex provide 
a chemical basis for understanding protein−ligand 
interactions at atomic level, [23,181,182,183,184] and 
they can be effectively used as the basis for the design of 
small-molecule drugs for the treatment of diseases. 

However, given the structure of a protein−ligand 
complex (such as from experiment or virtual molecular 
docking), it is not an easy task to calculate its binding 
affinity reliably, an extremely important but difficult 
undertaking in computational biology. The strength of 
binding of a ligand to a protein molecule is governed by 
the free energy change in the binding process. Besides the 
accuracy of force field and sufficient sampling of the 
phase space during molecular simulation, reliable 
calculation of entropy change is critical to the accuracy of 
the computed binding free energy. Currently, the most 
rigorous approaches for accurate calculation of 
protein−ligand binding free energy are free energy 
perturbation (FEP) [186-191] and thermodynamic 
integration [154,192] methods. However, free energy 
calculations for protein−ligand binding using either FEP 
(free energy perturbation) or TI (thermodynamic integration) 
methods are extremely difficult; both can be prohibitively 
expensive and very difficult to converge numerically as 
one has to simulate many nonphysical intermediate states 
of the system. The linear interaction energy (LIE) 
approach is another class of methods in which the 
interaction energies are used with adjustable parameters to 
estimate protein−ligand binding free energies. [162,164] 
This class of methods often do well for systems with 
similar interaction characteristics. In contrast, the 
MM/PBSA approach, [58,60,83,194,195,196,197] which 
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uses an implicit solvent model to compute solvation 
energy coupled with MD simulation in explicit water to 
obtain gas-phase component of the binding free energy, is 
more general for practical applications in computing 
binding free energies. However, a major problem in 
MM/PBSA method is the calculation of entropy change in 
protein−ligand binding. The current MM/PBSA approach 
calculates entropy change for protein−ligand binding by 
using the standard normal mode method, which is 
approximate in nature, extremely expensive in computation, 
and often unreliable for protein−ligand binding. As a 
result, many applications using MM/PBSA approach 
simply neglect the calculation of entropy change for 
protein−ligand binding and thus render the computed free 
energy even more uncertain. 

In this report, we present a novel and conceptually more 
intuitive theoretical paradigm called “interaction entropy” 
or IE. This new paradigm introduces a novel but more 
intuitive conceptual understanding of the entropic effect in 
protein−ligand binding and other general interaction 
systems as well as a practical method for highly efficient 
calculation of its effect. This interaction entropy is 
theoretically rigorous and can be directly obtained from 
MD simulation of protein−ligand system without any 
extra computational cost. Thus, the new method is 
numerically superefficient compared to the normal mode 
calculation of entropy for protein−ligand binding. For free 
energy calculation of protein−ligand binding, we can 
simply employ the standard MM/PBSA method to 
calculate the solvation free energy component and then 
combine them with the calculated interaction entropy to 
obtain the binding free energy. Thus, the interaction 
entropy method is straightforward to implement and 
highly efficient to apply for practical computation of 
protein−ligand binding free energies. To fully demonstrate 
the efficiency and reliability of the present approach, we 
carried out computational studies for 15 randomly selected 
protein−ligand complexes with experimental binding 
affinities using both the interaction entropy method as 
well as the standard normal mode method for entropy 
calculations. 

Consequently, numerous methods have been developed 
with this aim. [23] Most computational methods are based 
on some sort of energy function. It can be developed 
either by a statistical analysis of experimentally 
characterized ligand−receptor complexes or from a 
physical description of the interactions. Statistical energy 
functions can come from an analysis of atom−atom 
distances, converted to an empirical potential of mean 
force (knowledge-based scoring functions), or from a 
regression analysis of binding affinities and a collection of 
terms that are believed to be important for the binding 
affinity, e.g., hydrogen bonds, ionic interactions, metal 
bonding, desolvation, hydrophobic effects, stacking, etc. 
(empirical scoring functions). Physics-based energy 
functions are typically in the form of a molecular-
mechanics (MM) force field that contains terms for the 
stretching of bonds, bending of angles, rotation of torsion 
angles, Coulombic interaction between atomic partial 
charges, and van der Waals attraction (dispersion) and 
exchange repulsion. 

Likewise, many approaches have been used to predict 
the structure of the ligand−receptor complex and estimate 

the binding affinity using these energy functions. The 
most commonly used one is to change the structure until a 
minimum energy is obtained, i.e., a geometry optimization. 
This is a formidable task for a biomacromolecule, because 
the potential-energy surface is extremely complicated with 
essentially an infinite number of local minima. This is 
often solved by keeping the macromolecule fixed, 
excluding the solvent molecules, running many 
calculations from different starting points, or employing 
special algorithms (e.g., genetic algorithms) that try to 
find the global minimum. In their simplest form, such 
docking calculations can estimate the binding affinity 
within seconds, often using knowledge-based or empirical 
scoring functions. They can often predict structures close 
to the experimentally determined geometry of the complex, 
but they have problems distinguishing them from other 
poses and predicting accurate binding affinities for a 
diverse set of targets. [198,199] 

Usually the binding of a small molecule to a biological 
macromolecule, e.g., a protein or a nucleic acid, is 
governed by noncovalent interactions, i.e., the reaction is: 

 ( )R L RL 1+ →  (3) 

where R is the macromolecule (the receptor), L is the 
small molecule (the ligand), and RL is their complex. The 
free energy of this reaction, ΔGbind, is the binding affinity, 
and it is related to the binding constant Kbind by. 

 /G RTbindbindK e−∆=  (4) 

where R is the gas constant and T is the absolute 
temperature. (Strictly speaking, the binding free energy 
should have a standard-state symbol. In practice, few 
papers discuss or specify the standard state, although 
binding affinities calculated with 1 bar or 1 M standard 
states differ by 8 kJ/mol at ambient temperature, arising 
from the volume term in the translational entropy; to avoid 
possible confusion, we have dropped the standard-state 
symbol throughout this paper.) 

From the physical point of view, the ligand binding 
affinity is defined by the binding energy of ligand to 
receptor. The binding energy can be estimated either by 
the docking method [63,65,96,200-216] or molecular 
dynamics (MD) simulations. The former method is very 
fast and can be used for screening potential leads from a 
large number of ligands available in various data bases 
[217]. However, its predictive power is low due to 
ignorance of receptor dynamics and a limited number of 
position trials of ligand. For interaction energy changes, 
the equation is: 

 interaction H bonding VdW electrostatic.E E E E−∆ = ∆ + ∆ + ∆  (5) 

Hydrogen bonding, Van der Waals contacts, and 
electrostatic effects were the only intermolecular forces 
taken into consideration in these calculations. [218] 

The receptor theory of drug action posits that a drug 
works only when bound to its target receptor [219]. Direct 
measurement of the extent to which a drug is bound to its 
receptor at equilibrium — the binding affinity — was, 
however, not possible until long after the theory was first 
postulated. Accordingly, drug discovery programs 
historically sought to optimize drug efficacy, not affinity, 
usually in the context of whole cells, tissues or animals. 
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Only with the advent of identifiable, and ultimately 
purifiable, molecular receptors that enabled the direct 
measurement of binding affinity did optimization of 
binding affinity guide most early-stage discovery efforts. 

This emphasis on binding affinity — quantified either 
as Kd, the equilibrium dissociation constant, or its proxies, 
IC50 or EC50, the drug concentrations giving half-maximal 
inhibition or effect — is predicated on the assumption that 
affinity is an appropriate surrogate for in vivo efficacy. 
Although many highly efficacious drugs have been 
discovered on that basis, recent studies have shown that 
the kinetics of drug–receptor binding could be as 
important as, and in some cases more important than, 
affinity in determining drug efficacy [220,221,222]. In an 
open, in vivo system the concentration of the drug varies 
over time — potentially on timescales faster than binding 
and unbinding to its receptor — such that binding 
equilibrium might not be reached or maintained; for some 
drugs, attainment of equilibrium might not even be 
desirable. In these cases, equilibrium binding affinity is no 
longer an appropriate surrogate for efficacy — instead, the 
rates of drug–receptor association and dissociation, as 
reflected by the rate constants kon and koff, are more 
appropriate 

The ligand-protein binding process is too complex to be 
described by a single representation of the ligand-protein 
complex produced as a result of the rigid receptor docking 
[223]. The various levels of approximations necessary to 
make docking rapid make scientists sceptical to really 
believe its results [224]. Proteins are not static idles, they 
are a very complex, moving and viable machines 
[225,226]. Introducing protein flexibility is increasingly 
important to describe the ligand-protein binding especially 
for targets known to be highly flexible such as kinases 
[227,228,229]. 

The treatment of very large conformational changes in 
the receptor induced by ligand or protein-binding remains 
one of the biggest challenges in calculations of binding 
free energies. Finding the relevant rotational, translational 
and conformational degrees of freedom or CVs for a 
binary complex is far from being trivial, but this would be 
achievable for less than 20 candidates with the increase of 
computer power using a multiscale approach that moves 
through different levels of complexity and precision. In 
the first step, approximate docking pathways could be 
sampled with rapid methods such as elastic network 
models, path-planning approaches and short replica 
exchange MD simulations based on CG representations of 
the systems. Next, these pathways could be refined and 
optimized with metadynamics or other rigorous techniques 
by retaining a full atomistic description of the system only 
in regions of interest while describing the rest of the 
system with elastic network models. [230] 

The concepts underlying rational optimization of 
binding affinity are relatively well understood, but the 
same is not true for binding kinetics. Much less is known 
about the molecular determinants of binding kinetics than 
about those of binding affinity. A major challenge with 
optimization of kinetics is the fundamental difficulty in 
characterizing transient states. Binding affinity depends on 
the free energy difference between the bound and unbound 
states, both of which are stable and generally easily 
observable. On- and off-rates depend instead on the height 

of the (highest) free energy barrier separating those states, 
yet the atomic arrangement of the drug and the receptor at 
this point of highest free energy — the transition state — 
has only a fleeting existence. Understanding the molecular 
interactions between drug and receptor at this difficult-to-
observe transition state is thus central to the rational 
control of drug binding kinetics. 

Despite these challenges, the intentional and rational 
optimization of kon or koff opens up a new, temporal 
dimension for controlling drug behavior that has important 
therapeutic implications for drug efficacy and drug safety. 
The residence time of a drug–receptor complex, tR ≡ 1/koff, 
is often a better predictor of efficacy than binding affinity 
is [220,222,231]. Similarly, when achieving target 
selectivity is important, a drug with a longer residence 
time on one receptor can select kinetically for that 
receptor over another, even when the affinity for both 
receptors is comparable [220]. Conversely, drugs with 
faster dissociation rates can increase the therapeutic index 
(the key measure of drug safety, defined as the ratio of a 
drug’s toxic dose to its efficacious dose) when extended, 
non-physiological drug occupancy of the target receptor 
causes toxicity [232,233,234]. Finally, a faster-binding 
drug might target a short-lived receptor more effectively 
[235]. 

Receptor flexibility often plays an important part in 
modulating the binding kinetics of buried or occluded 
binding sites. Early studies on carbon monoxide (CO) 
unbinding from myoglobin revealed the importance of 
protein breathing motions in enabling CO escape [236]. 
Indeed, rigidification of myoglobin with an engineered 
disulfide bond slows CO dissociation [237]. Moreover, 
receptor flexibility can take the form of intricate loop 
motions in the binding of more-drug-like molecules 
[120,226,238,239]. 

Electrostatic interactions between a charged drug and a 
charged receptor impact association and dissociation rates, 
similarly to the effects electrostatics has upon protein–
protein binding. Altering the solution ionic strength can 
greatly affect association rates: increasing ionic strength 
decreases on-rates but hardly affects off-rates (cf. Debye–
Hückel theory [240,241]). Other than as a test for the 
importance of electrostatics in modulating binding kinetics, 
however, the pharmacological relevance of this common 
laboratory manipulation is unclear, because physiological 
ionic strength is relatively constant. On-rates can also be 
very sensitive to long-range electrostatic attraction (or 
repulsion). Off-rates can be modulated by electrostatics, 
but they tend to be influenced more by short-range drug–
receptor interactions such as hydrogen bonds, salt bridges 
and van der Waals (especially hydrophobic) contacts 
[242,243]. Binding of a charged acetylcholinesterase 
inhibitor, for instance, was ~50-fold faster, and unbinding 
~10-fold slower, than that of a nearly identical neutral 
analog in which the inhibitor’s trimethylammonium group 
was changed, by one atom (N+ to C), to the t-butyl isostere 
[244]. 

Experimental studies have shown that it can be difficult 
to distinguish the electrostatic effects on binding kinetics 
from the effects of other molecular determinants; 
deviations from the simple picture described above are not 
uncommon. The effective charge of a drug or receptor 
does not necessarily equal its formal charge, and, 
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paradoxically, ‘charge matching’ (i.e. negative paired with 
positive) is not necessarily required for rapid binding 
[245]. The former issue is demonstrated, for instance, by 
the insensitivity of the binding rates of nucleotide di- or 
tri-phosphates to the Na+/K+-ATPase, despite the ligand 
charge varying from -0.8 to -3.8 [243]. Binding of 
phosphate to (negatively charged) periplasmic phosphate 
binding protein illustrates the latter issue: surprisingly, 
despite ‘mismatched’ charges, the association rate is 
nearly diffusion controlled [246]. In a similar vein, 
increasing charge complementarity has been observed to 
decrease association rates in certain cases [245], and large 
alterations in (receptor) charge lead to only minor changes 
in the on-rates of carbonic anhydrase inhibitors [247]. 

An important component in ligand binding is the strain 
energy, i.e., the difference in the internal energy of the 
ligand in the binding site and in solution. [248] One 
common way to estimate it is by comparison of the energy 
of the ligand at a certain level of theory calculated in a 
crystal structure and in continuum solvation after some 
conformational search. [249,250] However, this will 
include possible errors in the crystal structure, as well as 
the disagreement between the energy method used to 
measure the strain and that used to obtain the crystal 
structure. A more satisfying approach is to re-refine the 
crystal structure with a QM/MM approach [251] and use 
the same method also in solvent. Merz and co-workers 
have shown that such an approach decreases the estimated 
strain energy by 80% for a charged ligand. [252] 

In the end-point approaches, a conformational sampling 
is performed, but only of the actual states of the 
receptor−ligand complex, and possibly also of the free 
receptor and the free ligand. This is expected to improve 
the ΔGbind estimates, but it still does not provide true free 
energies. These calculations often follow the MM/PBSA 
or LIE approaches, replacing the MM energies by QM, 
and they will be discussed in separate subsections. 

