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Abstract  A novel field of data mining has been spatio-temporal clustering focused on the new methods and 
techniques, which are able to adapt previous methods and solutions to the new problems. A set of geo-referenced 
time series are data generated by several devices like GPS, sensor station, cell phones and many other sensing device. 
This paper defines the the new K-means clustering grouping spatially and temporally correlated geo-referenced time 
series obtained from sensors in a specific geographic area. For all time series in the cluster, choosing the best 
forecasting parameters, we apply one of the most accurate and most efficient forecasting models of time series called 
ARIMA. This paper investigates a new mechanism to determine spatio-temporal distances measure between sensor 
stations in the same spatio-temporal neighborhood (cluster). By calculating, the best forecasting parameters applied 
for all time series in the same cluster proposed algorithm obtains more accurate and more efficient forecasting results, 
than forecasting time series independently one from other in space and time. We studied the accuracy of proposed 
model comparing it to the already known applied to compute prediction of time series and applying it to real life data.  
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1. Introduction 
Geo-statistical space-time models addressing 

environmental problems are increasingly used for 
environmental monitoring or global warming, but also for 
stream flow or forecasting precipitation. Given the 
undisputed ubiquity of data acquisition systems, it is 
necessary that the tools of data analysis are able to model 
behaviors that vary in time and space, specifically 
geographically distributed uni-variate or multivariate 
spatio-temporal time series. Geo-statistical space-time 
models applied for modeling spatio-temporal distributions 
in several scientific disciplines resulting from dynamic 
processes evolving in both space and time. It is critical in 
many scientific and engineering fields from 
environmental sciences, to climate prediction and 
meteorology, hydrology, engineering, but it is currently 
applied in diverse disciplines including petroleum 
geology, hydro-geology, hydrology, oceanography and 
meteorology, geography and geochemistry, environmental 
control, landscape ecology, soil science and agriculture 
(especially in precision farming).  

Space-time data set traditionally analyzed across 
models completely developed for spatial or temporal 
distributions. The joint space-time reliance is often not 
fully modeled nor-improved in estimation or forecasting 
of the unknown value at an unmonitored position[1]. 

The goal of this paper is the use of spatio-temporal 
correlation among neighboring time series to reduce 
computational cost. Reduction of the computation cost in 
a spatio-temporal analysis is possible using a filtering and 
refining algorithm based on grouping the spatio-temporal 
correlated time series. This paper shows a new approach, 
which uses experimental Earth science data set to reduce 
run time computation costs and decrease the accuracy of 
proposed prediction algorithm. 

When there are complex or/and large data set, a process 
of clustering (grouping similar spatio-temporal time series) 
and prediction of behavior of time series (regression 
analysis) can be good combination of interactive visual 
displays, but also a very powerful instrument of analysis.  

Some of clustering methods and techniques require the 
data set represented as points in a multidimensional space 
of properties (or like a vectors feature).  

In a part of prediction of behavior of geo-referenced 
time series the literature describes several techniques 
(ARMA, ARIMA, Exponential Smoothing, Regression, 
etc.) studying forecasting of time-series as well as 
regression of spatially distributed data. However, the 
majority of these techniques treat the space or time, rarely 
time and space simultaneously.  

This paper seeks to explore and analyze geophysical 
distributed time-series data collected by sensors 
widespread on the Earth’s surface. Therefore, our 
proposal synthetically described technique to find 
accurate and adequate model of forecasting time series 
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taking into consideration not only the dimension (space or 
time), but both, spatial and temporal information with the 
aim of improving the ability of prediction with respect to 
existing model avoiding such information. 

The paper is composed as follows. Section 2 
summaries the current spatio-temporal clustering and 
existing auto-regressive integrated moving average fore- 
casting algorithms applied to time-series analysis 
describing the obstacles and disadvantages of existing 
approaches and our efforts to overcome these problems. 
Section 3 explains our algorithm in particulars and 
presents the features of the algorithm. Section 4 presents 
the experimentation and applications, which are 
implemented to indicate the applicability to real problems, 
and experimental results. Finally, we summarize our work 
and discuss directions for future works in conclusion in 
Section 5. 

