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Abstract There is given the theoretical background of the modal analysis in this paper. In the first part modal 
analysis, its theoretical and experimental procedure of vibration analysis is defined. In document one degree of 
freedom system and its behavior, equations and next modification as system of free vibration, harmonic excitation, 
structural damping is defined. Also, there is defined important property of the modal model - orthogonal property. In 
the next step is discussed multi degrees of freedom system, its properties, damping and solution. 
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1. Introduction 
Using of modal analysis we can determine the natural 

frequencies, the damping at natural frequencies and the 
mode shapes at natural frequencies [3]. 

Figure 1 shows the theoretical procedure of vibration 
analysis. It displays the three phase procedure of the 
theoretical vibration analysis. We are starting with a 
description of the physical properties of the structures, 
usually as their mass, stiffness and damping characteristics 
[1]. 

 

Figure 1. Theoretical procedure of vibration analysis [1] 

The theoretical modal analysis of solid model leads to a 
description of the behavior of the structure as modes of 
vibration so-called the modal model. This model is 
defined as a set of natural frequencies with damping factor 
and natural modes vibration. This solution describes 
various methods of the structure vibration [1]. 

The response of model is the next part of the theoretical 
procedure analysis, which corresponds to the excitation 
and its amplitude. Model describes a set of frequency 
response functions [1]. 

 

Figure 2. Experimental aim [1] 

It is possible to perform the analysis in the opposite 
direction, from the response properties, which we can 

deduce the modal model properties. This method is called 
the experimental procedure of vibration analysis and is 
shows in Figure 2 [1]. 

In Figure 3 the general procedure for linking simulation 
and experimental analysis in modal analysis is shown [6]. 

 

Figure 3. General procedure for linking simulation and experimental 
analysis in modal analysis [1] 

2. One Degree of Freedom System 
In Figure 4 one degree of freedom system is shown. 

The system is composed of a perfectly rigid body of mass 
,m  spring with stiffness k  and viscous damper with 

damping ratio .d  The force in the spring is directly 
proportional to the displacement x  and the damping force 
to the velocity .x  The spring and damper can be 
considered as linear [2]. 

The equation of motion has the form 
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 ( ),mx d x k x F t+ + =   (1) 

where ( )F t  is the excitation force and x  is the 
displacement of the body of the equilibrium position. 

 

Figure 4. One degree of freedom system [3] 

2.1. Free Vibration 
Substituting ( ) 0F t =  to equation (1) we get the 

equation of motion in the form 

 0.mx d x k x+ + =   (2) 

Dividing the equation (2) of mass m, we obtain 

 22 0,nx x xδ ω+ + =   (3) 

where δ is the damping constant and nω  is the natural 
angular frequency 

 ,
2
d
m

δ =  (4) 

 .n
k
m

ω =  (5) 

If we assume the result in the form 

 ( ) tx t Ce λ=  (6) 

we obtain the equation 

 ( )2 22 0.n Cλ δλ ω+ + =  (7) 

For 0C ≠  has the characteristic equation form 

 2 22 0.nλ δλ ω+ + =  (8) 

The roots of the characteristic equation (8) are 

 * 2 2, ,nλ λ δ δ ω= − ± −  (9) 

where δ  is damping constant. If 0 nδ ω< <  we have 
damping system  

 * 2 2, ,n djλ λ δ ω δ δ ω= − ± − = − ±  (10) 

where 

 2 2 .d nω ω δ= −  (11) 
With the general solution of damping system we have 

equation in the form 

 1 2( ) [ ],j t j tt d dx t e C e C eω ωδ −−= +  (12) 
where 1C  and 2C  are constants. These ones must have 
real value to both sides of the equation. The condition is 
valid if 

 1 2
1 1( ), ( ),
2 2

C A jB C A jB= − = +  (13) 

where A and B are real constants. 
Substituting the equation (13) into the equation (12) we 

obtain the displacement in the form 

 
( ) ( )

( )
cos sin

ˆ sin

t
d d

t
d

x t e A t B t

xe t

δ

δ

ω ω

ω φ

−

−

= +

= +
 (14) 

where amplitude x̂  and phase angle φ  are 

 2 2ˆ ,x A B= +  (15) 

 .Aarctg
B

φ =  (16) 

For the case that damping constant is 0δ = we get 

 ( ) ( )ˆcos sin sin .n n nx t A t B t x tω ω ω φ= + = +  (17) 

The function in Figure 5 shows the free vibration and 
consists of the harmonic displacement x. The value nω  is 
natural angular frequency of the system without damping 
and with period 2π  and the time of period nT  and thus 

 2 ,n nTω π=  (18) 

 2 ,n
n

T π
ω

=  (19) 

 1 ,
2

n
n

n
f

T
ω
π

= =  (20) 

where nf  is the natural frequency. 

