
American Journal of Information Systems, 2014, Vol. 2, No. 3, 52-55 
Available online at http://pubs.sciepub.com/ajis/2/3/2 
© Science and Education Publishing 
DOI:10.12691/ajis-2-3-2 

 

Estimating Plans along with Cost in Multiple Query 
Processing Environments by Applying Particle Swarm 

Optimization Technique 

Sambit Kumar Mishra1,*, Srikanta Pattnaik2, Dulu patnaik3 

1Deaprtment of Computer Sc.&Engg., Ajay Binay Institute of Technology, Cuttack 
2S.O.A. University, Bhubaneswar 

3Government College of Engineering, Bhawanipatna 
*Corresponding author: sambit_pr@rediffmail.com 

Received December 12, 2014; Revised December 25, 2014; Accepted December 29, 2014 

Abstract  The Main idea of multiple query processing is to optimize a set of queries together and execute the 
common operations once. Major tasks in multiple query processing are common operation or expression 
identification and global execution plan construction. Query plans are generally derived from registered continuous 
queries. They are composed of operators, which perform the actual data processing, queries which buffer data as it 
moves between operators to hold state of operators. The complex part is to decompose queries and query plans and 
rearrange the sub queries and query plans on the network. The main functions to achieve an optimal query 
distribution are usually minimizing network usage and minimizing response time of queries. While dealing with 
query distribution problem, the challenges like modeling topology of the network, decomposing queries into some 
sub queries and sub query placement may be occurred. Operators are the basic data processing units in a query plan. 
An operator takes one or more streams as input and produces a stream as output. As in the traditional database 
management system, a plan for query connects a set of operators in a tree. The output of a child operator forms an 
input of its parent operator. In this paper it is aimed to retrieve the cost of query plans as well as cost of particles of 
swarm in multiple query processing environments by applying particle swarm optimization techniques. 

Keywords: query plan, swarm, NP hard, particle, SMT, personal best, global best 

Cite This Article: Sambit Kumar Mishra, Srikanta Pattnaik, and Dulu patnaik, “Estimating Plans along with 
Cost in Multiple Query Processing Environments by Applying Particle Swarm Optimization Technique.” 
American Journal of Information Systems, vol. 2, no. 3 (2014): 52-55. doi: 10.12691/ajis-2-3-2. 

1. Introduction 
Complex queries being in common place usually have a 

lot of common sub-expressions, either within a single 
query, or across multiple such queries run as a batch.  

Multi query processing aims at exploiting common sub-
expressions to reduce evaluation cost. Multi query processing 
has been viewed as impractical, since earlier algorithms 
were exhaustive, and explore a doubly exponential search 
space. 

Distributing on operators among a number of hosts is a 
NP hard problem. Particle swarm optimization and genetic 
algorithm may be used to compare them to each other. 
Encoding is a mapping from knowledge domain to the 
solution space where algorithm can process. Particle 
swarm optimization is a stochastic optimization technique. 
The algorithm is initialized with a population of random 
solutions. Each solution represents a particle. All particles 
move based on personal best and global best in the search 
space to find the best solution that ith particle has 
experienced so far. The algorithm repeats until a threshold 
is reached or it finds the optimal solution. In fact, after 

each iteration, the position of each particle updates with 
the velocity vector. Velocity vector is calculated based on 
personal best and global best. The basic particle swarm 
optimization is suitable to solving continuous problems. 
The particle swarm optimization algorithm first generates 
initial random particles and then assigns each particle to 
its personal best. After that it assigns the best personal 
best to the global best. The particle swarm optimization 
calculates the fitness value of each particle and then 
updates personal best and global best. 

2. Review of Literature 
Y.E. Ioannidis et.al [1] have suggested in their paper 

that most of the queries on relational databases require 
access to relations from multiple sites for their processing. 
The number of possible alternative query plans increases 
exponentially with increase in the number of relations 
required for processing the query. 

M. Jarke et.al [2] have discussed in their paper that 
exploring all the query plans in this large search space, e.g. 
exhaustive search, is not feasible. This problem in large 
databases is a combinatorial optimization problem and has 



 American Journal of Information Systems 53 

 

been addressed by techniques like simulated annealing, 
iterative improvement, two-phase optimization, etc. The 
techniques, which reduce the search space, are based on 
plan transformation and have a cost model to assess the 
quality of query processing plans. 

L. P. Mahalingam et.al [3] have discussed in their paper 
that the optimization strategy based on algebraic 
equivalences between similarity based operations that 
serve as rewrite rules is outlined in. Optimization rules 
based on similarity based algebraic framework properties 
and equivalence laws. 

Ch. Li, Kevin et.al [4] have introduced a novel multi-
criteria query optimization techniques for performing 
query optimization in databases, such as multimedia and 
web databases, which rely on imperfect access 
mechanisms and top-k predicates. They have also 
introduced cost model and optimization algorithms. 