The simplest, but also most approximate, approach to 
include QM calculations in binding-affinity calculations is 
the employment of single structures, e.g., obtained from a 
crystal structure, from docking, or by an energy 
minimization. The advantage of such an approach is of 
course the speed; no expensive conformational sampling 
is performed. On the other hand, such an approach will be 
strongly affected by the local-minimum problem: An 
energy minimization will end up in one of an almost 
infinite number of possible local minima of the 
receptor−ligand complex, and it is far from certain that 
this structure is the most important for the binding. As we 
will discuss below, it is often observed that individual 
binding affinities estimated by snapshots from MD 
simulations differ by ∼80 kJ/mol even after minimization. 
[75,252,253] On the other hand, MM studies by Gilson 
and co-workers on host−guest systems have shown that 
only a few low-lying conformers contribute to the binding 
free energy, [254,255] but it is not clear whether this 
applies to the much more complicated biomacromolecules. 
Moreover, energies estimated from minimized structures 
are enthalpies, not the free energies that govern the 
binding. This is a more serious problem for binding-
affinity calculations than, e.g., for enzyme reactions, 
because the former always involve major entropy terms, 
owing to the loss of translational and rotational freedom of 

the ligand, which at least in the gas phase amount to ∼60 
kJ/mol at ambient temperature. [256] In fact, it is often 
observed that similar molecules, e.g., enantiomers, have 
significantly different binding entropies, and there is often 
a strong inverse correlation between binding enthalpies 
and entropies of analogous ligands, the much discussed 
enthalpy−entropy compensation [257,258,259,260]. 

A natural approach would be to perform of single-point 
QM energy calculations directly on crystallographic 
structures, but it is well-known that systematic errors in 
both the crystallography and the QM calculations would 
make such energies almost useless, with errors of 
hundreds of kilojoules per mole. [261] The use of docked 
structures is usually better, because the docking involves a 
conformational search for the ligand inside the protein. 
However, it is still restricted to a single or a few structures, 
and no valid Boltzmann averaging of the structures is 
made. 

The second approach to study proteins is with QM/MM 
calculations. Such methods are available in several 
software products, and they have been much used to study 
ligand binding. However, most of the studies have 
employed only QM/MM total energies and mainly discuss 
structural aspects. 

5. Ligands Scoring 

The evaluation and ranking of predicted ligand 
conformations plays central roles in computational drug 
design, virtual screening of chemical libraries for new lead 
identification, and prediction of possible binding targets of 
small chemical molecules, being a crucial aspect of 
structure-based virtual screening. Even when binding 
conformations are correctly predicted, the calculations 
ultimately do not succeed if they do not differentiate 
correct poses from incorrect ones, and if ‘true’ ligands 
cannot be identified. Accurate ligand-protein binding 
affinity prediction, for a set of similar binders, is a major 
challenge in the lead optimization stage in drug 
development. So, the design of reliable scoring functions 
and schemes is of fundamental importance. Free-energy 
simulation techniques have been developed for 
quantitative modelling of protein–ligand interactions and 
the prediction of binding affinity. However, these 
expensive calculations remain impractical for the 
evaluation of large numbers of protein–ligand complexes 
and are not always accurate. 

Accurate prediction of ligand-protein binding affinities 
plays a crucial role in computer-aided drug design, in 
particular at the lead optimization stage. The most 
commonly used structure-based method is still docking 
and scoring, due to its speed and ease of use [262,263]. 
Docking fulfills three roles: binding mode prediction; 
distinguishing binders from nonbinders in a large data set 
(i.e., virtual screening); and binding affinity prediction of 
a smaller set of binders. Scoring functions are generally 
reasonably good at predicting correct binding modes, as 
has been shown in numerous studies of redocking ligands 
to cocrystallized complex structures. However, scoring 
functions are not always able to distinguish the 
crystallographically correct binding mode, even if it is 
present in the suggested docking solutions, from other 
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suggested poses [198,199,264]. In addition, scoring 
functions have been shown to be successful in enriching 
binders from a large data set of binders and nonbinders, 
and therefore are useful for virtual screening [198,199]. 
However, using docking and scoring at a more fine-tuned 
level, for accurately predicting binding affinities of a set 
of binders, or rank compounds accordingly, has proven to 
be a much more challenging task [127,198,264,265]. The 
low success rate is mainly because the protein is mostly 
kept rigid during the docking procedure, allowing only the 
ligand to be fully flexible. Currently, a number of 
commonly used docking programs allow for some protein 
flexibility, either by softening the interactions in the active 
site, which introduces side-chain flexibility, or by docking 
to an ensemble of protein structures [266,267,268,269]. 
However, for many target proteins the allowed protein 
flexibility is still too small to accurately model ligand-
induced changes of the protein conformation or the 
existence of several protein conformations differently 
favored by different ligands. This is the classical induced-
fit problem. In addition, the scoring functions do not 
consider the possibility that multiple binding poses 
contribute to the overall affinity of the ligand. Another 
challenge for the docking programs is how to treat 
solvation in the active site. Most programs now offer the 
possibility to include static or partly rotatable water 
molecules during the docking procedure, and some 
programs even offer the possibility of predicting whether 
certain water molecules should be taken into account for 
each ligand [99,100,270]. However, the number of water 
molecules that can be treated this way is generally very 
low (up to three waters), which can cause problems with 
larger binding sites, and the overall increase in accuracy 
by including water molecules is still doubtful. However, 
there are studies indicating a general improvement in 
docking results, typically in binding mode prediction 
[92,271]. The consensus seems to have shifted in favor of 
including static, or partly rotatable, water molecules in 
docking calculations, but studies of the actual benefit and 
molecular accuracy of including them seem to indicate 
that the improvement is minimal, if any [272,273,274]. 

In general, docking and scoring functions perform 
unsatisfactorily. Docking calculations, followed by molecular 
dynamics simulations and free energy calculations can be 
applied to improve the predictions. However, for targets 
with large, flexible binding sites, with no experimentally 
determined binding modes for a set of ligands, insufficient 
sampling can decrease the accuracy of the free energy 
calculations. 

An ideal scoring function for protein-ligand interactions 
is expected to be able to recognize the native binding pose 
of a ligand on the protein surface among decoy poses, and 
to accurately predict the binding affinity (or binding free 
energy) so that the active molecules can be discriminated 
from the non-active ones. Due to the empirical nature of 
most, if not all, scoring functions for protein-ligand 
interactions, the general applicability of empirical scoring 
functions, especially to domains far outside training sets, 
is a major concern.  

Scoring functions implemented in docking programs 
make various assumptions and simplifications in the 
evaluation of modelled complexes and do not fully 
account for a number of physical phenomena that 

determine molecular recognition — for example, entropic 
effects. Essentially, three types or classes of scoring 
functions are currently applied: force-field-based, empirical 
and knowledge-based scoring functions. 

The comparably fast and inexpensive docking protocols 
can be combined with accurate but more expensive 
molecular dynamics (MD) simulation techniques to 
predict more reliable protein–ligand complex structures 
[169,275]. On one hand docking techniques are used to 
search massive conformational space in a short time, 
allowing the analysis of a large library of drug compounds 
at a sensible cost [276]. On another hand, MD simulation 
accounts for both ligand and protein in a flexible way, 
allowing for an induced fit into the receptor-binding site 
around the newly introduced ligand [277]. MD simulation 
can be used: during the preparation of protein receptor 
before docking, to optimize its structure and account for 
protein flexibility [278]; for the refinement of the docked 
complex, to include solvent effects and account for 
induced fit [148]. This also calculates binding-free 
energies [153], as well as providing an accurate ranking of 
the potential ligands [164]. 

There is no unique solution to a drug design problem. 
The appropriate experimental techniques or computational 
methods to use will depend on the characteristics of the 
system itself and the information available. A variety of 
computational approaches can be applied at different 
stages of the drug-design process: in an early stage, these 
focus on reducing the number of possible ligands, while at 
the end, during lead-optimization stages, the emphasis is 
on decreasing experimental costs and reducing times. 
Although this is simple to articulate, it has been tried 
many times with only a few fruitful examples. [279-286] 
The lack of success has led to a re-examination of the 
underlying principles. For example, recent publications 
have shown that some of the hypotheses used during the 
enrichment steps may need to be refined. [287,288] While 
some drug developers opted for alternative experimental 
solutions, [289,290] others focused their attention on the 
improvement of computational protocols. These enhancements 
include, among others: incorporation of protein flexibility 
in the docking process, extensive exploration of the ligand 
conformation within the binding site, refinement and 
stability evaluation of the final complexes, and estimation 
of the binding free energies. Not surprisingly, molecular 
dynamics (MD) simulations have played a dominant role 
in these attempts to improve docking procedures. 

The limited availability of experimentally determined 
protein structures is one of the bottlenecks of structure-
based drug design. In the cases where no protein structures 
are available, an alternative can be to build a homology 
model, but they need to be sufficiently accurate to be of 
use for drug discovery. Validation of these homology 
models is therefore a crucial aspect in drug development. 
One important question we aim to address is how errors 
and inaccuracies of the homology models affect the 
subsequent molecular modeling of protein-ligand interaction. 

Errors introduced into the protein structure through 
misplacement of side-chains during rotamer modeling led 
to a correlation coefficient between ΔGcalc and ΔGexp of 
0.75 compared with 0.90 for the correctly placed side 
chains. This is in contrast to homology models for 
members of the retroviral protease family with template 
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structures ranging in sequence identity between 32% and 
51%. For these protein models, the correlation coefficients 
vary between 0.84 and 0.87, which is considerably closer 
to the original protein (0.90). It is concluded that HIV-I 
low sequence identity with the template structure still 
allows creating sufficiently reliable homology models to 
be used for ligand-binding studies, although placement of 
the rotamers is a critical step during the modeling. [291] 

In order to further explore binding characteristics of 
various substrates, Szklarz et al performed binding free 
energy calculations and compared binding free energies 
calculated from molecular dynamics simulations to those 
from experiment. Binding free energies were calculated 
according to the equation:  

 bind el vdWG 0.5 V Vα∆ = ∆ + ∆  (6) 

where ΔVel is the difference in the electrostatic interaction 
energy between the ligand and its surroundings in the 
protein and in aqueous solution, and ΔVvdW represents the 
difference in van der Waals interaction energies. This 
linear response approximation is based on the work of 
Aqvist et al. [147]. The value of parameter α used was 
1.043, since this value was found to be optimal in earlier 
studies on binding free energy calculations for P450cam-
substrate complexes with the same consistent valence 
force field [292]. Kollman and coworkers found a similar 
value for α for P450cam substrates using the Amber force 
field. Their work suggests that the value of α depends 
primarily on the class of substrates being examined [160], 
since both set of substrates were composed of uncharged 
primarily nonpolar molecules. 

Much less computationally demanding is the method 
described by Lewis, who uses a QSAR approach to 
estimate binding free energy on the basis of substrate 
properties such as surface area, number of hydrogen bond 
donors, log P, pKa and log D7.4 [293,294]. In the case of 
P450 2C9, the calculated values correlated well with the 
experimental ones [294]. In principle such an approach 
requires little or no detailed structural information about 
the P450 active site. However, this technique does require 
significant experimental binding data in order to 
parameterize the appropriate free energy relationship. The 
method employed by Szklarz is intermediate in complexity 
and in the amount of experimental data required. Like the 
approach of Wade and coworkers [295], a detailed three-
dimensional structure for the enzyme is required. However, 
as Szklarz results indicate, a homology model rather than 
a crystal structure can be sufficient to use his model. With 
only a single adjustable parameter, the approach described 
requires less experimental data than that of Lewis. 
Furthermore, Szklarz results indicate that the value of α 
does not need to be re-parameterized for each P450 
isozyme but rather that the same value of α can be used 
for several different isozymes.  

Lizunov et al. analyzed the frequency with which 
intraligand contacts occurred in a set of 1300 published 
protein−ligand complexes [296]. Their analysis showed 
that flexible ligands often form intraligand hydrophobic 
contacts, while intraligand hydrogen bonds are rare. The 
test set was also thoroughly investigated and classified. 
They suggested a universal method for enhancement of a 
scoring function based on a potential of mean force  
(PMF-based score) by adding a term accounting for 

intraligand interactions. The method was implemented via 
in-house developed program, utilizing an Algo_score 
scoring function [297] based on the Tarasov-Muryshev 
PMF [298]. The enhancement of the scoring function was 
shown to significantly improve the docking and scoring 
quality for flexible ligands in the test set of 1300 
protein−ligand complexes [296]. They also investigated 
the correlation of the docking results with two parameters 
of intraligand interactions estimation, the weight of 
intraligand interactions and the minimum number of 
bonds between the ligand atoms required to take their 
interaction into account. 

Fragment-based drug design (FBDD) has evolved from 
a niche technique 20 years ago into a powerful approach 
used throughout the pharmaceutical and biotech industry. 
[299-304] Multiple fragment derived compounds are 
currently in clinical trials, with one compound, vemurafenib, 
gaining FDA approval in 2011. [305] In brief, the FBDD 
approach uses libraries of small molecules (fragments, 
often defined as following the “rule of three” [306] with 
molecular weights < 300 and ClopP < 3 instead of the 
“rule of five” in use for drug-like compounds [307] to find 
hits that bind with a high degree of ligand efficiency, 
which can then be optimized. Due to the extraordinarily 
rapid increase in the size of the accessible chemical space 
as the molecular size is increased, [308] a library of 
thousands of fragments will offer much higher coverage of 
the chemical space in its size class than an HTS library 
with millions of drug-like compounds. 

FBDD typically aims for the discovery of weak (e.g., 
millimolar to high micromolar) inhibitors via biochemical 
assays or biophysical techniques such as SPR, TSA, ITC, 
and NMR. Weak initial binders can then be optimized 
through multiple rounds of chemical modifications, 
ideally resulting in larger and more drug-like lead 
compounds with high affinity and specificity. Two 
possible strategies for fragment optimization involve 
either growing a single fragment via introduction of 
chemical R-groups to fill empty regions of a binding site 
or linking two or more fragment inhibitors with 
nonoverlapping binding modes via appropriate linking 
groups. Both techniques make heavy use of structural 
information, which explains why FBDD programs 
typically contain an aggressive structural aspect via NMR 
or X-ray crystallography. The FBDD approach has 
produced an impressive and growing number of success 
stories in recent years, with dozens of compounds from 
fragment studies in clinical trials [309] and multiple 
mature commercial and academic FBDD programs in 
existence today. 

While the idea to use computational techniques to 
predict the binding of fragment probes to binding sites 
was explored from the very start, [171,310,311,312] 
modern in silico structure-based drug design approaches 
to optimize the affinity of fragment hits have not played a 
major role in most FBDD efforts. There are several potential 
reasons for this, including the following: 1) ligand 
docking algorithms and scoring functions that have been 
parametrized to describe the binding of drug-like 
compounds may not perform as well for fragment-sized 
compound; 2) the binding of fragment inhibitors, which 
often exhibit weak directional interactions and more 
dynamic binding modes, may pose particularly challenging 
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for an accurate description using fast, empirical methods; 
3) since FBDD programs have typically grown around the 
application of particular experimental techniques, their 
underutilization of computational approaches might be 
based on their evolutionary history. 