 
Figure 5. Free vibration without damping [3] 

Constants A and B are determined from the initial 
conditions ( ) 00x t x= =  and ( ) 00 .x t x= =   Thus 

 0
0 , .

n

x
A x B

ω
= =



 (21) 

In Figure 6 is the course of function te δ−  decreasing in 
time and the harmonic value corresponding of the 
damping harmonic vibration is shown [2]. 

Proportion of damping constant δ  we can express the 
value of the damping the coefficient attenuation ,D  or the 
logarithmic decrement .ϑ  

The damping factor has the form 
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 .
n

D δ
ω

=  (22) 

Logarithmic decrement has the form 

 
1

ln ,n

n

x
x

ϑ
+

=  (23) 

where nx  is the value of the displacement from the 
equation (14) at the time 0t  and 1nx +  is the value of the 
displacement at the time 0 ,dt T+  where 

 2 .d
d

T π
ω

=  (24) 

dT  is the time period of damping vibration. 

 
2

2

1
d

DT
D

πϑ δ= =
−

 (25) 

and for <<1D  can write 

 2 .Dϑ π≈  (26) 

 
Figure 6. Damping vibration [3] 

2.2. Harmonic Excitation 
After description of free vibration we consider forced 

vibration with harmonic excitation. We consider 
excitation force in the form 

 ( ) ˆ cos .F t F tω=  (27) 

The solution of equation of motion (1) is represented by 
a complex value of the displacement 

 ,z x jy= +  (28) 

the excitation force F(t) has the form 

 ( ) ( )ˆ ˆcos sin .j tF t F t j t Fe ωω ω= + =  (29) 

From the equation (1) we obtain 

 ˆ j tm z d z k z F e ω+ + =   (30) 

and solution 

 ( ) ,j tz t Ce ω=  (31) 

where constant C is 

 2

ˆ
.FC

k m jdω ω
=

− +
 (32) 

The displacement { }( ) Re ( )x t z t=  leads to 

 ˆ( ) cos( )x t x tω ε= −  (33) 

with amplitude 

 
2 2 2

ˆ
ˆ

( ) ( )

Fx
k m dω ω

=
− +

 (34) 

and phase angle 

 2 .darctg
k m

ωε
ω

=
−

 (35) 

The mass performs harmonic motion during harmonic 
excitation with frequency .ω  The displacement pursute 
the force with phase angle .ε  For static force is 0.ω =  
The displacement is then 

 
ˆ

.S
Fx
k

=  (36) 

Amplitude x̂  is divided by magnification factor Sx  
with a constant ratio of frequencies, thus coefficient of 
tuning is 

 
n

ωη
ω

=  (37) 

and damping factor D from equation (22) is substituted 
into (34), thus function of  magnification is obtained 

 
( ) ( )

2 22

ˆ 1

1 2s

xV
x

Dη η
= =

− +

 (38) 

and from the equation (35) we obtain 

 2
2 .

1
Darctg ηε
η

=
−

 (39) 

The values V  and ε  are shown in Figure 7 and Figure 
8 as a ratio of the function force relative frequency and 
damping factor. The function of magnification is also 
known as the resonance curve. Each of the resonance 
curves starts at point 1 and decreases to 0 for large values 

.η  

For 1/ 2 0.707D ≤ =  curve has maximum 

 max 2

1

2 1 2
V

D D
=

−
 (40) 

in relative frequency 

 2
max 1 2 .Dη = −  (41) 

For small damping <<1D  is obtained 

 max
1

2
V

D
≈  (42) 

 max 1.η ≈  (43) 

The form 1/ 2D  is called resonance sharpness or Q  
factor 

 max
max

ˆ1 .
2 s

x
Q V

D x
= ≈ =  (44) 
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Figure 7. Function of magnification V [3] 

 

Figure 8. The phase angle [3] 