2. Background 
One of the most important problems computing spatio-

temporal correlated phenomenon is the different 
framework act because of different spatial and temporal 
scales, therefore any averaging procedure, temporal 
and/or spatial, change the original spatio-temporal 
correlation of the process under study. 

Specified problems referee to the characterization of 
aggregate variables, the temporal evolving of the 
temperature averaged across a geographic area. Inference 
in such events should account for the increased temporal 
or spatial continuity [2]. Geo-statistical space-time 
models have been also developed for emphasize the 
difference between scales with regard to the original and 
aggregate processes [3,4]. 

The examination that follows is focused on stochastic 
models involving extension not only spatial (geo-
statistical), but also temporal analysis tools to involve the 
additional time dimension. The objective is to build a 
thread linking the various stochastic models proposed, as 
well as to highlight their assumptions, benefits and 
restrictions. 

In terms of spatio-temporal data dimension, this paper 
tries to use spatio-temporal correlation of the data, apply 
k-means clustering methods of data represented by spatio-
temporal distance measure, and then for all time series in 
the same cluster compute the best forecasting parameters 
and produce more accurate and more efficient forecasting 
algorithm.  

Some authors [5] perform spatio-temporal clustering on 
each time sequences separately. Some uses only spatial 
neighboring [6] or temporal correlation. Every strategy 
needs exploration bases of specific goal of analysis.  

Geo referenced time series is a set of spatial collection 
of time series where each time series reference to a 
location in common spatial surfaces. To identify pairs of 
potentially interacting or correlation elements between 
two spatial time series is often used correlation analysis. 
In that case, the computational costs are very high, 
especially when the number of locations in the spatial 
surface and the dimension of the time series are large. 

2.1. Spatio-Temporal K-means Clustering 
Spatio-temporal k-means clustering is a method of 

vector quantization, originally from signal processing, 
that is popular for cluster analysis in data mining. K-
means clustering aims to partition n observations into k 
spatio-temporal clusters in which each observation 
belongs to the cluster with the nearest mean, serving as a 
prototype of the cluster. The objective of clustering is to 
identify a structure of an unlabeled data set by organizing 
them into homogeneous groups where is minimized 
similarity within group object and is maximized the 
dissimilarity between group object.  

Spatio-temporal clustering, just like general data 
clustering, requires a clustering algorithm to form clusters 
given a set of geo-referenced time series. There are 
several algorithms developed to cluster different types of 
time series data. Some of them account for spatial 
location and some only temporal dimension of time series. 
A classical approach of spatio-temporal correlation 
consists in detecting the spatio-temporal distance 
(correlations) between them.  

In this paper we apply computation of spatio-temporal 
distance measure to cluster similar -geo-referenced time 
series. 

2.2. ARIMA Model 
ARIMA model is one of the most popular and powerful 

forecasting technique [10] which is generalization of the 
model ARMA (autoregressive-moving-average) [10] that 
describes a (weakly) stationary stochastic process Z in 
terms of two polynomials, the first called auto-regression 
and the second called moving average. 
Formally,

 
where Liz(t) = z(t − i), p is the auto-regression order, q is 
the moving average order, φ(i) and σ(i) are the model 
coefficients, c is a constant, and the random variable ε(·) 
is the white noise. L is the time lag operator, or backward 
shift. It permits to observe the same sequence, but from i 
positions shifted on the left. 

ARMA models are fitted by least squares regression 
after choosing p and q in order to find the coefficients that 
minimize the error term. ARIMA model, as extension of 
ARMA uses combination of the differencing operation of 
order d, which permits to transform a non-stationary time 
series into stationary one. ARIMA model with parameter 
d = 0 is the same as ARMA model. Formally, ARIMA 
model can be defined 
as:

 
where 1 − L is the differencing operator. 

The selection of the ARIMA parameters (p, d, q) which 
provide acceptable fit to the data is not trivial [7] and a 
good practice is to search for the smallest p, d and q. To 
choose best ARIMA parameters p and q, Brock-well and 
Davis [8] recommend using AICc (AIC with correction c). 