It has also been applied free energy calculation techniques 
(the FEP methodology in particular) to the study of 
fragment-sized molecules. FEP calculations are based on 
molecular dynamics simulations that explicitly consider 
conformational flexibility and entropy effects through the 
use of a physics-based force field to describe molecular 
interactions and explicit solvent to model the real 
environment of the protein binding site. One of the goals 
of this study was to explore whether a rigorous free energy 
approach, such as FEP, can provide predictive power and 
insights for FBDD without any special parametrization or 
customization, but results obtained are not yet conclusive. 
[313] 

Since attempts to improve ligand potency usually go 
hand in hand with increases in molecular weight, FBDD 
studies often use various metrics of ligand efficiency to 
judge if a gain in potency is worth the required addition of 
new functional groups. [314,315] This concept of focusing 
on the effect that small chemical changes have on the 
thermodynamics of binding suggests that the results of 
FEP calculations, which likewise deal with the effect that 
small chemical perturbations have on the binding free 
energy, could be well suited for practical FBDD applications. 

Relative binding free energies for ligands within a 
series of drugs can be computed directly from FEP+ 
calculations, and absolute binding free energy values can 
be derived from the FEP+ results (relative free energies, 
i.e. ΔΔG0) by adding a single free energy offset to all 
members of each series (this offset is chosen to minimize 
the mean unsigned error of the absolute free energy 
predictions and is added merely to make comparison of 
experimental and computational results easier; see refs 
316 and 317 for details). This uniform offset value 
facilitates plotting of the predicted versus measured free 
energies of binding of the individual ligands and does not 
alter the mean unsigned error or the R2-value of the 
predictions. 

Using the approach described to compute absolute 
binding free energies, the calculated affinities can be 
directly compared between different systems, unlike many 
other SBDD methods (e.g., ligand docking scores and 
approximate free energy methods). The ability to compute 
a true binding free energy has significant implications, 
such as being able to compare energies of ligands binding 
to different targets (binding selectivity) or the effects of 
putative drug resistance mutations on ligand binding. In 
addition, accurately modeling the underling physics 
should result in transferability across a broad range of 
targets without the need for parametrization. [313] 

6. Computing Methodologies  

6.1. Techniques Used for Free Energy 
Calculations 

Noncovalent interactions are crucial in chemistry, 
biochemistry, and materials science as they govern the 

structure and conformational dynamics of molecular systems 
and are, therefore, also crucial to reactive properties. The 
ability to understand and predict noncovalent interactions 
is thus indispensable to theoretical and computational 
studies of complex molecules.  

The accurate calculation of absolute binding affinities 
of protein-ligand complexes is a very important goal in the 
study of biomolecular recognition [318] and computational 
drug design [319]. However, the currently available 
computational methods often require some knowledge of 
experimental binding affinities to calibrate parameters for 
a particular protein target [162]. The free-energy techniques 
known as double decoupling methods [320,321,322], have 
been developed to calculate the absolute binding affinities 
of complexes without a priori experimental information. 
These methods involve calculating the free-energy cycle 
for decoupling the protein and ligand, and then 
reintroducing the ligand to the bulk solvent. This rigorous 
technique has only been used for very small ligands [320] 
or with simplistic implicit solvent models [322], because 
one of the difficulties involved in this approach is that the 
ligand must be decoupled slowly enough from the binding 
pocket such that the mechanical work associated with the 
process can be performed reversibly. Nowadays, new 
techniques have been developed that can obtain free 
energies from repeated nonequilibrium simulations [323,324] 
and may help make double decoupling applications more 
efficient. Using a different strategy, Chang et al. 
enumerated the configuration integrals of the bound and 
unbound state of simple host-guest complexes to calculate 
the free energy of association [325]. 

Any alchemical pathway between bound and unbound 
states can, in principle, be used to obtain free energies for 
complex formation. One of the most obvious pathways is 
to simply pull out the ligand from the active site of the 
protein by a potential of mean force (PMF) approach. The 
PMF approach has existed since the early days of 
molecular mechanics and is well grounded in the 
statistical mechanics of liquids. The exponential 
improvements in computer hardware as well as enhanced 
molecular dynamics algorithms make the PMF approach a 
reality for protein-ligand systems. Nevertheless, the 
computational requirements are still quite demanding. 
Izrailev et al. [326] have been using several pulling 
methods for over a decade to study the nature of molecular 
recognition in protein-protein complexes. Fukunishi et al. 
[327] devised an approach to estimate the free energy of 
binding in protein-ligand complexes utilizing a self-
avoiding random walk procedure. Also Woo and Roux 
[328] successfully applied a PMF approach to the 
calculation of the equilibrium binding constant of the 
phosphotyrosine peptide pYEEI to the Src homology 2 
domain of human Lck.  

A commonly used approximate method for the 
calculation of absolute binding affinities is the so-called 
molecular mechanics-Poisson-Boltzmann-surface area 
(MM/PB-SA) method [149,329]. In this approach, an 
explicit solvent simulation of the bound state is carried out 
and the solvation free energy of binding is obtained from a 
Poisson-based solvation model [330]. Then the simulation 
is postprocessed to determine the enthalpic differences 
between the bound and unbound solute states. Separately, 
the binding entropy is estimated by harmonic analysis 
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using a simple r-dielectric function to approximate solvent 
screening of charge-charge interactions. The free energy 
of binding, ΔGbind is calculated as [81,331]: 

 bind solv SAG  E  G  G∆ = ∆ + ∆ + ∆  (7) 

 complex protein ligandE E E E∆ = − −  (8) 

where Ecomplex, Eprotein, and Eligand are the minimized 
energies of the protein–inhibitor complex, protein, and 
inhibitor, respectively. 

 solv solv(complex) solv(protein) solv(ligand)G G G G∆ = − −  (9) 

where Gsolv(complex), Gsolv(protein), and Gsolv(ligand) are the 
solvation free energies of the complex, protein, and 
inhibitor, respectively:  

 SA SA(complex) SA(protein) SA(ligand)G G G G∆ = − −  (10) 

where GSA(complex), GSA(protein), and GSA(ligand) are the surface 
area energies for the complex, protein and inhibitor, 
respectively. 

It is well known that MM-PBSA free energies do not 
usually replicate the experimental free energy in absolute 
value, but this approach calculates binding affinity ranking 
and exhibits good correlation with experiments in certain 
cases, but only provides modest accuracy for relative 
binding affinities in systems dominated by electrostatics 

The simplest estimation of the free energy of binding 
ΔGcomplexation is that it can be approximated by the binding 
energy BE 

 ( )complex receptor ligandBE=H H H− +  (11) 

where H represents the total (internal) energy from 
molecular mechanics for the individual components 
subtracted from the internal energy of the system in the 
complex. This approach completely ignores the 
contribution of entropy as well as solvation, although 
corrections for entropic effects can be incorporated using a 
wide range of sampling methods. [332,333] In many 
computational studies, a classical potential function (i.e., a 
molecular mechanical force field) is used to describe 
noncovalent interactions. This is based on the assumption 
that, in the absence of chemical reactivity and therefore 
any change in covalent bonding, the potential function can 
be expressed as a sum of a set of relatively simple 
functional forms. For the noncovalent component, for 
example, the typical force field includes Coulombic terms 
between point charges or higher-order multipoles, [334] 
Lennard-Jones terms for van der Waals interactions, and 
sometimes polarizable dipoles, [334,335] fluctuating 
charges, [336] or charge transfer terms. [337] Classical 
force fields are vital for condensed-phase simulations due 
to their computational efficiency; their accuracy for certain 
properties (e.g., population of various conformations) can be 
rather high for well-calibrated systems. 

Despite the success of force fields, there is still 
tremendous interest in developing efficient quantum 
mechanics (QM) based methods for treating noncovalent 
interactions due to several considerations. First, the 
parametrization of a force field is often a laborious 
process that requires extensive tests and refinement of 
parameters that are not easily decoupled. In the recent 

years, there has been progress regarding the development 
of “ab initio” force fields in which parameters are 
computed rather than fitted. [338-340] Although this is an 
exciting and promising direction, there are still technical 
challenges, such as the balance of bonded and nonbonded 
contributions in the treatment of polymeric systems. 
Second, most force fields, including those based on first-
principles calculations, use rather simple functional forms, 
which may not be able to capture subtle effects such as 
hyperconjugation, charge transfers, and other many-body 
effects. [48,341,342] Third, due to the various 
approximations in classical force fields, they are likely 
most suitable for a particular set of molecules under a 
specific range of conditions. For example, the stability of 
ion-pair interactions in a protein’s interior is likely 
overestimated by typical nonpolarizable force fields. [343] 

Reddy and Erion have used QM/MM-FES to calculate 
the binding free energies of five inhibitors of fructose-1,6-
bisphosphatase. [344] They used AM1 for the ligand and 
MM for the protein and solvent. With standard EA, they 
obtained results with a suspiciously high accuracy: Five 
relative binding affinities were reproduced with an error of 
less than 1.4 kJ/mol, although the reported statistical 
uncertainties of the calculated affinities were 1.9−2.5 
kJ/mol. The results obtained at the MM level were almost 
equally good, with a maximum error of 2.1 kJ/mol. The 
SEQM calculations increased the computational time by a 
factor of 5. The same approach was later used to study the 
binding of some other inhibitors to the same enzyme. [345] 
Again, excellent results were obtained for 22 relative binding 
affinities, with maximum errors of 1.7 and 3.3 kJ/mol for 
SEQM and pure MM, respectively, although the reported 
uncertainty in the relative energies is 3.8 kJ/mol. 

 
Figure 2. Thermodynamic cycle to obtain relative QM/MM binding free 
energies. The desired binding energy can be obtained by ∆𝐺𝐺𝐿𝐿1→𝐿𝐿2

𝑄𝑄𝑄𝑄/𝑀𝑀𝑀𝑀 =
 ∆𝐺𝐺𝐿𝐿1−𝐿𝐿2

𝑀𝑀𝑀𝑀 − ∆𝐺𝐺𝐿𝐿1
𝑀𝑀𝑀𝑀→𝑄𝑄𝑄𝑄/𝑀𝑀𝑀𝑀  + ∆𝐺𝐺𝐿𝐿2

𝑀𝑀𝑀𝑀→𝑄𝑄𝑄𝑄/𝑀𝑀𝑀𝑀  (and similar for the free 
ligands in water solution). If the QM/MM and MM potentials are similar 
enough, it may be enough to use sampling at the MM level [193] 

 
Figure 3. Method of reweighting MM simulations to conform to the QM 
potential surface. In many applications, only the first and last points are 
reweighted to the QM/MM surface, whereas the remainder of the binding 
is studied only on the MM surface. [193] 
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A slightly more common approach has been to perform 
the sampling at the MM level and then evaluate QM/MM 
energies only for a restricted number of snapshots. The 
problem with such an approach is that the energy 
functions used for the simulations and the perturbations 
are not the same, so that normal equations cannot directly 
be applied to the QM/MM energies. Instead, valid 
QM/MM free energies should be obtained either by an 
MM → QM/MM FES calculation, employing the 
thermodynamic cycle in Figure 2, [346,347,348] or by 
reweighting the MM snapshots with the QM/MM energy 
function (Figure 3), e.g., by the non-Boltzmann BAR 
approach (NBB). [349] Such approaches have been used quite 
extensively for enzyme reactions, [346,347,348,350,351,352] 
for solvation free energies, [353-358] and in a few cases 
also for ligand binding. [359-363] The challenge with 
these approaches is to obtain converged results for the 
MM→QM/MM perturbation, which must be performed in 
a single step to avoid the need of QM/MM sampling, i.e., 
to ensure that the overlap of the distributions generated by 
the MM and QM/MM potentials is large enough. For 
enzyme reactions, proper convergence has been obtained 
by keeping the QM system fixed, [346,347,348] but for 
binding affinities, such an approximation seems 
inappropriate, because the entropy and reorganization of 
the ligand is crucial for the binding. 

Alternatively, binding affinities can be estimated as 
averages of interaction energies over molecular dynamics 
(MD) or Monte Carlo (MC) simulations. Such 
calculations reduce the local minimum problem, but they 
are also much more time consuming. Many variants have 
been suggested, but the two most used are the linear 
interaction energy (LIE) and the MM/PBSA or 
MM/GBSA (MM combined with Poisson−Boltzmann or 
generalized Born and surface area) approaches. [58,153] 

However, a more strict statistical mechanical way to 
obtain binding free energies is by free-energy simulation 
(FES) techniques. [364,365] These also involve MD or 
MC sampling, but also the conversion of the ligand to 
either another ligand (giving the difference in ΔGbind 
between the two ligands) or a noninteracting ligand 
(giving the absolute ΔGbind). Such conversions need to be 
performed in many small steps to give a proper 
convergence, so the FES approaches are computationally 
expensive. 

 / .G RTbindbindK e ∆−=  (12) 
A problem with these calculations is that the estimated 

binding affinities need to be very accurate. Equation (12) 
shows that a difference in binding constants of 1 order of 
magnitude translates to a difference of only 6 kJ/mol in 
ΔGbind. Thus, the accuracy of a computational method 
needs to be better than this to be useful in drug 
development. Unfortunately, very few computational 
methods have such an accuracy, especially not MM 
methods, with their lacking description of polarization, 
charge transfer, many-body effects, etc. Therefore, there 
has lately been quite some interest in improving ligand-
binding estimates by using quantum-mechanical (QM) 
methods. They can in principle include all contributions to 
the receptor−ligand interaction energy and therefore 
provide an ideal energy function. However, in practice, 
QM calculations are also approximate, and depending on 

the level of theory used, sometimes the approximations 
may deteriorate the results below the level obtained by 
MM methods, e.g., because you cannot afford a proper 
sampling of the phase space. Moreover, often only a part 
of the receptor−ligand complex is used in the QM 
calculation. Therefore, it is not certain that QM 
calculations will automatically improve calculated binding 
affinities 

In 1994, Åqvist et al. suggested the linear interaction-
energy (LIE) method. [147,149] It is based on two MD 
simulations, one of the receptor−ligand complex (RL) and 
one of the free ligand in water (L). The binding free 
energy is estimated from the difference in the average 
electrostatic and van der Waals interaction energies 
between the ligand and the surroundings (𝐸𝐸𝑒𝑒𝑒𝑒𝐿𝐿−𝑆𝑆  and 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝐿𝐿−𝑆𝑆 ) 
in the two simulations:  
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The two terms are scaled by empirical constants, α and 
β. β should be 0.5 according to the linear-response 
approximation, but it often is assigned values of 0.3−0.5 
depending on the chemical nature of the ligand. [366,367] 
The other parameter is truly empirical. 