From Figure 8 is clear that phase angle lies between the 
values 0 and .π  For 1η =  is nω ω=  and is equal to 

/ 2,π  independent of the damping coefficient. Figure 7 
indicates that a resonance curve is wider with growth of 
damping. For <<1D  is 

 2 1

max max
,

2 2
D

ω ω ω
ω ω

− ∆
≈ =  (45) 

where 1ω  and 2ω  are angular frequencies at 

max maxˆ ˆ ˆ/ 2 0.707x x x= ≈  (obr.9). 
The system from Figure 4 is supplemented of the 

source excitation with imbalance (Figure 10). The result is 
the excitation force in the form 

 ( ) 2
0 cos .F t m e tω ω=  (46) 

With a total mass 1 0m m m= +  we obtain the equation 
of motion 

 2
0 cos .m x d x k x m e tω ω+ + =   (47) 

The partial results follow directly from the results of 
amplitude with constant excitation ˆ ,F  which will be 

replaced by 2
0 .m eω  Using the equations (33) and (34) the 

solution is in the form 

 ( ) ( )ˆ cos ,x t x tω ε′= −  (48) 

 

Figure 9. Curve of resonance [3] 

where amplitude is 

 
( ) ( )

2
0

22 2
ˆ m e
x

k m d

ω

ω ω
′ =

− +
 (49) 

or 

 0

1 0
ˆ ,

m
x V e

m m
′ ′=

+
 (50) 

where the value magnification is 

 
( ) ( )

2

2 22
.

1 2
V

d

η

η η

′ =

− +

 (51) 

 

Figure 10. Excited system [3] 

The amplitude of constant force is equal to the phase 
angle .ε  From equation (40) is obvious, that maxV  is 
identical with the maximum value ´V  while the function 
of magnification V ′  starts at 0 and ends at 1. The 
maximum value V ′  is for the case 

 max 2

1 .
1 2D

η′ =
−

 (52) 
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Figure 11. Function of magnification V´ [3] 

In Figure 12 is shown the system with excitation from 
the ground. The equation of motion has the form 

 .m y d y k y k z d z+ + = +    (53) 

Substituting 

 y x z= −  (54) 

we obtain the equation of motion in the form 

 ( ).m y d y k y m z t+ + = −    (55) 

 

Figure 12. System with excitation from the ground [3] 

For the harmonic motion ˆ( ) cosz t z tω=  has the 
equation of motion the form  

 2ˆ cos ,m y d y ky m z tω ω+ + =   (56) 

where right-hand sites of the equations (56), (47) are 
similar, thus 

 ( ) ( )ˆ cos ,y t V z tω ε′= −  (57) 

where the function of magnification V ′  is obtained 
from the equation (51) [2]. 

2.2. Structural Damping 
Structural damping causes faster damping of free 

vibration, reducing of amplitude vibration in the resonance 

field, reducing the value of the growth of vibration and 
thus also the noise when passing through the resonance 
area. Structural damping is generally smaller than other 
types of damping [1]. 

All materials exhibit some degree of damping due to 
their hysteresis properties. The typical example of this 
effect is the graph of the time dependence of the 
displacement on force shown in Figure 13a, in which the 
area contained by loop represents lost of energy in one 
cycle vibration between illustrated boundaries [1]. 

Another common source of energy absorption in real 
structures and also the damping is the friction, which 
exists in the connections between the components of the 
structure. If these effects are macro slip between adjacent 
parts, or rather micro slip on connection between them can 
be described by a simple model of dry friction shown in 
Figure 13b with its corresponding dependence 
displacement on force [1]. 

Viscous damper is shown in Figure 13c, while it is 
necessary to assume the harmonic motion at the frequency 
ω, for the purpose of constructing a dependence 
displacement on force. The problem that arises with a 
model viscous damping is that the frequency dependence 
of the energy loss per cycle, while the dry friction device 
is unaffected frequency of load [1]. 