Following the idea of Blockwell and Davis, Hyndman 
and Khandakar [9] propose a stepwise algorithm (called 
auto.ARIMA) implementing function auto.ARIMA 
(best.Arima) in the software R. Auto.ARIMA function 
conducts a search over all possible models beginning with 
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selection of parameter d using unit-root (KPSS) test, and 
then p and q by minimizing the AICc. 

Time series models typically capture a regular behavior 
over time, and a temporal lag operator is defined for 
modeling causality between current and previous remark 
along the time axis [8,10].  

In paper [6] we have investigated a mechanism to 
automatically determine spatial neighboring in a specific 
region, and then use the information obtained not only 
from specific station but also the measures of spatial 
neighboring sensor stations calculating more accurate 
forecasting parameters. Paper [6] described an inference 
procedure called sArima, which allows obtaining a robust 
and widely applicable intelligent forecasting algorithm. 
sArima optimizes the traditional model ARIMA jointly 
estimating the parameters of a forecasting model over 
spatial neighboring time series (lags). 

As the difference of [6], which take into consideration 
time series belonging to the same spatial neighborhood of 
observed sensor station, in this paper we apply variation 
of sArima function, that we called STClu-Arima. The 
acronym STClu-Arima stands for Cluster based ARIMA 
function, which we implemented in the software R. 

2.3. Paper Contribution 
This paper proposes new two steps procedures. The 

first step calculates spatio-temporal distance measure 
necessary to apply k-means clustering algorithm grouping 
that way spatio-temporal correlated time series. This part 
of algorithm needs generation of new clustering algorithm 
with a specific spatio-temporal distance function, which 
properly takes into accounts relevant properties of data 
depending of the two dimensions: time and space.  

The second step applies STClu-Arima function as 
many times as there are numbers of clusters, searching for 
best forecasting ARIMA (auto-regressive integrated 
moving average) parameters for all time series in the 
cluster, and then on the bases of STClu-Arima output 
parameters compute prediction. STClu-Arima optimized 
selection of the appropriate forecasting parameters for all 
time series in the cluster according to a formulation of the 
average Akaikes Information Criterion with correction 
(AICc). The forecasting methods produced the best model 
(with spatio-temporal optimized parameters) for as many 
steps ahead as required. 

The innovative contribution of this paper is the 
definition of a new spatio-temporal distance matrix 
generated on bases of input spatial and temporal data set 
(geo-referenced time series). STClu-Arima uses a 
variation of the Hyndman and Khandakar algorithm [9], 
which processes single time series and combines unit root 
tests for all time series in the cluster, by minimizing 
average AICc to choose the best parameters for the model 
ARIMA. This means that all time series in the same 
cluster are spatially near and temporally measures similar 
values.  

Formally, let Z be a geo-physical variable and K be a 
set of randomly sampled stations, which measure Z at 
successive space points at uniform intervals in time. 
Firstly, we calculated spatio-temporal distance measure, 
and then let be this measure input to apply k-means 
algorithm to determine as output k clusters or spatio-
temporal correlated time series. After that, we applied our 

STClu-Arima algorithm k-times for all time series in the 
cluster, selecting the best triple (p,d,q) necessary to apply 
prediction. Let z(i) be the first and zN(i) the last time 
series in the cluster "C", where N is number of time series 
in the cluster, and i length of time series. For all stations 
(measuring time series), STClu-Arima will choose the 
best parameters model according to the minimal average 
Akaikes Information Criterion (AICc*) for all N z(i) in the 
cluster.  

3. Spatio-Temporal Clustering and 
STClu-Arima Procedures 

3.1. Spatio-Temporal Clustering Procedures 
Spatio-temporal correlation (spatio-temporal distance 

measure) between geo-referenced time series, in this 
paper is computed separately for spatial and for temporal 
dimension. The spatial distance uses Euclidean distance 
between any two spatially installed stations (2d space). 
For temporal correlation, we calculate distance-smoothing 
data. 