Over the last three decades, Quantum Monte Carlo 
(QMC) methods were applied to numerous applications 
that are directly or indirectly related to systems where 
accurate description of noncovalent interactions is crucial. 
These applications include biomolecular systems of 
intermediate and large sizes. For example, Korth et al. 
performed large-scale calculations to obtain interaction 
energies of adenine-thymine and cytosine-guanine base 
pairs, [368] a benchmark FNDMC interaction energy of a 
large supramolecular host−guest complex, glycine 
anhydride interacting with amide macrocycle, was 
calculated by Tkatchenko et al. [369], the interaction of 
adenine-thymine step in B-DNA was estimated by 
FNDMC in the work of Hongo et al. [370] and Benalit et 
al. presented a FNDMC estimate of interaction energy for 
the fragment of DNA intercalated with anticancer drug, 
ellipticine. [371]  

QMC has a number of important ingredients that make 
it attractive for a variety of many-body quantum problems, 
including challenges such as calculating very small 
interaction energies in noncovalent systems. Dubecký et al. 
emphasized that the real-space Fixed Node Diffusion 
Monte Carlo (FNDMC) methods recover all possible 
many-body correlations within the nodal constraint ΨT = 0. 
This property makes QMC an interesting choice for 
noncovalent interactions in particular, since noncovalent 
interactions result from subtle long-range correlations that 
are spread across sizable parts of the configuration space. 
Fittingly, these are exactly the types of many-body effects 
where QMC is especially effective. Indeed, the 
demonstration that QMC is able to produce results 
competitive with coupled-cluster calculations with single, 
double, and perturbatively treated triple excitations,  
[372-378] and in some cases calculations with coupled-
cluster singles, doubles, triples, and quadruples 
CCSDT(Q), [379] is already convincing for small systems, 
and similar performance is expected for larger systems. 
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The main source of FNDMC errors is the approximate 
ΨT which determines the fixed-node bias and in the 
presence of effective core potentials, also bias from the 
localization approximation. Besides that, further sources 
of possible errors exist: population control bias, DMC 
time step bias, or treatment of noninteracting structures 
reference energy (it matters whether one obtains the total 
energies of structures separately or in a single run with 
structures separated reasonably far from each other [380]). 
As Dubecký et al. indicated, the calculations should be 
organized in such a manner that the interacting system and 
the structures are described on the same footing, and in 
addition, it is necessary to check that the technical errors 
are under control while the cancellation in energy 
differences is maximized  

For covalently bonded systems, the thermochemical 
accuracy of 1 kcal/mol is usually satisfactory [381-385] 
and provides useful insights for processes such as bond 
formation/breaking in reactions and similar phenomena. 
However, benchmarks for noncovalent interactions require 
typically an order of magnitude higher accuracy, on par 
with the subchemical threshold value of 0.1 kcal/mol that 
poses a steep challenge for any computational method, 
because technical parameters used in QMC calculations 
that make no or very little qualitative difference at the 
scale of 1 kcal/mol may play a decisive role in case of 
noncovalent interactions. The quality of QMC results 
depends considerably on parameters that enter the typical 
multistage computational sequence, since each step 
depends on its own set of technical parameters and/or user 
choices. One such set of parameters and choices includes 
selection, construction, and variational optimization of 
trial wave function ansatz. The FNDMC production step 
requires sufficiently long projection times that reach the 
desired states. Another relevant DMC aspect is checking 
the time step and population control biases. In addition, 
the biases coming from the treatment of ECPs must be 
kept under control as well.  

It is reasonable to assume that an explicit construction 
of exact eigenstate(s) for a large interacting quantum 
system is both unnecessary and not really useful. What is 
really “only” needed is the necessary amount of 
information that enables evaluations of accurate 
expectation values (e.g., energy differences and other 
quantities of interest within a desired error margin). This 
is in fact the basic premise of the reductionism paradigm 
that underlies a vast number of methods based on mean-
fields, DFT, reduced density matrices, [386-388] etc. The 
challenge comes from the fact that the reduced quantity is 
actually a very complicated object since all the many-body 
effects have been folded into it during the reduction (for 
example, by integrating over (N−2) particles when getting 
the two-body density matrix). However, this is in general 
a very difficult task due to its inverse nature: one wants to 
reconstruct correlations from the particles that are already 
integrated out. Advanced methods based on density matrix 
renormalization [389-391] and other renormalization 
group methods or sophisticated perturbation approaches 
try to address exactly this critical issue by carefully 
guiding the reduction in an appropriate and presumably 
efficient manner. However, beyond a certain level the 
systematic improvements of reduced quantities often 
becomes very difficult, sometimes perhaps almost as 

difficult as solving the full many-body problem in the first 
place. 

In this respect, QMC appears to be a unique 
methodology that combines known analytical insights and 
direct constructions with the robustness of the stochastic 
methods in order to capture the many-body effects 
efficiently. It seems that this combination offers somewhat 
of a sweet spot between the fully explicit and the fully 
reduced descriptions. In particular, the uninteresting and 
heavy load of reducing (i.e., calculating expectation values) 
is left to the machine. 

The value of the QMC method comes also from its new 
insights that reveal the nature of quantum correlations that 
are stimulating for correlated wave function methods in 
general. In particular, (i) stochastic sampling is carried out 
from a complete basis, and the extent of sampling is 
determined automatically by the desired error bar, largely 
avoiding thus the basis set issues; (ii) to the leading order, 
the explicit inclusion of exact nonanalytical behavior, such 
as electron−electron cusps, eliminates another issue that is 
difficult in many other approaches; and (iii) in addition, 
the correlation factor captures the smooth, medium-, and 
long-range correlations with remarkable efficiency, with 
just a few to a few tens of variational parameters. 

On the other hand, as expected, QMC has its own 
limitations and challenges. The key challenge that has a 
long history and that has to do with the fundamental and 
infamous Fermion sign problem can be formulated also as 
a construction of an optimal effective Hamiltonian. The 
actual Hamiltonian that is solved exactly by the fixed-
node DMC can be written as 

 ( )FN ( ) 17H H V∞= + Γ  (14) 

where Γ is the location of the nodal hypersurface and 
V∞(Γ) is an infinite barrier at this subset of configurations. 
Improvement of V∞(Γ) is done indirectly through more 
accurate trial functions, and it is therefore important to 
understand the sources of the nodal errors. As described 
above, the fixed-node bias grows with the electronic 
density as well as with the complexity of the bonds. [392] 
This finding has implications also for noncovalent systems 
since dispersion interactions result in low densities and 
mainly σ-like character of single-reference bonds, hence 
the fixed-node errors are much less pronounced in energy 
differences. However, this finding has a significant 
importance also for other electronic structure problems 
and possibly beyond. Clearly, these arguments need to be 
further refined and quantified so that much remains to be 
done in this direction. 

Another “technical” issue of importance is the 
construction and testing of accurate ECPs (Effective Core 
Potentials): since QMC can provide benchmark accuracy 
for many systems, the quality of ECPs for heavier 
elements becomes crucial. In particular, new opportunities 
would open up with ECPs that would enable valence only 
calculations with an accuracy target, say, 0.1 kcal/mol  
(≈ 0.005 eV) or so for energy differences. Furthermore, 
overall applicability of QMC methods could be 
significantly enhanced with more systematic benchmarking, 
testing, and providing data sets of calculations for a broad 
use. 

Perhaps one of the greatest challenges is better 
understanding of errors related to current QMC procedures. 
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So far most of the calculations focused on energy 
differences such as cohesion, gaps, and similar quantities 
that are larger than 0.1 eV or so, rather than on tiny 
differences important for intermolecular bonding. Even 
though some sources of errors have been already 
identified, it is still not fully understood to what extent 
they are systematic, how they scale with the system size, 
and what are the best ways of reducing them. In addition, 
it is still possible that more sources of errors will be 
uncovered. This state of the matter is strikingly different 
from the mainstream WFT, where sources of errors are 
very well mapped out and many solutions exist that may 
be routinely applied. Much more detailed work will be 
necessary to achieve this level of routine with the QMC 
methods. 

One of the open challenges is also optimization of the 
QMC codes and development of new fast algorithms. 
Whereas mainstream methods and codes were optimized 
for performance over many decades, both on the side of 
more efficient programming and method development, at 
present the QMC codes are mostly basic research tools. 
Obviously, this is an opportunity for future as it is likely 
that QMC codes may become more efficient once they 
become more widely used. 

These considerations have led to the development of 
various linear-scaling QM methods, [393,393,395] which 
hold the promise to treat both covalent and noncovalent 
interactions for large molecules. In practice, however, 
linear-scaling QM calculations remain computationally 
expensive whenever ab initio QM or density functional 
theory (DFT) methods are used. This is a particularly 
serious limitation for the study of biomolecules and other 
soft matter, where adequate conformational sampling is 
imperative. For many biological applications, [396,397] 
for example, molecular dynamics simulations on a 
nanosecond to microsecond scale are required, which 
involve millions to billions of energy and force 
evaluations. 

This review has illustrated the great interest of using 
QM calculations to improve estimates of binding affinities. 
This is quite natural, considering the increasing awareness 
of the shortcomings of standard MM force fields. In 
particular, QM calculations automatically include effects 
of polarization, charge transfer, charge penetration, and 
the coupling of the various terms. Moreover, QM avoids 
the need of parametrization of force fields for the ligands, 
which is a tedious and time-consuming procedure, if you 
aim at accurate results. QM can also consistently treat the 
formation of covalent or metal-coordination bonds. 

From reading this paper, you can easily get the 
impression that inclusion of QM methods nearly always 
improves calculated binding affinities. But this is not an 
accurate picture as there are several examples of QM 
methods giving comparable or even worse results than 
MM methods. [359,398,399] The apparent success is 
probably an effect of the fact that it is easier to publish 
success stories. [400,401] Moreover, the performance of a 
method depends on the quality measures used: Methods 
not based on FES or fitting tend to overestimate energies 
and energy differences, and QM methods often increase 
this overestimation. However, this typically improves the 
correlation between experimental and calculated affinities. 
Therefore, a correlation coefficient should always be 

supplemented by a measure of the agreement in terms of 
the free energy (MAD or RMSD), but such results are 
much more seldom reported.  

Thus, it can be concluded that QM methods do not 
currently automatically provide a clear improvement in 
computational estimates of binding affinities. This is 
probably caused by a combination of several effects: 
insufficient sampling and treatment of entropy effects, the 
use of rather crude continuum-solvation methods, and the 
fact that a QM treatment of most interactions (e.g., 
electrostatics, polarization, and repulsion) gives rise to 
larger energy components (of opposite signs) that require 
a higher precision to give accurate final results (MM 
methods gain much from error cancellation). However, 
this may change as it becomes possible to perform valid 
FES simulations at the QM(/MM) level. 

It is in this context that semiempirical (SE) methods, 
which have a long history in quantum chemistry, [402] 
have come back into the spotlight in recent years. The 
most prevalent SE methods are those based on 
approximations (e.g., neglect of diatomic differential 
overlap, NDDO) to the Hartree−Fock (HF) theory, leading 
to methods such as AM1, [403] PM3, [404] MNDO/d, 
[405] and OMx. [406] Another approach that has become 
popular in the past decade is the density functional tight 
binding (DFTB) approach, [407,408,409] which was 
derived in the framework of DFT based on a Taylor 
expansion of the energy with respect to a reference density. 
Both sets of SE methods use minimal basis sets and 
involve various approximations to electron integrals, 
leading to an increase of computational efficiency by a 
factor of 100 to 1000 over typical implementations of ab 
initio QM and DFT methods. As a result, with the same 
computational resources, SE methods can be used to study 
systems 10 times larger or to carry out 1000 times longer 
sampling. [410] These enhancements can be further 
improved by integrating SE approaches with modern 
computational architectures (e.g., GPUs) [411,412] and 
computational algorithms (e.g., linear-scaling/fragmentation 
techniques, [393,394,395,413,414] faster diagonalizations, 
and/or extended Lagrangian MD algorithm). [415] 

These considerations, however, raise the following 
critical question: Are the SE methods sufficiently accurate 
for the description of structure, dynamics, and reactivity of 
complex molecular systems? The development of SE 
methods has focused on the description of the chemical 
bond traditionally; therefore, there is vast literature on the 
parametrization and benchmark of SE methods for heats 
of formation, structures, and other properties of mostly 
small molecules. [416,417,418,419] The description of 
larger systems, in which noncovalent interactions like van 
der Waals forces and hydrogen bonds are important, poses 
different challenges. In this review, we focus on this 
aspect of SE methods. 

As discussed earlier in this review, the lack of 
polarizing functions in a valence-only AO basis set causes 
the intermolecular polarization to be underestimated. A 
direct consequence is that the strength of an 
intermolecular interaction between polar functional groups 
is underestimated. During the past decade, a number of 
post-SCF hydrogen bonding corrections have been 
proposed to alleviate this shortcoming of SE (NDDO) 
methods. 
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Halogen bonds are noncovalent interactions between an 
electron donor and a halogen atom covalently bound to an 
electron acceptor. Compared to the hydrogen atom in a 
hydrogen bond, the electron density around a halogen 
atom is much more anisotropic, and a positively charged 
region exists along the covalent bonding axis of the 
halogen atom, the so called σ-hole. This region interacts 
with the lone pair of the electron donor, forming the 
halogen bond. Riley and Hobza used symmetry-adapted 
perturbation theory to show that this interaction accounts 
for approximately half of the halogen bond energy, while 
the rest of the interaction energy is mostly due to 
dispersion interaction. [420] Halogen bonds are badly 
reproduced by minimal basis set SE methods, which 
systematically overestimate the interactions. R ̌ezác ̌ and 
Hobza have devised the halogen bond “X-correction” term 
for PM6, which is combined with Grimme’s D2 
dispersion corrections to yield the D2X correction. [421] 
The halogen bond correction adds a repulsive potential to 
alleviate the overestimated interaction energy. 