 

Figure 13. The time dependence of the displacement on force [1] (a) 
Hysteresis material, (b) Dry friction, (c) Viscous damper  

3. Undamped Multidegrees of Freedom 
Systems 

3.1. Free Vibration - Modal Properties 
For undamped system MDOF with N degrees of 

freedom, we can write the equations of motion in the 
matrix notation  

 ( ) ( ) ( ),t t t+ =M x K x f  (58) 

where M and K  are NxN matrices of mass and stiffness, 
( )tx  and ( )tf  are Nx1 vectors of displacement and 

forces dependent on time [1]. 
We will consider the first solution of free damping (to 

determine the normal and modal properties) that 
 ( ) .t =f 0  (59) 

We assume the solution in the form 

 ( ) ,i tt e ω=x X  (60) 

where X  is 1Nx  vector of time-independent amplitudes. 
For this case it is clear that 

 2 .i te ωω= −x X  (61) 

Substituting the equations (59), (60) and (61) in the 
equation of motion (58), leads to the equation 
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 ( )2 ,i te ωω− =K M X 0  (62) 

for which the only non-trivial solution satisfies 

 2det 0,ω− =K M  (63) 

or 

 2 2 2
2 2 2 0 0,N N

N Nα ω α ω α−
−+ + =  (64) 

from which we can find N values of 

( )2 2 2 2 2
1 2, ,..., ,..., ,r Nω ω ω ω ω=  undamped natural angular 

frequencies of the system. 

3.2. Orthogonal Property of Modal Model 
The most important property of the modal model is 

orthogonal property. The equation of motion for free 
vibration we can written in the form 

 ( )2 .i te ωω− =K M X 0  (65) 

The equation (65) for r -th mode shape we multiply by 
the transposed vector T

sψ  and we get  

 2( ) ( ) 0.T T
s r r s rω− =ψ Kψ ψ Mψ  (66) 

Then for the s -th mode shape we multiply by the 
transposed vector ,T

rψ  we get the equation in the form  

 2( ) ( ) 0.T T
r s s r sω− =ψ Kψ ψ Mψ  (67) 

Since the stiffness matrix K  and mass matrix M  are 
symmetrical matrices, we can the equation (67) transpose 
and written in the form 

 2( ) ( ) 0.T T
s r s s rω− =ψ Kψ ψ Mψ  (68) 

Subtracting the equation (68) from the equation (66) we 
get expression 

 ( )2 2 0,T
s r s rω ω− =ψ Mψ  (69) 

if it is satisfied ,r sω ω≠  that 

 0; .T
s r r s= ≠ψ Mψ  (70) 

From the equation (70) follows that mode shapes r  and 
s  are orthogonal with respect to the mass matrix M . 

Substituting the equation (70) to the equation (66) we 
get expression 

 0; .T
s r r s= ≠ψ Kψ  (71) 

From the equation (71) follows that mode shapes r  and 
s  are orthogonal with respect to the stiffness matrix K . 

In the special case when r s=  or ,r sω ω=  equations 
(70) and (71) are not valid.  

For this special case we can write the equation (68) in 
the form 

 2( ) ( ),T T
r r r r rω=ψ Kψ ψ Kψ  (72) 

if 2 / ,r r rk mω =  then 

 .T T
r r r r r rm a k= =ψ Kψ ψ Kψ  (73) 

4. Multidegrees of Freedom Systems with 
Structural Damping 

4.1. Solution of Free Vibration- Complex 
Modal Properties 

In this section we will examine properties of the general 
elements of hysteric damping. The general equation of 
motion for the system with multi degrees of freedom with 
hysteric damping and harmonic excitation has the form 

 .i ti e ω+ + =M x K x D x F   (74) 

We will considered the case without excitation and we 
choose a solution in the form 

 .i te λ=x X  (75) 

Substituting to the equation (74), the solution (75) leads 
to eigen problem, which solution is in the form of two 
matrices containing eigenvalues and eigenvectors. In this 
case each natural frequency and each mode shape is 
described by complex quantities such as 

 ( )2 2 1 ,r r riλ ω η= +  (76) 

where rω  is natural angular frequency and rη  is the 
damping loss factor. 

It is not necessary that natural angular frequency rω  
equal to natural angular frequency of the undamped 
system rω . 

This solution can be considered as the same type of 
orthogonal properties which have been demonstrated for 
undamped system and can be defined by equations 

 ; ( ) .T T
r ri= + =Ψ MΨ m Ψ K D Ψ k  (77) 

5. Conclusion 
This paper is only general entry to the modal analysis. 

It define the theoretical background of modal analysis 
while other models of modal analysis exist, for example 
models with different damping, excitation and other 
examples of calculation of modal analysis. 
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