For example, if we have two sensor stations A and B 
that are installed at 2D spatial coordinates x and y, and 
measuring the specific phenomenon (for example 
temperatures) in 3 periods, A (x1, y1, t1', t2', t3'), B (x2, y2, 
t1", t2", t3"), for spatial distance we calculate S-dist, and 
temporal distance T-dist we calculate smoothing data as 
follow:  

 
For our experimentation we take α = 0.5 giving that 

way the same importance to a values measured in recent 
and past interval of time, for all pair of stations. In 
calculating both, spatial and temporal distance matrix 
values were scaled. As the results of that distance matrix 
calculations, we had two quadratic distance matrix (of n 
dimension - number of stations) Sdist and Tdist, those we 
finally summaries and calculate: 

. 

3.2. STClu-Arima Procedure 
The second step of proposed algorithm called STClu-

Arima needs more careful explanation. After determined 
spatio-temporal cluster, can be run STClu-Arima 
procedures. STClu-Arima optimized selection of the 
appropriate forecasting parameters valid for all time series 
in the cluster. The selection of the best forecasting 
parameters will be done according to a formulation of the 
Akaikes Information Criterion with correction (AICc). 
The forecasts produced the best model (with spatio-
temporal optimized parameters), for as many steps ahead 
as required. 

The function STClu-Arima inputs the values of all time 
series in the cluster. See Figure 1. For the primary z(i) 
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until last time series zN(i) in the cluster "C", will be 
selected the best arima (p, d, q), which fits data of the 
primary z(i) until last time series zN(i) in the cluster. The 
triple (p, d, q), refers to parameters of ARIMA model, 
where p is order of auto-regressive (AR) part, d is 
differencing order (I), and q order of moving average 
(MA). The function includes the choice of the best 
parameters triple (p, d, q) of each time series in the cluster.  

Let us consider the sensor stations and time series 
reported in Figure 1. The triangle, circle and diamond 
denotes spatially near sensor stations measuring also 
temporally similar time series. Applying k-means 
clustering these stations will be part of the same cluster. 
STClu-Arima algorithm for these time series will 
compute the selection of the best triple (p, d, q) 
forecasting parameters.  

 Every time series is expressed as, the sum of 
deterministic trend, random walk, and stationary error, 
and the test is the LM test of the hypothesis that the 
random walk has zero variance.  

STClu-Arima algorithm is two stepped.  

 

Figure 1. Spatially near stations and temporally similar clustered time 
series  

Step 1: The differencing order d is chosen based on the 
successive KPSS unit-root tests [12] for the stationarity of 
the original data or seasonally differencing data for each 
time in the cluster. The null hypothesis is stationary time 
series around a deterministic trend, while the alternate 
hypothesis considers time series with difference values. 
The selection of the best parameters of ARIMA model for 
a single time series is described in [9]. By following the 

interpretation reported in [9], if a stable seasonal pattern is 
selected (i.e., the null hypothesis is not rejected) then d 
can be selected on the original data, otherwise d is 
determined on the seasonally differenced data. As a 
difference of [9], selection of parameter d is determined 
by using repeatedly KPSS tests for each time in the 
cluster. If only one of them is non-stationary d will be is 
increase for 1, and so one, until each time series in the 
cluster becomes stationary.  

Step 2: The stepwise algorithm to traverse the model 
θ=(p, q) is described in [9]. It is three-stepped procedures. 
Similarly to [9], the algorithm uses a stepwise search to 
traverse the model space combining values of p and q,. In 
STClu-Arima this process will refer to all time series in 
the cluster. Step 21) The best initial model is selected by 
searching for smaller p and/or q parameters trying all 
possible combination of 0, 1 and 2 for each time series in 
the cluster. Similarly to [9], the best initial model for each 
time series can be selected via the AICc information 
criterion (the lower AICc, the best model). The AICc is 
defined as follows: 
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where k is the number of parameters in θ; n is the length 
of the time series in the cluster; L*(·) is the maximum 
likelihood estimate of θ on the initial states for each time 
series in the cluster; and l is the number of time series in 
the cluster "C". In STClu-Arima will be selected as the 
best model that provides minimal average AICc for each 
time series in the cluster. Step 22) Variations on the 
current model are considered by changing current 
parameters of model p and/or q by ±1. The new current 
model in STClu-Arima becomes new best model if has 
lower average AIC. Step 23) Repeat step 22) until cannot 
be found model with lower average AICc. 