Noncovalent interactions are most frequently evaluated 
by calculating the dissociation energy between two or 
more individual molecules in a cluster. Accurate estimates 
of these energies can be done by using extrapolation 
techniques: these approaches exploit the fact that the 
remaining correlation energy beyond MP2 converges quite 
rapidly. [422] Thus, the CCSD(T)/CBS (coupled-cluster 
calculations with single, double, and perturbately treated 
triple excitations/complete basis set) energy can be 
approximated as the sum of the MP2/CBS energy and a 
small CCSD(T) correction 

 ( ) 2 ( )
CBS CBS small basis
CCSD T MP CCSD TE E E −∆≈ +  (15) 

 ( ) ( ) 2
small basis small basis small basis
CCSD T CCSD T MPE E E− − −= −∆  (16) 

where 𝐸𝐸𝑀𝑀𝑀𝑀2
𝐶𝐶𝐶𝐶𝐶𝐶 is the MP2 energy extrapolated to the CBS 

limit, and 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑇𝑇)
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  and 𝐸𝐸𝑀𝑀𝑀𝑀2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 are the CCSD(T) 
and MP2 energies evaluated with a smaller basis set. 
Extrapolation schemes such as that by Halkier and co-
workers can be used to extrapolate the MP2 energy to the 
CBS limit. [423] Řezác ̌ and coworkers recommended 
using at least aug-cc-pVDZ as the small basis set and 
preferably aug-cc-pVTZ and aug-cc-pVQZ to extrapolate 
the MP2 energy to the CBS limit, and the Boys−Bernardi 
counterpoise correction [424] should be used to remove 
any basis set superposition error. [425] For dimer 
interaction energies calculated using equation (15), the 
error is estimated to be around 1%, and such energies are 
thus appropriate as validation and benchmark data for SE 
methods. [426] 

Christensen et al. have pointed out that a high accuracy 
of an SE method in the gas-phase does not necessarily 
guarantee the transferability of the method to the 
condensed phase. [427] For this reason, it is necessary to 
create data sets containing larger molecular clusters, such 
as trimers, host−guest complexes, and water clusters. In 
addition, a treatment such as equation (14) is trivial for 
smaller molecules, but the steep scaling of the CCSD(T) 
correction becomes prohibitive for large complexes quickly. 

The use of localized molecular orbitals (LMOs) with 
cutoffs in coupled cluster methods have led to methods 
with greatly reduced scaling compared to canonical 

coupled clusters, and these methods are very attractive for 
use in the study of large molecular assemblies. For 
instance, the DLPNO-CCSD(T) (domain-based local-pair 
natural-orbital coupled-cluster) method [428] has recently 
been applied to a data set containing complexes with up to 
112 atoms, [39] being expected for these LMO methods to 
constitute the basis of future data sets with larger 
molecular assemblies. 

All of the various scoring functions (SFs) used in 
computer-aided drug design to evaluate drug candidates 
rely on a rapid and accurate evaluation of intermolecular 
interactions between the drug and the receptor. Therefore, 
the SF must be able to describe all relevant types of 
noncovalent interactions, [429] such as dispersion, 
hydrogen bonding, [430] and halogen bonding. [431] 
Application of calibrated SE methods is a good way to 
meet these conditions. [432] For recent dedicated reviews 
on the application of SE methods in ligand scoring, refer 
to refs [433,434,435]. 

The possibility of applying a QM method in the 
framework of an SF was investigated by Vasilyev and 
Bliznyuk in 2004. [32] They applied an efficient 
implementation of AM1/COSMO to estimate the binding 
energies for a series of RNA···theophylline-analog 
complexes, and the approach was found useful, although 
preliminary. Another SE study of ligand−protein 
interactions aimed to reproduce experimental binding 
enthalpies of several complexes using PM3. [436] The 
results from calculations agreed well with the experiment, 
with an error of up to 2 kcal/mol. A different idea was 
exploited in a docking study in which PM6-based atomic 
charges instead of empirical charges were used in the SF 
where scoring results improved markedly. [437] 

The SE-based scoring has been developed further by 
Hobza and co-workers, who have complemented the SE-
based SF with advanced empirical corrections to the SE 
methods. [438] Much like the previous work by Merz and 
co-workers, [439,440] the SF by Hobza and co-workers 
relies on a phenomenological, idealized decomposition of 
the process of binding, which in turn leads to the 
approximation of binding free energy by the sum of 
several contributions with a clear physical meaning. These 
individual contributions are the gas-phase interaction 
energy, the solvation/desolvation free energy, the change 
of the conformational free energies of the protein and 
ligand, and the entropy change upon binding. The values 
of the contributions and their comparison may provide 
additional insight into the nature of the protein−ligand 
binding. Unlike the case of an empirical SF, none of the 
contributions are fitted, for example, to experimental data 
in any way. The idea is to use the most accurate methods 
for the respective terms, however, in such a way that they 
are balanced with the other terms, in terms of both 
accuracy and computational cost. Still, two of the terms in 
the SF, the protein deformation energy and the binding 
entropy, would need prohibitively long calculation times 
to be evaluated accurately, and thus, they are evaluated 
largely approximately. Consequently, the SF shall provide 
merely relative values of the binding free energy, and the 
goal is a (linear) correlation of the score with the real, 
experimental binding free energy. 

The gas-phase interaction energy is calculated using 
geometries obtained with SE energy minimization in the 
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solution phase, and its magnitude is usually the largest 
among all of the contributions to the SF, amounting to as 
much as several hundred kcal/mol (for charged ligands). It 
is, however, compensated for largely by the change of 
solvation free energies upon binding. Consequently, even 
small deviations may lead to large deviations in the final 
score, and special care is needed here. The gas-phase 
interaction energy is calculated with a corrected PM6 
method—most recently, PM6-D3H4X—which was shown 
to be the most accurate among SE methods, outperforming 
even the costly ab initio MP2 method. 

Although the main motivation to use an SE method in 
the scoring may be the improved accuracy with respect to 
empirical schemes, there are also situations in which any 
empirical scheme would come into trouble for principal 
reasons: (i) There is a chemical element (or binding 
situation) that is difficult to parametrize in MM. (ii) A 
covalent bond is formed between the receptor and the 
ligand. (iii) Another process that cannot be described with 
MM takes place; an example is a halogen bond due to the 
presence of a σ-hole. In any of these cases, the application 
of an SE-based SF is clearly superior. 

In ligand docking and scoring studies, it is valuable to 
combine SE methods with computational approaches of 
miscellaneous sorts. To illustrate such possibilities, some 
other applications are mentioned below. 

It was investigated how the conformational and 
desolvation free energies are affected if only a single 
conformer of a flexible inhibitor of HIV protease was 
considered. [253] To provide reference data, sufficient 
sampling was guaranteed by means of extensive MD 
simulation (using an MM force field). The error caused by 
the limited treatment of ligand flexibility amounted to ca. 
5% of the total range of the scores. It was concluded that 
an approach restricted to a single conformer represents a 
reasonable, viable compromise between accuracy and 
computational efficiency. 

The statistical mechanically strict way to obtain binding 
free energies is to perform free-energy simulations (FESs). 
However, these require extensive sampling of the 
receptor−ligand complex and various intermediate states, 
making them computationally very demanding. Therefore, 
full FES simulations for ligand binding have been 
performed only at the SEQM/MM level and in only a few 
cases. It has been more common to perform the sampling 
at the MM level and then try to extrapolate these results to 
the QM level. 

Simulation of phenomenological models constitutes a 
powerful tool to explore binding processes. This 
procedure allows generating equilibrium binding 
isotherms from the time courses of the binding reaction 
and, from these data, the Hill coefficients can be 
determined. We show that Hill coefficients estimated from 
these isotherms have a bi-univocal relation with the Gibbs 
free energy of interaction among binding sites and their 
values are independent of the free energy of ligand 
association to the empty sites. Furthermore, a careful 
exploration of the simulated data shows distinctive 
features between the binding time courses corresponding 
to negative cooperativity and different classes of binding 
sites, although they are undistinguishable at equilibrium. 
In this way, our results also highlight the usefulness of 
preequilibrium time-resolved strategies to explore binding 

models as a key complement of equilibrium studies. 
Additionally, simulated results show that under conditions 
of strong negative cooperativity, the existence of some 
binding sites can be overlooked. We show that 
experiments at very high ligand concentrations (when 
compatible with solubility and stability conditions) are a 
valuable tool to unmask such sites. [441] 

Specific recognition and interaction between 
macromolecules and ligands determines the fate of most 
cellular processes and thus the behavior, response and 
regulation of essential functions in all living organisms 
[442,443]. Regulation of gene expression [444], enzyme 
activities [445,446], protein stabilization [447,448], cell 
membrane electrochemical potential [449], oxygen 
transport [450] and neural proliferation [451] are only a 
few examples of the great diversity of phenomena that 
occur in biological systems as a consequence of 
intermolecular interactions. Despite its key role, the 
underlying relationships and mechanisms are still a matter 
of debate. 

Cooperative binding represents perhaps one of the most 
interesting, and not fully understood, types of molecular 
interactions observed in nature [452]. For macromolecules 
having two or more binding sites, cooperativity is 
characterized by a change of the intrinsic (site specific) 
equilibrium binding constant as a function of the reaction 
progress (i.e. the affinity of a given binding site for a 
ligand will be affected by the occupancy of other sites by 
the same or different ligands). The first modeling 
approaches describing cooperative binding were proposed 
by A.V. Hill at the beginning of the twentieth century by 
analyzing the binding of oxygen to human hemoglobin 
[453,454]. At that time, hemoglobin was thought to be a 
monomeric molecule containing one atom of iron [455]. 
To conciliate this data with the sigmoidal shape of the 
oxygen binding curve, Hill proposed that these monomers 
aggregate in groups of n units, and that this ‘aggregate’ 
bound n molecules of oxygen simultaneously [455]. From 
this model a mathematical expression (equation (17)) was 
derived [454], where the fractional saturation of 
hemoglobin by O2 (θ) is expressed as a function of the 
partial pressure of O2 or, for the general case, the free 
ligand concentration [L]. This equation includes two 
parameters: an association constant (K) and an exponent 
affecting the ligand concentration today denoted as the 
Hill coefficient (nH). 

 ·[ ] .
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+ +

 (17) 

Despite the fact that these two hypotheses (hemoglobin 
aggregation and infinite interaction) are perhaps 
unrealistic, equation (17) is still nowadays the most used 
mathematical expression to describe cooperative binding 
in the scientific literature. In this scenario, it is commonly 
accepted that the Hill coefficient provides a criterion to 
determine the type of interaction between binding sites in 
a macromolecule. When the value of the Hill coefficient  
is 1, the Hill equation becomes a rectangular hyperbola 
indicating that there is no interaction among binding sites 
(referred hereafter as identical and independent sites). If 
nH takes values higher than 1, it is said that the system 
shows positive cooperativity; this could be the result of an 
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increase in the affinity of a binding site due to the 
previous binding of a ligand to another site. Instead, nH 
values lower than 1 would indicate negative cooperativity 
(also called antagonism) and, in this case, the binding of 
the first ligand molecule diminishes the probability of 
binding for a second molecule. However, the condition  
nH < 1 while being necessary, is not sufficient to probe the 
existence of negative cooperativity, since macromolecules 
with multiple binding sites and different ligand affinities 
will also depict nH values lower than the unity [456]. 
Although there are few well-documented cases of negative 
cooperativity (see Ruzicka & Frey [457], Abeliovich [458] 
and references therein), its relevance cannot be 
underestimated. Indeed, Koshland and Hamadani 
suggested that both, positive and negative cooperativity, 
are part of a phenomenon of universal importance in 
biological systems, and have about equal evolutionary 
relevance [459]. 

6.2. Alchemical Models 
Estimating binding free energies accurately is a very 

time-consuming process. The most accurate results are 
obtained with methods such as Free Energy Perturbation 
(FEP) / Thermodynamics Integration (TI), and similar 
results can be obtained at a lower computational cost with 
methods such as MM-PBSA/MM-GBSA or Linear 
Interaction Energy (LIE). These methods are however still 
considered too computationally intensive to be of much 
use in virtual screening approaches. [460] 

Low-throughput computational approaches for the 
calculation of ligand binding free energies can be divided 
into “pathway” and “endpoint” methods [461,462]. In pathway 
methods, the system is converted from one state (e.g., the 
complex) to the other (e.g., the unbound protein/ligand). 
This can be achieved by introducing a set of finite or 
infinitesimal “alchemical” changes to the energy function 
(the Hamiltonian) of the system through free-energy 
perturbation (FEP) or thermodynamic integration (TI), 
respectively [152,463]. The fundamentals of FEP and TI 
methods were introduced many decades ago by John 
Kirkwood [464] and Robert Zwanzig [465]. In recent 
years, their use in the computation of absolute binding 
affinities has become feasible due to increases in 
computational power, the development of more accurate 
models of atomic interactions [466,467,468], the clarification 
of the underlying theoretical framework and the introduction 
of methodological advances [322,461,462,469,470,471]. 
Combined with atomistic molecular dynamics (MD) or 
Monte Carlo (MC) simulations in explicit water solvent 
models, they are arguably the most accurate methods for 
calculating absolute or relative ligand binding affinities. 

The “alchemical” computation of differences in binding 
affinities (rather than absolute affinities) among a set of 
related ligands for the same target protein is more accurate 
and technically simpler. FEP and TI methods are often 
referred to as "computational alchemy", in the sense that 
they evaluate the difference between the binding energy of 
two similar ligands by using pathways to compute the 
change in free energy when ligand A is changed to ligand 
B within the binding site and in solution [472]. The 
horizontal legs describe the experimentally accessible  
 

actual binding processes, with free energies ΔGbind(L1) 
and ΔGbind(L2). Since the free energy is a state function, 
the relative binding free energy ΔΔGbind is exactly equal to 
the difference of the free energies in the horizontal or 
vertical legs. 

These methods generally give a very good estimate of 
the binding energy, with errors below 1kcal/mol [473,474]. 
By slowly "growing" the ligand into the binding site it is 
also possible to calculate the absolute binding free energy, 
but this is a very time consuming process [295]. Figure 4 
shows the thermodynamic cycle that is used for chemical 
alchemy calculations. 

 ( ) ( )bind bind bind2 1G G L G L∆∆ = ∆ −∆ =  (18) 

 complex free( 1 2) ( 1 2).G L L G L L= ∆ → −∆ →  (19) 

The simulations follow the vertical steps (equation (19)) 
or unphysical processes, by simulations in water solution 
that gradually change the energy-function of the system 
from one “endpoint” to the other through a series of 
intermediate hybrid states. From Figure 4, this involves 
the stepwise “alchemical” transformation of ligand L1 to 
L2 both in its ‘free’ state (unbound) and in the bound 
complex, through gradual changes in the forcefield 
parameters describing the ligand interactions. This leads to 
the free energy changes ΔGfree(L1→L2) and 
ΔGcomplex(L1→L2), respectively. Averaging over both 
transformation directions is often used to improve the 
free-energy estimates, although this is not always the case 
[475]. These calculations can be accurate, if conducted 
with the appropriate care. An overview of current state-of-
the-art methods for absolute and relative affinity 
calculations is in [476]. 