The model with the best estimated parameters p, d, q is 
fitted to all time series in the cluster by least square 
regression. The model coefficients φ and σ are output and 
permit to produce point forecasts for testing time series as 
many steps ahead as required. 

4. Case Studies and Applications 
The goal of our experimentation is to analyze accuracy 

and efficiency of proposed algorithm in case of massive 
data, and to find a real interest of application. The second 
is to test the hypotheses, which motivate this work: 
•  using a measure of spatio-temporal distance measure, 

we applied a traditional k-means clustering 
algorithm to find spatio-temporal correlation of 
clustered data; 

•  for all time series in the cluster, improve the 
predictive accuracy of regression models by 
forecasting the future data of a stations decreasing 
that the run time computation costs. 

In order to collect experimental evidence to test defined 
hypothesis, we designed an experiment consists in two 
phases. The first step of our algorithm calculates spatio-
temporal distance measure. On a base of data representing 
spatio-temporal distance matrix we then applied the well-
known k-means clustering grouping that way the geo-
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referenced time series that are correlated in time and 
space. 

As a second step of our algorithm, we then applied our 
STClu-Arima regression techniques for predicting future 
values of time series. Function STClu-Arima is 
implemented in software R and operates with vectors 
representing values of each time series in the cluster, as 
explained in section 3.2. 

For the evaluation of second step of our algorithm, we 
compare the results (rmse and computation run time) of 
proposed model of predictions time-series without taking 
into account the spatio-temporal correlation (spatio-
temporal distance measure), with the model that we 
created, that takes into account the spatio-temporal 
dependence. 

Proposed model described application in modeling 
spatio-temporal distributions in several scientific 

disciplines for better forecasting in environmental 
sciences, climate prediction and meteorology. This paper 
shows a new approach, which uses experimental Earth 
science data set to reduce run time computation costs and 
decrease the accuracy of proposed prediction algorithm. 

This paper also explored and analyzed geophysical 
distributed time-series data collected by sensors 
widespread on the Earth’s surface to find adequate and 
more accurate model of forecasting time series. It took 
into consideration not only the dimension (space or time), 
but both, spatial and temporal information with the aim of 
improving the ability of prediction with respect to existing 
model avoiding such information. 

4.1. Data Description 

 
Figure 2. 2(a) Spatial position of Eco-Texas sensor stations and respective time series representing: 2(b) Temperature, 2(c) Wind-Speed and 2(d) Ozone 

For experimentation and evaluation of our algorithm, 
we considered five groups of data collected via three 
sensor networks: Eco-Texas, Eastern-Wind and SAC 
(South-American-Temperature). 

The first Eco-Texas data set refers to measurement of 
Temperature, Wind-Speed and Ozone acquired from 26 
the sensor stations installed in Texas, collected by the 
Texas Commission on Environment Quality (TCEQ) in 
the period May 5-19, 2009. This data set is collection of 
hourly measures (http://www.tceq. state.tx.us/) related to 
temperature (Temperature range [0,89], wind speed 
(Wind Speed range [0.3,29.5]) and ozone (Ozone range 
[48,105]). As training set, for this data set, we took period 
May 5-18, 2009, and 19 as testing data set. 

The fourth data set consist of values of the wind speed 
(Wind Speed range [0.12,30.4]) from 1326 stations 
installed in Eastern-Wind measuring series at 80 meters 
above sea level in the eastern region of the United States. 
The values acquired every 30 minutes starting from 
January 1, 2004, 0:00 (www.ropbox.com). As training set, 
for this data set, we used measurements of wind speed for 

144 periods (1-4 January), and last 48 (5 January) 
intervals as testing set. Figure 3 shows the spatial position 
of sensors and respective time series.  

The fifth data set of our experimentation refers to 6477 
sensors installed in South America, called South America 
Air Climate (SAC) collecting monthly-measures (144 
snapshots - 12 years) - of air temperature. We applied our 
algorithm STClu-Arima for one part of these sensors (900 
sensors). As training set, for this data set, we used 
measurements of temperatures from January 1999 - 
December 2010, and last 12 month (January - December 
2011) for testing set. 

4.2. Experimental Methodology 
For determination of the optimal number of the clusters, 

we used average silhouette width. Average silhouette 
width refers to a method of interpretation and validation 
of clustered data. The technique provides a concise 
graphical representation of how well each object lies 
within its cluster. 
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The average silhouette width measured how tightly are 
grouped all the data in the cluster are how appropriately 
has been clustered the data. If there are too many or too 
few clusters, as may occur when a poor choice of k is 
used in the k-means algorithm, some of the clusters will 
typically display much narrower silhouettes than the rest. 
Thus, silhouette plots and averages may be used to 
determine the natural number of clusters within a data set. 

For Eco-Texas data set, on a bases of calculated spatio-
temporal distance measure we applied k-means clustering 
method for all 26 sensors and tried all possible solutions 
begging with l=2, l=3, until l=25 clusters. Then, for all 
clusters, we calculated average silhouette width. 

For Eastern-Wind and SAC data sets, selection of the 
optimal number of clusters was much more difficult 
because this two data sets have 1326 and 900 sensor 
stations, and we tried to choose the optimal number of 
cluster beginning with k=10 until k=100 with step 10. 

We selected as the optimal number of clusters where 
average silhouette width obtained the local maximal 
values.  

 

Figure 3. Spatial position of Eastern-Wind dataset sensors and 
respective time series 

 

Figure 4. Spatial position of SAC sensors and respective time serie 

Second step of our algorithm, for all time series in the 
cluster applied STClu-Arima algorithm and calculating 
rmse. Then we compare rmse for STClu-Arima vs 
auto.ARIMA. 

To estimate the accuracy of STClu-Arima vs 
auto.ARIMA (prediction and efficiency of proposed 
learning model), we applied Wilcoxon signed rank test for 
selected number of clusters for all five data set. We 
compared STClu-Arima models with ”auto.ARIMA”, that 
learns separate ARIMA models for each station choosing 
the best parameters according to minimal average AICc. 
For all data set, STClu-Arima used spatial positions of the 
transmitting sensor stations (the latitude and longitude), 
while auto.ARIMA do not. 

4.3. Discussions of the Results 

In the Table 1 we reported the result of our experiments. 
The first column shows the title of data set, while second 
column shows average silhouette width for selected 
number of clusters. The column 3-7 reports the results of 
comparative analysis STClu-Arima vs auto.ARIMA, for 
the testing data set. These columns show the results of 
analysis of statistical significance tests (pair wise 
Wilcoxon signed rank test) comparing squared residuals 
of the paired test time-series. The columns 3-7 reports the 
number of stations where STClu-Arima performs 
(statistically) better (columns 3-4), worse (columns 5-6), 
equal (column-7) than auto.ARIMA. (+) means how 
many times STClu-Arima performs better than 
auto.ARIMA (i.e. WT + $>$ WT-), (-) means that 
auto.ARIMA performs better than STClu-Arima (i.e. 
WT+ $<$ WT-), (=) means that both algorithms perform 
equally good (i.e. WT+ $=$ WT- ). (++) and (--) indicate 
results in case $H_0$ (hypothesis of equal performance) 
is rejected at the 0.05 significance level ARIMA 
(auto.ARIMA) against STClu-Arima (RMSE).  

Figure 6(a) shows the results of rmse STClu-Arima 
versus auto.ARIMA for Eco-Texas(Wind), while the 
Figure 5(a) shows spatially location of clustered sensor 
station measuring similar spatio-temporal values.  

The figures 6(b) and 6(c) reports the comparing results 
of rmse for Eco-Texas(Temperature) and Eco-
Texas(Ozone) data set.  