MM-GB(PB)SA methods are widely recognized as 
valuable tools in CADD applications. However, as with 
any method they have limitations and caveats, which need 
to be considered. First, while useful for ranking relative 
ligand binding affinities, these methods lack the required 
accuracy for absolute binding free energy predictions 
[84,477].The inclusion of entropic contributions brings the 
MM-GB(PB)SA values somewhat closer to experimental 
absolute affinities [462]. However, such entropic terms are 
costly and contain large uncertainties. Force-field 
inconsistencies may also be an issue: PB and GB results 
depend strongly on adequate atomic charges and van der 
Waals radii, which are often optimized for MD 
simulations. The MM-GB(PB)SA results may be 
influenced by system-dependent properties, such as the 
features of the binding site, the extent of protein and 
ligand conformational relaxation upon association, and the 
protein and ligand charge distribution [83,84]. 

 
Figure 4. Thermodynamic cycle linking the binding of two ligands L1 
and L2 to a protein in solution 
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Continuum electrostatics models ignore the molecular 
structure of the solvent; in some cases this might affect the 
results, particularly when key receptor-ligand interactions 
are bridged by water molecules, c.f. Section 4.1 [478]. 
Furthermore, the value of the protein/ligand dielectric 
constant is empirically chosen, and takes into account not 
only the protein and ligand structural relaxation, but also 
other error-introducing factors such as the ones mentioned 
above [479,480]. Hou and coworkers suggested in a recent 
MM-PBSA study that the use of εin = 4 for a highly 
charged protein-ligand binding interface, εin = 2 for a 
moderately charged binding interface and εin = 1 for a 
hydrophobic binding interface may improve ligand 
ranking [84]. The lack of a consistent optimum dielectric 
constant for MM-PBSA calculations has been noted by 
other workers (see for e.g. [481]), although generally a 
value εin =4 often gives satisfactory results [481-483]. As 
a final note, MM-GB(PB)SA calculations require some 
degree of user expertise and planning, from the initial set-
up and analysis of the MD simulations through to the 
binding free energy calculations themselves. 

In the MM-GB(PB)SA formulation, the binding free 
energy of a ligand (L) to a protein (P) to form the complex 
(PL) is obtained as the difference [484]: 

 ( ) ( ) ( )bindG G PL G P G L∆ = − −  (20) 

The free energy of each of the three molecular systems 
P, L, and PL is given by the expression: 

 ( ) ( ) ( ) ( )solvMMG X E X G X TS X= + −  (21) 

In equation (21), EMM is the total molecular mechanics 
energy of molecular system X in the gas phase, Gsolv is a 
correction term (solvation free energy) accounting for the 
fact that X is surrounded by solvent, and S is the entropy 
of X, EMM is the sum of the bonded (internal), and non-
bonded electrostatic and van der Waals energies 

 MM bonded elec vdwE E E E= + +  (22) 

These energy contributions are computed from the 
atomic coordinates of the protein, ligand and complex 
using the (gas phase) molecular mechanics energy 
function (or forcefield). The solvation free energy term 
Gsolv contains both polar and non-polar contributions. The 
polar contributions are accounted for by the generalized 
Born, Poisson, or Poisson-Boltzmann model, and the non-
polar are assumed proportional to the solvent-accessible 
surface area (SASA): 
 ( )solv PB GB .SASAG G G= +  (23) 

Finally, the entropy S is decomposed into translational, 
rotational and vibrational contributions. The first two are 
computed by standard statistical-mechanical expressions, 
and the last is typically estimated from a normal-mode 
(harmonic or quasiharmonic) analysis [485,486,487]. In 
practice, current software implementations normally 
determine all three contributions to S as part of a normal-
mode analysis. 

Usually, to improve the accuracy of the computed 
binding free energies, the various terms of equation (21) 
are averaged over multiple conformations or MD 
snapshots (typically a few hundred for the EMM and Gsolv 
contributions). Depending on the extent of conformational 

fluctuations in the system under consideration, the 
convergence into stable values may require relatively long 
(multi-ns) simulations. The computation of the entropy 
term, however, requires the extensive minimization of the 
trajectory conformations for the protein, ligand and 
complex to local minima on the potential energy surfaces, 
followed then by normal mode analysis. 

This procedure is costly and prevents the consideration 
of a large number of conformations; insufficient sampling 
can therefore sometimes an issue. To decrease the 
computational cost, the protein can be truncated beyond a 
certain cutoff distance and the system minimized using a 
distance-dependent dielectric, which simulates the deleted 
surroundings [488]. However, a large variation of the entropy 
term often results from these ‘free’ minimizations. Including 
a fixed buffer region (with water molecules) beyond the 
cut-off can lead to more stable entropy predictions [488]. 

The internal energy terms (Ebonded) of the protein and 
complex can be on the order of a few thousand kcal/mol, 
and can introduce large uncertainties in the computed 
binding free energies. This is prevented in the “single-
trajectory” approximation [489,490], which employs 
simulations of a single state (the complex) to generate 
conformations for all three states (complex, protein and 
ligand). For each MD conformation sampled, the resulting 
internal energy terms of the protein and ligand are 
identical in the bound and the unbound states and cancel 
exactly in equation (20). Hence, effectively only the 
protein-ligand (non-bonded) interaction energies of the 
EMM term in equation (22) contribute to ΔGbind. ‘Single-
trajectory’ simulations significantly reduce computational 
effort and are generally sufficiently accurate for most 
applications. The downside of the approximation is that 
any explicit structural relaxation of the protein and ligand 
upon binding is ignored. 

Although charge reorganization can be partly taken into 
account implicitly by setting the protein/ligand (internal) 
dielectric constants to values larger than εin = 1-2 
[479,480,482,491], the neglect of explicit structural 
relaxation may introduce errors depending on the system 
[492]. Separate MD simulations for the complex, and 
unbound receptor and ligands may also be performed (the 
“three-trajectory” approximation) but require greater 
computational effort, although in theory should yield more 
accurate results. Indeed, Yang and co-workers have 
recently shown that including separate simulations for the 
ligand and accounting for the “ligand reorganization” free 
energy led to significant improvements in binding affinity 
predictions for a set of ligands targeting XIAP [493]. In 
certain cases, therefore, the added expense of separate 
simulations may be justified. 

Proteins function usually inside aqueous solutions or in 
membrane environments, which are in the vicinity of an 
aqueous medium. The surrounding solvent can influence 
protein stability and function, ligand binding and protein-
protein association. Since the solvent modifies in a non-
trivial manner the intramolecular and intermolecular 
interactions, an accurate inclusion of solvent effects in 
biomolecular modeling and simulation is a challenging 
task. Currently, the most accurate treatment in molecular 
simulations is achieved by atomic-detail models that 
represent explicitly the biomolecule and its surrounding 
environment. 
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Several water models are used successfully to describe 
the aqueous environment in atomistic simulations; 
examples include SPC [494], SPC/E [495], TIP3P and 
TIP4P [496], and TIP5P [497]. In practice, the explicit 
inclusion of water leads to a considerable increase in both 
the size of the simulation system and the computational 
cost of the simulation itself. Furthermore, the computation 
of solvation or binding free energies requires an 
exhaustive sampling of the solvent degrees of freedom. 
The energies are normally averaged over conformations 
sampled from molecular dynamics simulations, often with 
explicit water. These methods have been applied to a 
variety of ligand-protein complexes and proven to give 
good estimates of the binding energy [498]. Despite the 
differences observed by Michel et al for various sets of 
enzyme inhibitors, the use of an implicit solvent 
framework to predict the ranking of congeneric inhibitors 
to a protein is shown to be faster, as accurate or more 
accurate than the explicit solvent protocol, and superior to 
empirical scoring schemes. [499] 

A much less costly approach is to represent the solvent 
implicitly in the simulation, through the incorporation of 
additional “potential of mean force” terms [500,501] in 
the gas-phase energy function (e.g., equation (24) below). 
These terms depend only on the atomic coordinates of the 
solute, and express the solute free energy for a given 
configuration, after the solvent degrees of freedom have 
been “integrated out” [500, 501]. Thus, the simulation 
system has the same number of degrees of freedom as in 
the gas phase and there is no need for explicit sampling 
over solvent degrees of freedom. 

 ( ) .SASAG X SASAγ β= ⋅ +  (24) 

MM-PBSA and MM-GBSA are so called end-point 
methods in the sense that they only evaluate the initial and 
final states of the system instead of the path between the 
states. They can use molecular dynamics or Monte Carlo 
simulations to obtain snapshots of the protein-ligand 
complex which are used to calculate the average binding 
free energy. If the configurational entropy is included it is 
estimated by minimizing a small number of snapshots and 
from them calculate the entropy with a rigid-
rotor/harmonic-oscillator approximation [462], but often 
this term is neglected if only relative binding affinities are 
required because it is very time consuming. 

To examine the potential of computationally designing 
SHC ligands and study their thermodynamics of binding, 
the relative free energies of binding of a series of 
structurally similar anticholesteremic inhibitors of SHC 
were calculated by Schwab et al. using single-step 
perturbation (SSP) and thermodynamic integration (TI) 
techniques. While neither technique succeeds in 
quantitatively matching the relatively small experimental 
values, TI qualitatively reproduces the relative order of the 
experimental affinities, but SSP does not. [502] 

To conclude, the emerging implementation of biomolecular 
codes on GPU architectures [503,504] and the development 
of simple free-energy protocols [505] make atomistic 
methods of absolute or relative affinities very promising 
for larger-scale calculations in the near future. Nevertheless, 
at present they are still relatively time-consuming, and 
require considerable expertise and planning. They 
preclude the consideration of more than a few complexes 

per day on a dedicated CPU cluster with a few tens of 
nodes. A trade-off between computational expense and 
accuracy is therefore required when the goal is to 
investigate and compare the binding strengths of a 
structurally diverse and/or larger set of ligands via MD 
simulations. For this purpose, much less computationally 
demanding „endpoint” methods are often successfully 
applied, such as the „linear interaction energy” (LIE) [162] 
or the molecular mechanics – Poisson Boltzmann (MM-
PBSA) [58] and the related molecular mechanics – 
generalized Born (MM-GBSA) approximation [506]. All 
these methods compute binding free energies along the 
horizontal legs of Figure 4, but use only models for the 
“endpoints” (bound and unbound states). 

6.3. Molecular Dynamics Simulations 

Computational chemistry and molecular modeling have 
become an indispensable part of the modern drug design 
process. However, the calculation of absolute binding 
affinities for protein−ligand complexes remains as one of 
the main challenges in computational structure-based 
ligand design. At the same time, estimating differences in 
free energy is also central to the process of rational 
molecular design. This is because all equilibrium 
properties of a system such as phase behavior, association-
dissociation constants, solubilities, adsorption coefficients 
and conformational equilibria depend on differences in 
free energy between alternative states. Free energy 
differences are essentially related to the relative 
probability of finding a system in a given microscopic 
state. Many empirical approaches have been developed to 
estimate interaction or binding free energies between 
proteins and ligands. However, only by using an approach 
that samples an appropriate thermodynamic ensemble of 
states, such as Molecular Dynamics (MD) and Monte 
Carlo (MC) simulation techniques, from which it is 
possible to get thermal averages over microscopic 
configurations at an atomic level, can differences in free 
energy between two states of a system be estimated 
directly [190,507-514]. The difficulty is that the 
computational cost of obtaining sufficient sampling and 
converged results has made the routine application of free 
energy calculations for estimating binding free energies 
impractical. This situation is, however, rapidly changing. 
The use of modified intermediate potentials has been 
shown to improve sampling dramatically and the rapid 
advance of computer power means that the utility of free 
energy calculation in molecular design must be constantly 
re-evaluated. 

Several approaches to direct evaluation of binding 
affinities from molecular modeling have been developed, 
ranging from empirical and “‘knowledge-based”’ scoring 
functions, using end point energy difference methods such 
as MD MM-PB/GBSA methods [58,82,514,330] to those 
based on free energies calculations, such as the rigorous 
free energy perturbation (FEP) [465] and thermodynamic 
integration (TI) methods.[153,190,464]. It is known that 
the accuracy of MD based methods depends on sufficient 
sampling for convergence, as well as on the force field 
used. In the end point energy difference methodology, the 
binding energy is obtained by calculating individual 
components of binding energy, which are the enthalpy and 
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entropy. The components of binding energy are estimated 
through the energy difference between the bound and 
unbound states of the protein–ligand complexes. By 
contrast, the TI methods directly estimate the binding 
energy by integrating the differential changes in the 
binding energy with respect to the relative presence or 
absence of the ligand in the system. Although FEP and TI 
approaches have shown to be accurate for binding affinity 
calculation, they are exceedingly demanding in 
computational power if applied to large molecular data 
sets. [461,515] Thus, further development of fast and 
accurate methods for structure-based drug design is still 
needed. Åqvist et al. [147] developed a semi-empirical 
method, coined the linear interaction energy (LIE) method, 
[147,159] for absolute binding free energy calculation. 
This method is based on conformational sampling of 
receptor-bound and unbound drug states with molecular 
dynamics (MD) or Monte Carlo (MC) simulations. By 
virtue of sampling two endpoints of the process only, LIE 
is considerably faster than either FEP or TI simulations. 
However, it is considerably slower than single conformation 
scoring functions methods, thus presenting a very useful 
alternative (to FEP simulations) for already generated and 
curated sets of protein−drug states from docking 
simulations. [147] The LIE method is based on the linear 
response assumption [516] for electrostatic interactions 
combined with an empirical expression for nonpolar 
contributions to drug solvation and binding. The binding 
free energy in LIE is expressed according to equation (25): 

 el vdw
bind l s l sG V Vβ α γ− −∆ = ⋅ + ⋅ +  (25) 

where 𝑉𝑉𝑙𝑙−𝑠𝑠𝑒𝑒𝑒𝑒  and 𝑉𝑉𝑙𝑙−𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣  are MD or MC-generated interaction 
energy averages from the nonbonded electrostatic and van 
der Waals interactions of the ligand (l) with its 
surrounding environment (s), respectively. The symbol Δ 
denotes the change in average values when transferring 
the ligand from solution (free state) into the binding site of 
the solvated receptor (bound state). The coefficients α and 
β are scaling factors for these energy terms, while γ is an 
empirical constant. The linear response (LR) approximation 
theory provides a physical basis for treating the 
electrostatics contribution to the binding free energy, 
predicting a value of β = 0.5. The formalization of other 
terms related to nonelectrostatic effects in the protein−drug 
associations is, however, more challenging. Accordingly, 
the automatic workflows to facilitate the set up and 
execution of LIE-based binding free energy calculations 
for protein−ligand complexes have been developed. 
[517,518] The van der Waals interactions between the 
ligand and its environment, represented by a Lennard−Jones 
potential, are commonly used to calculate the nonpolar 
contribution to binding free energy. [147] However, an a 
priori prediction of α or γ parameters remains a challenge. 
The commonly used strategy builds on the empirical 
parameters fitting by available experimental data on a 
small set of receptor−ligand complexes and then extending 
it to the test sets of interest. [159,160,162,163,167,514] 
For example, the empirical α coefficient was initially 
calibrated by using β = 0.5 and four endothiapepsin 
inhibitors experimental binding data yielding the value of 
α = 0.161. [147] Next, series of MD simulations were 
performed with the Gromos 96 force field furthering the 
proposed value of the α. [519] The original model showed 

reasonable predictive power for different proteins in 
complexes with ligands with different structural scaffolds 
such as endothiapepsin, [147] HIV-1 protease, [158,516] 
glucose binding protein, [520] and trypsin. [157] Later, 
this parameterization was refined by Åqvist et al., 
[159,514] who used 18 protein−ligand complexes comprising 
endothiapepsin, [147] HIV-1 protease, [158,516] glucose 
binding protein, [520] and trypsin [157] as the training set. 
The authors determined more accurate values of β by 
using FEP calculations. The deviation from the linear-
response regime is especially pronounced for relatively 
polar compounds. [159,367] This resulted in an improved 
LIE model known as the standard model, referred here as 
LIE-S. This model uses β values, ranging between 0.33 
and 0.5, along with α = 0.18 and γ = 0. Further studies 
have shown that binding free energies calculated with 
LIE-S are in good agreement with experimental data for 
several protein−ligand systems. [168,521,522,523,524] 