The fourth rows of the Table 1 indicates the results 
obtained for Eastern-Wind dataset for 30 clusters, while 
the Figure 7(a) shows the results of rmse STClu-Arima vs 
auto.ARIMA for the same data set. The Figure 5(b) shows 
spatially clustered Eastern-Wind sensor stations. 

The fifth row of the Table 1, indicates the results of the 
pair wise Wilcoxon signed rank test, based on rmse for 
SAC dataset for SAC data set for 90 clusters. The Figure 
7(b) shows the results of rmse STClu-Arima vs 
auto.ARIMA for the same data set, while the Figure 5(c) 
represents spatially clustered station.  

This experimentation computed run time (in seconds) 
for both steps of our algorithm and for all five data set.  

Table 1. auto.ARIMA against STClu-Arima 

Data set Value of ASW + ++ - – = 

Eco-Texas (W-7) 0.22368 1 14 5 3 3 
Eco-Texas(T-5) 0.28143 2 14 0 8 2 
Eco-Texas(O-4) 0.26507 1 9 1 8 7 

Eastern-Wind (30\) 0.15861 71 639 74 534 8 
SAC(90) 0.10799 76 376 78 348 22 

Table 2. Computation run time 

Data set AA-Tra S-TDist S-TClu STClu-Arima 

Eco-Texas(W-7) 9 3 1 8 

Eco-Texas(T-5) 8 3 1 6 

Eco-Texas(O-4) 6 2 1 5 

Eastern-Wind(30) 1338 1490 36 368 
SAC (90) 1204 937 69 238 

Table 2 reports run time for all performed operations:  
run time to perform auto.ARIMA (column 2), 
•  the run time for computing spatio-temporal distance 

matrix (column 3);  
•  the run time for appling statio-temporal clustering 

(column 4); 
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•  the run time for computation of STClu-Arima 
algorithm (column 5). 

•  We compare computation run time obtained from 
auto.ARIMA for the training time series that 
calculate the best forecasting parameters independently 
from spatio-temporal correlation of time series.  

•  The run time spent in learning the prediction model 
of the function auto.ARIMA and STClu-Arima are 
reported (for all dataset) in Table 2 - Eco-Texas 
(Wind) - row 2, Eco-Texas (Temperature) - row 3, 
Eco-Texas (Ozone) - row 4, Eastern-Wind - for 30 
(rows 5), and SAC (row 6).  

•  The first column (AA-Tra) shows the computation 
run time for training set applying auto.ARIMA; 
second column column (STDist) shows the 
computation run time for calculating spatio-temporal 
matrix; the thirt column (STClu) shows the 
computation run time for applying k-means 
clustering, while last fourth column (STClu-Arima) 

account computation run time for applying STClu-
Arima algorithm. 

•  Presented procedure shows that taking into account 
spatio-temporal distance measure by clustering 
stations that measured similar data in space and time; 
we obtained better results optimizing the choice of 
the forecasting parameters for the computation of the 
model ARIMA.  

•  Presented procedure shows that taking into account 
spatio-temporal distance matrix by clustering 
stations that measured similar data in space and time, 
we obtained better results optimizing the choice of 
the forecasting parameters for the computation of the 
model STClu-Arima. The number of stations where 
STClu-Arima performs better or equally than 
auto.ARIMA is always greater than the number of 
stations where auto. ARIMA overreach STClu-
Arima.

 

Figure 5. (a) Spatially clustered sensor stations of Eco-Texas(Wind) in 7 clusters that measure similar spatio-temporal values. (b) Spatially clustered 
sensor stations of Eastern-Wind in 30 clusters (c) Spatially clustered sensor stations of SAC in 90 clusters 

 

Figure 6. (a) RMSE for auto. ARIMA vs STClu-Arima for Eco-Texas (Temperature) for 5 clusters. (b) RMSE for auto.ARIMA vs STClu-Arima for 
Eco-Texas(Wind) for 7 cluster. (c) RMSE for auto.ARIMA vs STClu-Arima for Eco-Texas (Ozone) for 4 clusters 
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Figure 7. (a) RMSE auto.ARIMA vs STClu-Arima for Eastern-Wind data set for 30 cluster. (b) RMSE auto.ARIMA vs STClu-Arima for SAC data set 
for 90 clusters 

5. Conclusions and Future Work 
This paper described a two-stepped algorithm that 

accounted for the spatio-temporal correlation of geo-
referenced time series. The first step proposed a new 
approach to compute spatio-temporal k-means cluster on 
a bases of the spatio-temporal distance measure STDist. 
STDist measure combined Euclidean distance for spatial 
distance and smoothing data for temporal dimensions. 
This way, k-means cluster method has taken into 
consideration both, spatially near and temporally similar 
time series.  