Nevertheless, for proteins containing hydrophobic 
binding sites, a non-zero γ constant is required to 
reproduce observed trends in the absolute binding free 
energies. The commonly used value of α = 0.18 
downscales the nonpolar contribution ( 𝛼𝛼∆〈𝑉𝑉𝑙𝑙−𝑠𝑠𝑣𝑣𝑣𝑣𝑣𝑣 〉), thus 
leading to a significant underestimation of binding 
energies. [160,163,167] Some notable cases where LIE 
fails to predict are to be found in binding of retinoids to 
retinol binding protein (RBP), [167] biotin analogs to 
avidin, [160] substrates to cytochrome P450 (P450cam), 
[163] and inhibitors to human thrombin. [525] For these 
systems, reported γ values range from −2.9 to −7.0 
kcal/mol. [162] Almlo ̈f et al. [168] found a clear 
relationship between the ranking of these binding sites 
hydrophobicity (RBP > P450cam > thrombin > trypsin) 
and the γ value. To some extent this is similar to the idea 
developed by Wang et al., [160] who investigated 
variations of the nonpolar coefficient α in the absence of 
the constant term γ, as a way to distinguish among 
different binding-site types. The main outcome of their 
research is the linear correlation (R2 = 0.96) obtained 
between the weighted nonpolar desolvation ratio (WNDR) 
and the α values in the LIE method. [160] Valiente et al. 
[526] established a linear relationship (R2 = 0.85) between 
WNDR and γ using Wang’s training set complexes. This 
novel model, termed LIE-C, was successfully applied to 
predict the binding free energy of five PlmII-Inhibitor 
complexes (<|error|> = 1.47 kcal/mol). [526] Nevertheless, 
the main disadvantage of LIE-C is the use of atomic 
desolvation parameters for WNDR calculation. Furthermore, 
the only six atom types (C, S, N, N+, O, and O−) 
considered in that report [526] exclude other heteroatoms 
(Fe, Zn, Cu, F, Br, I, etc.) that could also be present in 
protein−ligand complexes. 

Miranda et al. developed LIE-D, a novel LIE 
parameterization model that accurately predicts the γ 
coefficient based on the balance between polar and 
nonpolar contributions to binding free energy (D 
parameter) extracted from MD simulations. Leave-one-out 
assessment showed that LIE-D accurately reproduced our 
training data set experimental binding free energies. The 
model robustness was demonstrated by reproducing the 
binding free energies of two of the three protein−ligand 
sets outside the training data set, using the reported 
electrostatic and van der Waals interaction energies 
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calculated with different force fields. Thus, LIE-D can be 
useful for lead optimization phases where computational 
methodologies more accurate than scoring functions will 
be needed to predict absolute binding free energies of 
protein−ligand complexes. However, to conclude which 
force field is the best choice for free energy calculations 
with the LIE-D model, further studies will be needed. [527] 

A study for the binding of seven biotin analogues to 
avidin suggested that to obtain statistically converged 
MM-GBSA results, several independent simulations each 
with sampling times of 20-200 ps (averaging the results) is 
more effective than a single long simulation [252]. 
‘Single-trajectory’ simulations of the complex are 
generally sufficiently accurate for most applications, and 
while MD simulation length does have an obvious impact 
on the accuracy of predictions, longer MD simulations 
doesn’t necessarily mean better predictions [84]. For the 
calculations of the ΔEMM and ΔGsolv terms (equation 20), a 
large ensemble (e.g. several hundred) conformations are 
typically extracted in small intervals from the single MD 
trajectory of the complex. Alternatively, averaging over a 
select few receptor-ligand binding conformations from the 
MD trajectory via clustering has proved effective, as well 
as more time efficient [478]. MM-GB(PS)SA calculations 
on single (minimized) structures has also been proposed 
and validated [83,528], but not necessarily for structures 
generated from MD simulations. Meanwhile, for the 
entropy term calculated using normal mode analysis, 
fewer snapshots (typically less than a 100) are employed, 
due to the computational cost involved. As a larger 
number of snapshots may be required for more stable and 
accurate predictions, these calculations, however, are 
computationally expensive and often not feasible with 
limited computational resources. Consequently, neglect of 
the entropy term can in some cases lead to sufficient or 
more accurate predictions for ranking of ligand binding 
affinities in certain macromolecular systems [84,478,528]. 

The MM/PBSA method [58,205] was introduced by 
Srinivasan et al. [330] It combines molecular mechanics 
(MM) and continuum solvent approaches to estimate 
binding energies. An initial MD simulation in explicit 
solvent provides a thermally average ensemble of 
structures. Several snapshots are then processed, removing 
all water and counterion molecules, and used to calculate 
the total binding free energy of the system with the 
equation 

 bind complex protein ligandG G G G ∆ = − +   (26) 

where the average free energy 𝐺̅𝐺 of the complex, protein, 
and ligand, are calculated according to the following 
equations: 

 MM solvationG E G TS= + +  (27) 

 intMM elec vdwE E E E= + +  (28) 

 .solvation polar non polarG G G −= +  (29) 

𝐸𝐸�𝑀𝑀𝑀𝑀  is the average MM energy in the gas phase, 
calculated for each desolvated snapshot with the same 
MM potential used during the simulation but with no  
cut-offs. 𝐺̅𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , the solvation free energy, is calculated 
in two parts, the electrostatic component 𝐺̅𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  using a 

Poisson–Boltzmann approach, and a non-polar part using 
the solvent-accessible surface area (SASA) model. [529] 
The entropy (𝑇𝑇𝑆𝑆̅) is the most difficult term to evaluate; it 
can be estimated by quasi-harmonic analysis [485,530,531] 

of the trajectory or using normal mode analysis. 
[330,530,531] The entropy change can be omitted if only 
the relative binding energies of a series of structurally 
similar compounds is required, but if the absolute energy 
is important, or if the compounds are notably different, 
then its contribution to the final free energy cannot be 
ignored. A quite recent study by Kuhn et al. [83] suggests 
that the MM-PBSA function could be used as a post-
docking filter during the virtual screening of compounds, 
as their use of a single relaxed structure provided better 
results than usual averaging over MD simulation 
snapshots. However, as the simulation conditions used in 
this work were not optimal, improved calculations could 
lead to significantly different conclusions.  

Although only a single MD simulation of the complex 
is commonly used to determine the conformational free 
energy, [161] as the structures for both the free ligand and 
ligand-free protein molecules are extracted from the 
simulation for the protein–ligand complex, this approach 
might not be the best, as a study by Pearlman [484] 
showed that using a single simulation to generate all 
structures for a series of complexes of p38 MAP kinase 
and 16 different ligands provides final results that are 
significantly worse than those from separate simulations, 
and that savings achieved in computing time are minimal 
and do not justify the simplification. 

Application of the MM-PBSA approach has produced 
reasonable binding energies for several systems, 
[330,532,533,534] but not for others. [484] Evaluation of 
the MM-PBSA method using a series of p38 MAP kinase 
complexes resulted in very poor results compared with 
other approaches, and at an appreciably larger 
computational cost. [484] Kollman and co-workers [151] 
presented a combined approach that implements docking, 
MD simulations, and MM-PBSA, and used it to predict 
the binding mode of the inhibitor efavirenz to HIV-1 
reverse transcriptase. Initially, they evaluated the capacity 
of combined MD simulations and MM-PBSA to 
reproduce binding free energies of 12 crystal structures 
ofHIV-1 RT complexed with different TIBO-like 
inhibitors. They found that both relative and absolute free 
energies were correctly predicted with an error of 1.0 
kcal/mol. For the docking of efavirenz, five different 
binding modes were submitted to MD simulation and 
further processed using the MM-PBSA approach. The 
most stable binding mode was clearly identified, with a 
binding free energy of -13.2 kcal/mol in good agreement 
with the experimental value of -11.6 kcal/mol. The final 
structure was found to be in very good agreement with a 
crystal structure of the complex, not initially available to 
the authors. They concluded that molecular docking 
combined with MD simulations followed by MM-PBSA 
analysis presented a reasonable approach for modeling 
protein complexes a priori. 

Ahmed et al. utilized a much longer MD simulations 
because certain conformational changes are not accessible 
at the conventional MD time scale. In addition to MD 
simulations, they carried out binding free energy calculations 
based either on a single snapshot (Prime-MM/GBSA) or 
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ensemble of snapshots (AMBER-MM/PB(GB)SA). To 
account for the protein polarization effect, they have also 
rescored the relaxed MD complexes using QM/MM 
rescoring. 

For those complexes that are subjected to the MD 
simulations, physics based rescoring was carried out 
applying both MM and QM/MM techniques. For MM 
rescoring, they applied a single, end point rescoring for 
the final trajectory snapshot produced from the MD 
simulations and using the Prime/MM-GBSA in the 
Schrodinger suite [61,535,536]. The complexes were also 
rescored applying the much more sophisticated 
AMBER/GB(PB)SA module in AMBER12 [537,538]. 
The AMBER/GB(PB)SA module takes the advantage of 
statistical averaging over many potential configurations. 
For the QM/MM rescoring and because of the prohibitive 
computational expense, in DFT/MM rescoring they use 
only the ligand as the QM subsystem as implemented in 
the QM/MM-PBSA script of Schrodinger and solvation 
effect is ignored in that case. These procedures seemed to 
provide plausible explanations for the observed inhibitory 
effects. 

Liu et al. have proposed an MM/PBSA-based free 
energy estimator (PBSA_E) for efficient prediction of 
protein−ligand binding affinity. The method involves 
MM/PBSA calculation of the protein−ligand binding 
energy using a single protein−ligand complex configuration 
that is optimized from the crystal structure, and no MD 
simulation is needed. The calculated PBSA energies were 
fitted to a training set to obtain optimized coefficients for 
use in a formula (equation 29) to give the free energy 
prediction (PBSA_E). The performance of this method 
was validated on two test sets. Explicit comparison with 
three popular scoring function methods (GlideSP, 
GlideXP, and Sybyl_F) demonstrated that the PBSA_E is 
superior to all three of these methods in reliability and 
accuracy, but it takes more computational effort. The 
study also showed that using a single optimized 
protein−ligand configuration is preferred over using 
multiple configurations generated from MD simulations. 

 ( )1 2
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It is useful to give a brief discussion of their 
computational timing. The single-configuration MM/PBSA 
calculation normally takes 1−2 min for each protein 
system on one CPU of a standard workstation. If 
optimization of the complex structure is done in explicit 
water, it generally takes about 20 min on an eight-CPU 
workstation (Intel Xeon E5620 2.4 GHz processor). The 
long optimization time is mostly due to optimization of 
water molecules. However, their study showed that if this 
optimization is carried out either in the gas phase or using 
an implicit water model (the GB model), the optimization 
time could be cut to under 2 min. It should also be 
mentioned that newer versions of the currently used 
scoring functions could achieve better correlations than 
the ones obtained in their study, [539] and also using MM-
GBSA and MM-PBSA methods, relative binding affinities 
for a set of ligands to a given target can often be 
reproduced with good accuracy and considerable less 
computational effort compared to full-scale molecular 

dynamics FEP/TI simulations. Furthermore, free-energies 
can be decomposed into insightful interaction and 
desolvation components [478,482,540]. 

The EEMD method (expanded ensemble molecular 
dynamics), successfully used earlier for accurate 
calculation of solvation energies for organic molecules 
[541-543] has also been used for calculating binding 
energies. Using this method it is also possible to obtain the 
thermodynamic components of binding energy which has 
not been attempted using the TI methodology (details of 
MD end point energy difference and TI methods can be 
found elsewhere [482,544,545]). 

The EEMD simulations face a complication that, during 
the sampling in subensembles, there is a risk that the 
ligand might drift away from the active site of the protein. 
This occurs when the partial representation of the ligand 
no longer contains the key interactions that are necessary 
for its binding to the active site residues. Once the ligand 
drifts away from the active site of the protein, the energy 
estimations might no longer represent the binding energy 
of the ligand. In order to avoid this complication, the 
ligand needs to be restrained in the active site of the 
protein, which can be done. [546] 

Zhao et al. proposed MD as a tool to analyze the free-
energy surface and pathways of (un)binding of small 
molecules from/to proteins [547,548]. The network 
analysis revealed multiple binding modes characterized by 
distinct intermolecular hydrogen bonds and hydrophobic 
contacts. Moreover, the unbinding kinetics showed single-
exponential time dependence which indicates that the 
barrier for full dissociation is significantly higher than the 
barriers between different binding modes. It is instructive 
to compare experimental and simulation approaches. The 
aforementioned biophysical techniques for the analysis of 
fragment binding to proteins have limitations in temporal 
and/or spatial resolution. In contrast, the MD simulations 
of (un)binding generate a complete picture of the free-
energy surface and (un)binding pathways at atomic level 
of detail [114,547,548]. 

Recently, motivated by the atomic force microscopy 
(AFM) experiments the steered molecular dynamics 
(SMD) [549,550] has developed and applied to study 
mechanical unfolding of biomolecules [551,552], 
transportation of ions [553,554] and organic compounds 
through membrane channels [555,556]. This method is 
also employed to probe unbinding pathways of ligand 
from its receptor [557,558]. Li and Mai published that 
SMD is one of possible candidates to achieve two goals of 
drug design: more accurate than docking and more 
efficient than MD methods. Application of basic concepts 
of the SMD to study ligand binding affinity of various 
complexes shown SMD to be as powerful as MM-PBSA 
method in predicting binding affinity but about one order 
of magnitude faster. 