Second step applied a new inference procedure called 
STClu-Arima, implemented in software R. STClu-Arima 
has computed the best forecasting parameters valid for 
each time series in the cluster, by applying the global 
triple (p, d, q) for all each time series in the cluster, to the 
testing set and obtained more efficient and more accurate 
prediction results.  

For case studies, we took five real data set investigating 
the viability and accuracy of proposed algorithm in a real 
world forecasting application. We also compared obtained 
STClu-Arima forecasting results against results of 
function auto.ARIMA (already implemented in software 
R), that determined the best forecasting parameters for all 
time series, independently one from other in space and 
time. In general, our experiments proved that proposed 
model STClu-Arima, outperforms auto.ARIMA.  

For future work, we are planning to investigate 
multivariate time series and to extend our analysis of 
hybrid forecasting methods. 

References 

[1] Guillermo, Q. D. J., Salas, T., A comparative analysis of 
techniques for spatial interpolation of precipitation. JAWRA 
Journal of the American Water Resources Association, Volume 
21, Issue 3, pages 365-380, June 1985. 

[2] Bacchi, B., Kottergoda, N.T., Identification and calibration of 
spatial correlations patterns of rainfall. Journal of Hydrology, 165: 
311-348.1995. 

[3] Rodriguez-Iturbe, I., Mejia, J. D., The design of rainfall networks 
in time and space. Water Resources Research, 10:713-728.1974. 

[4] Solna, K., Switzer, P. Time trend estimation for a geographic 
region. Journal American Statistical Association, v. 91, no. 434, p. 
577-589. 1996. 

[5] Andrienko, G., Andrienko, N., Interactive cluster analysis of 
diverse types of spatiotemporal data. ACM SIGKDD Explorations. 
2009. 

[6] Pravilovic, S. Appice, A, Malerba, D., An Intelligent Technique 
for Forecasting Spatially Correlated Time Series. AI-IA, 2013. 

[7] Sershenfeld, N. A., Weigend, A. S. G., The future of time series. 
In A. N. Gershenfeld and A. S.Weigen, editors, Time Series 
Prediction: Forecasting the Future and Understanding the Past, 
pages 1-70, 1993. 

[8] Brockwell, P.,Davis, R., Time Series: Theory and Methods. 
Springer, 2nd edition, 2009. 

[9] Hyndman, R., Khandakar Y., Automatic time series forecasting: 
The forecast package for r. Journal of Statistical Software, (26(3)), 
2008. 

[10] Box, G. E. P., Jenkins, G. M.. Time Series Analysis: Forecasting 
and Control. Prentice Hall PTR, Upper Saddle River, NJ, USA, 
3rd edition, 1994. 

[11] Canova, F., Hansen, B. Are seasonal patterns constant over time? 
a test for seasonal stability. Journal of Business and Economic 
Statistics, (13):237-252, 1995. 

[12] Kwiatkowski, D., Phillips, P., Schmidt P., Shin, Y., Testing the 
null hypothesis of stationarity against the alternative of a unit root. 
Journal of Econometrics, (54):159-178, 1992. 

[13] Kyriakidis, P. C., Journel, A. G., Geostatistical space-time models: 
A review. Mathematical Geology, 1999. 31: 651-684. 

[14] Birant, D., Kut, A, .ST-DBSCAN: An algorithm for clustering 
spatial–temporal data, Data&Knowledge Engineering 60 (2007) 
208-221. 

[15] South American Air Climate Data. 
http://climate.geog.udel.edu/climate/html-pages/sa air clim.html 
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