Inter- and intra-molecular forces are key to the stability 
of biomolecules. Up to now understanding of these forces 
is possible through indirect physical and thermodynamical 
measurements like crystallography, light scattering, 
nuclear magnetic resonance spectroscopy etc. In the case 
of ligand binding to receptor the binding energy Ebind is 
estimated via equilibrium association constant Ka 
constants using the equation Ebind =.-RT ln(Ka). Single 
molecule force spectroscopy experiments such as AFM 
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[559], laser optical tweezers [560] and magnetic tweezers 
[561] can directly probe molecular forces and provide 
unexpected insights into the strength of forces driving 
various interactions responsible for the mechanical 
stability of bio-systems. 

In standard single molecule force spectroscopy 
experiments one terminal (end) of a biomolecule is 
anchored to a surface, while another terminal is attached 
to a force sensor. A biomolecule is stretched by increasing 
the distance between the surface and the force sensor. In 
the AFM case, the force sensor is a micron-sized 
cantilever. After the pioneering AFM experiment of Gaub 
et al. [562], a lot of experimental as well as theoretical 
works have been done on proteins, DNA and RNA 
[563,564]. Biomolecules are pulled either with a constant 
force or by a force ramped with a constant loading rate. 
The force-extension curve of proteins under constant rate 
pulling has a saw-tooth shape due to domain by domain 
unfolding [565]. Schulten’s group [327] was first to 
reproduce this remarkable result by SMD simulations. 

To probe the binding affinity of ligand to receptor, one 
applies the external force to pull ligand from the binding 
pocket without fixing any atom of ligand (Figure 5). As in 
the single molecule force spectroscopy the force 
experienced by ligand is proportional to the displacement 
of the cantilever. Under the force loaded with a constant 
rate the total energy of the receptor-ligand complex is as 
follows 

 receptor ligand receptor ligand forceE E E E E−= + + +  (31) 

 2( )
2force
kE x vt= −  (32) 

Here Ereceptor, Eligand and Ereceptor-ligand are energies of 
receptor, ligand and receptor-ligand interaction, 
respectively. 

 
Figure 5. Schematic plot for pulling ligand from a receptor by applying 
the force 𝐹⃗𝐹 via the cantilever with the spring constant k [566] 

Therefore, it is important to establish what pulling path 
should be chosen. If biomolecule is stretched with one 
point fixed, the force is directed along the vector 
connecting the anchored point and the point which the 

force is applied to. The situation becomes more 
complicated when a ligand is pulled from the binding site 
not keeping any atom fixed. In this case, one can not pull 
along arbitrary direction and an optimal pathway can be 
chosen [567] using, e.g. Caver 2.0 [568], a plugin of 
Pymol. The optimal path goes through the widest tunnel 
which is directed outside the binding pocket. The 
corresponding rupture force would be smallest among all 
possible pathways. 

The Linear Interaction Energy (LIE) methods [147] are 
end-point method like MM-PBSA/GBSA and also use 
averaged conformations from molecular dynamics 
simulations. The binding free energy is estimated as: 

 
( )
( )

bind elecbound elec free

vdwbound vdw free

G E E

E E

α

β

∆ ≈ −

+ −
 (33) 

where the brackets denote averages from molecular 
dynamics trajectory. The factors α and β account for 
changes in the internal energy of the solvent and protein 
and are determined empirically [147]. This method has 
been shown to give accurate results [147] and newer 
implementation include a solvation energy term to 
increase accuracy [569]. A drawback of this method is that 
there is no universal value for the factors α and β, they 
have to be determined independently for each case and 
require experimental data. 

Van Vuong et al. presented a new method for finding 
the optimal path for pulling a ligand from the binding 
pocket using steered molecular dynamics (SMD), defining 
scoring function as the steric hindrance caused by a 
receptor to ligand movement. Then the optimal path 
corresponds to the minimum of this scoring function, 
calling the new method MSH (Minimal Steric Hindrance). 
Contrary to existing navigation methods, their approach 
takes into account the geometry of the ligand while other 
methods including CAVER only consider the ligand as a 
sphere with a given radius. Using three different target + 
receptor sets, they had shown that the rupture force Fmax 
and nonequilibrium work Wpull obtained based on the 
MSH method show a much higher correlation with 
experimental data on binding free energies compared to 
CAVER. Furthermore, Wpull was found to be a better 
indicator for binding affinity than Fmax. Thus, they claimed 
the new MSH method as a reliable tool for obtaining the 
best direction for ligand exiting from the binding site. Its 
combination with the standard SMD technique can 
provide reasonable results for ranking binding affinities 
using Wpull as a scoring function. [570] 

7. Conclusions 

An accurate knowledge of interactions in biomolecules 
is of utmost importance for understanding of their 
structure and function and high quality calculations have a 
potential to provide important insights in this area. In 
addition, modeling of biomolecular structure and 
dynamics profits from accurate reference values needed 
for calibration of less demanding quantum chemical, 
semiempirical, and empirical methods used in molecular 
dynamics simulations. Typical size of biomolecules is, 
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however, often relatively large and out of reach of the 
current WFT benchmark methods. Therefore, reference 
calculations on biomolecular complexes are challenging 
mainly because of the size that is required for obtaining 
useful results. For these types of problems, QMC 
calculations may offer a significant advantage. 

A number of studies have shown that refining docking 
and scoring calculations by performing molecular 
dynamics (MD) and free energy calculations starting from 
docked poses can greatly increase the accuracy of binding 
affinity predictions [266,571,572]. Due to the much more 
elaborate procedure and the simulation time needed for 
each compound, only a small set of compounds, up to ~50, 
can be predicted at the same time. This scheme is 
therefore only useful in the lead optimization stage, where 
accurate binding affinity predictions of a smaller set of 
similar compounds are needed for selection of compounds 
to be synthesized and for rationalization of particularly 
interesting interactions between the compounds and the 
binding site. The improved accuracy of the simulations is 
mainly due to the increased level of molecular detail, 
using a flexible and explicitly solvated protein. Problems 
do remain, such as the restriction of sampling time, as no 
major structural changes will take place during the 
simulation time that can realistically be used for efficient 
binding affinity predictions. In connection with this is the 
importance of using accurate starting structures, which has 
been reported in a number of studies [266,572,573,574]. 

MM-GBSA and MM-PBSA are computationally 
efficient, end-point free energy methods that have been 
widely used to study protein-ligand binding affinities. 
Even though they lack the sound theoretical foundations 
of recently developed computationally demanding 
absolute-affinity free-energy methods [322,461,462,470], 
their connection with statistical thermodynamics has been 
established [161]. Due to the approximations inherent in 
MM-GB(PB)SA methods, they are more applicable for 
ranking (“scoring”) of ligand binding affinities rather than 
to quantitatively predicted absolute binding free energies. 
They should be regarded as approximate, as they combine 
a molecular mechanics energy function with a continuum-
electrostatics treatment of solvation effects; they include 
solute conformational entropy effects in an approximate 
manner [477]; and ignore the solvent molecular structure. 
Accurate incorporation of solute entropy [575] and solvent 
effects in binding affinity calculations is challenging, but 
future extensions and development of MM-GB(PB)SA 
methods will undoubtedly serve to address these 
limitations. It is important to point out that the binding 
energy scores for various sets of compounds under study 
at different levels of QM/MM and pure-MM levels of 
theory allow Ahmed et al. to conclude that, in general, 
MM based methods perform well in comparison with the 
QM/MM based methods. [576] 

MM-GBSA and MM-PBSA are computationally 
efficient, end-point free energy methods that have been 
widely used to study protein-ligand binding affinities. 
Even though they lack the sound theoretical foundations 
of recently developed computationally demanding 
absolute-affinity free-energy methods [322,461,462,470], 
their connection with statistical thermodynamics has been 
established [161]. Due to the approximations inherent in 
MM-GB(PB)SA methods, they are more applicable for 

ranking (“scoring”) of ligand binding affinities rather than 
to quantitatively predicted absolute binding free energies.  

All-atom MD simulations of pharmaceutically relevant 
protein targets in their apo state or in complex with 
(putative) ligands have provided useful information at the 
beginning and final phase, respectively, of high-throughput 
docking campaigns. Explicit solvent MD runs of the apo 
structure are becoming more frequent for the selection of 
one or more snapshots for docking of large libraries of 
compounds. At the final stage of ranking, MD simulations 
starting from the predicted binding mode are performed 
for the in silico validation of the top ranking compounds. 
Moreover, atomistic MD simulations have provided 
insights into the mechanism of the antiviral drug darunavir 
(a dimerization inhibitor of the HIV protease); have 
helped in the interpretation of the selectivity profile of two 
kinase inhibitors used in the clinics as anticancer drugs; 
and have revealed that acetyl-lysine (the natural ligand of 
bromodomains) has an alternative binding mode which is 
more buried than the one observed in the available crystal 
structures [577]. These and several other examples (some 
of which are reviewed in [578]) suggest that the 
applications of MD will play an even more important role 
in drug design in the future. There are three main 
obstacles to the identification of potent (i.e., nanomolar) 
inhibitors by high-throughput docking: the very small 
chemical space of the libraries of compounds, the 
approximations used for scoring, and the use of a (mainly) 
rigid protein structure [579]. The future developments of 
MD-based methods for in silico screening will help to 
remove the two latter obstacles. 

The accuracy of free energy calculations depends on 
two factors. First, the accuracy of the force field. This can 
only be confirmed by comparison to experimental results. 
Second, free energy calculations depend on the degree of 
sampling and convergence. This is in principle independent 
of whether we know the 'true'. 

The force field might be responsible for not being able 
to correctly discriminate between inhibitors with similar 
binding free energies (with a difference in the order of a 
few kJ/mol) [580]. However, when dealing with force 
field inaccuracies, errors should be systematic. Although 
the ranking of the inhibitors is expected to be different, the 
spread of the values should be similar in the experimental 
values and the values calculated from the simulations.  

Pieffet results [580] suggest clearly that in fact 
nanosecond simulations are too short to yield accurate 
estimates of the binding free energies in cases relevant to 
drug design and that closures of thermodynamic cycles are 
useful but by no mean sufficient to ensure that 
convergence has been reached. They can also suggest that 
the different orientations of the inhibitors inside the 
binding pocket of the receptor might need to be taken into 
account and not only the most favorable one. In this case 
the correct distribution would be required and much 
longer simulations would be needed. 

The discrepancy between the values obtained from 
experiment and the values calculated from the simulations 
can have different origins. The force field is potentially 
the primary source of error. The accuracy of the force 
field can vary depending on the type of residue under 
consideration [581]. For this reason it is not 
straightforward to quantify the accuracy of a force field in 
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a global sense [582]. Furthermore, the results observed in 
various tests can be greatly influenced by the protocols 
used to perform the simulations and these protocols might 
be different from the one used initially for the force field 
parameterization. 

In the case of the calculation of the (non-physical) free 
energy associated with the mutation of a residue into 
another one, it is clear that an accurate description of both 
the wild type and the mutant protein is required to obtain 
the correct answer. The solvation free energies for analogs 
of several residues involved in the mutations have been 
shown to be quite accurate in different environments [581] 
using the GROMOS96 force field. The solvation free 
energies of analogs of hydrophobic amino acids such as 
Ala, Val and Leu are within 2 kJ/mol of the experimental 
value in both water and cyclohexane. Thus, from a force 
field perspective the mutations of Val or Leu into Ala 
were expected to perform well irrespective of whether the 
residues are exposed to solvent or buried inside the protein. 
However, the results show discrepancies with experiment 
much larger than 2 kJ/mol and are randomly distributed 
clearly indicating that the major source of error is not 
directly related to the accuracy of the force field for these 
specific amino acids. [580] 

The accuracy of the force field can also have indirect 
effects on the result. The force field determines which 
conformations are sampled during the simulations and 
therefore determines the local environment around the 
mutation site. The force field must be able to yield the 
correct structure if the free energy associated with a given 
mutation is to be estimated correctly. 

The accuracy of the starting structures used for the 
simulations is also a crucial factor affecting the reliability 
of the calculations. This is especially true if the relaxation 
of the protein towards its lowest free energy 
conformations is not possible within the time scale of the 
simulation. If the starting structure was incorrect it would 
be expected to deviate significantly during the course of a 
MD simulation. Since the results of free energy 
calculations are directly related to the local interactions 
around the mutation site it is extremely important that the 
structure remains close enough to the native structure so 
that the local environment around the mutation site is 
appropriate.  

Numerical errors can also arise from the integration 
over a small number of discrete values of the free energy 
derivative. Integrating using the trapezoidal rule which 
corresponds to using a linear interpolation scheme gives 
similar results as using a cubic spline interpolation scheme. 
[580] 

Free energy calculations in proteins using the 
thermodynamic integration method still remain extremely 
difficult even for very simple mutation such as the 
transformation of Leu into Ala. Although the size of the 
mutation seems to be related to the discrepancy observed 
between simulation and experiment, the results obtained 
for other mutations suggests that other factors such as the 
rigidity of the side-chain might help convergence. 
Mutations of residues associated with a change in net 
charge whether positive or negative do not give accurate 
results due to the large amount of work done against the 
system. [580] 

8. Future Perspectives 

In this review, there has been highlighted some of the 
main limitations of current docking programs and 
methodologies. Basically, none of them is perfect but, 
collectively, it is true that most of the key challenges in 
protein-ligand docking seem to be correctly addressed in 
the most used programs. Therefore, while waiting for the 
perfect program, it must be encouraged additional efforts 
to extend the use of docking tools beyond the confines of 
bioinformatic groups. Undoubtedly, challenges still 
remain, especially for issues involving the accuracy of the 
available scoring functions, which are in fact classical 
approximations of events ruled by quantum mechanics. 
Most molecular docking programs successfully predict the 
binding modes of small-molecule ligands within receptor 
binding sites. However, the current algorithms do not 
estimate the absolute energy associated with the 
intermolecular interaction with satisfactory accuracy. The 
appropriate handling of issues such as solvent effects, 
entropic effects, and receptor flexibility are major 
challenges that require attention. Successful molecular 
docking protocols require a solid knowledge of the 
fundamentals of the applied methods. Understanding these 
principles is essential in the production of meaningful 
results. 

Molecular docking has several strengths, among which 
the method’s ability to screen large compound databases 
at low cost compared to experimental techniques such as 
HTS is particularly notable. In the current panorama of 
drug discovery, where high attrition rates are a major 
concern, properly designed VS strategies are time-saving, 
cost-effective and productive alternatives. Existing 
methods, which often rely on expertise knowledge and 
thus may have limited applications in real practice. A 
universally accurate and reliable solution is still far from 
reach in the near future. Revolutionary innovations are 
definitely in urgent need and thus highly encouraged to 
address the fundamental challenges such as target 
flexibility and water molecules. 
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