Stefan Riezler et.al [5] have implemented query 
processing using natural language, e.g. plain English, and 
for understanding English by the machine, statistical 
machine translation (SMT). This approach is to bridge the 
lexical gap between questions and answers. SMT-based 
query expansion is done by i) using a full-sentence para-
phraser to introduce synonyms in context of the entire 
query, and ii) by translating query terms into answer terms 
using a full-sentence SMT model trained on question-
answer pairs. 

Raymond T. Ng et.al [6] have focused on logic 
programming in deductive databases. They have also 
extended deductive databases with probabilisties and 
given fixed point semantics to logic programs annotated 
with probabilities, but they have used absolute ignorance 
to combine event probabilities. 

 Norbert Fuhr et.al [7] have introduced a method for 
evaluating queries on probabilistic databases is to use 
complex events. They have also reviewed its limitations. 
Start by expressing q as a query plan, using the operators 
σ,п,×. Then modify each operator to compute the event 
attribute E in each intermediate result: denote σi,_ п i,×i 
the modified operators. It is more convenient to introduce them 
in the functional representation, by defining the complex 
event ep(t) for each tuple t, inductively on the query plan p. 

Praveen Seshadri et.al [8] have focused on decorrelation 
techniques. The use of the decorrelation techniques results 
in the query being transformed to a set of queries, with 
temporary relations being created. In this manner, the 
queries generated by decorrelation may have several 
subexpressions in common, and are therefore excellent 
candidates for multi-query optimization.  

Subbu N. et.al [9] have implemented the correlated 
evaluation of queries because it may be more efficient on 
the query, and may not be possible to get an efficient 
decorrelated query using standard relational operations. In 
correlated evaluation, the nested query is repeatedly 
invoked with different values for correlation variables. 

A. Pérez-Uribe et.al [10] have focused on optimization 
problems e.g. swarm intelligence, which is inspired by the 
social behavior of some insects such as ants and bees. 
Honey-bees mating optimization (HBMO) is a swarm 
intelligence optimization algorithm that models the 
behaviors of bees. Honeybees algorithms were used to 
model agent-base systems. 

K. Bennett et.al [11] have experimented using PSO and 
genetic algorithm and found that PSO as well as genetic 

algorithms could be elegantly useful to optimize database 
query plans. 

We compared honey-bees, DPSO and genetic algorithm 
with each other and with centralized algorithm for each 
scenario. The centralized method reveals the effect of 
distribution. 

M.J. Franklin et.al [12] have focused about high fan-in 
query plans. They have used low fan-in query plans. They 
have also focused on how the fitness value of each 
distribution algorithm changes over time and the honey-
bees algorithm does not get trapped in local minima. 

A. Sokolov et.al. [13] have Used the QPC values of the 
query plans in their experimental analysis, and found that 
fitter query plans are selected using the unbiased 
tournament selection technique. The selected query plans 
undergo crossover, with probability Pc, and mutation, 
with probability Pm, to generate the population for the 
next generation. This continues until the algorithm runs 
for a pre-specified number of generations GP. The top-
query plans are then generated based on the QPC values. 

T.V. VijayKumar et.al [14] have proposed an approach 
that uses Genetic Algorithm to generate ‘close’ query 
plans. The approach aims to generate query plans that are 
optimal with respect to the number of sites involved, and 
the concentration of relations in these sites, for answering 
the user query. This in turn would result in efficient query 
processing. 

3. Algorithm 
1. Initiate random particles and assign each particle to 

its personal best. Find the Initial global best. 
2. While have enough time, calculate fitness of particles  
3. For each particle, update personal best, global best 
4. For each particle do these steps, e.g. update its 

position, return global best particle as solution 
This algorithm may be simplified and elaborated as 

following. 
1. Assign the size of swarm, for example in this case it 
is set to 10. 
2. Allocate maximum query e.g. in this case 100. 
3. Cognitive parameter, c1=1. 
4. Social parameter, c2, is set to 4-c1. 
5. Number of relations is set to 2. 
6. Number of optimization variables, npar is set to 2. 
7. Generate random population of continuous values 
and update the particle position 
8. Evaluate random population of continuous variables 
from allocated queries & relations. 
9. Generate random velocities by considering size of 
swarm and number of optimization variables. 
10. Evaluate the cost of particle by considering CPU 
time, population of continuous values and velocities of 
the particles. 
11. Evaluate the cost of swarm by considering the cost 
of particles along with CPU time. 
12. Update the best local position for each particle. 

4. Experimental Analysis 
Consider two relations EMP and ASG where attributes 

to the relation EMP are ENo, EName, Title and attributes 
to the relation ASG are ENo, PNo, Resp, Dur. 



54 American Journal of Information Systems  

 

If it is asked to find the names of employees who are 
managing a project, the query may be written as  

SELECT EName 
FROM EMP,ASG 
WHERE EMP.ENo = ASG.ENo AND Dur > 37 
Two possible transformations of the query may be 

represented in the following expressions. 
Expression 1: 

∏EName(σDur>37∩EMP.ENo=ASG.ENo(EMP × ASG)) 
Expression 2: ∏EName(EMP ⋊ENO (σDur>37(ASG))) 
Expression 2 avoids the expensive and large 

intermediate Cartesian product, and therefore typically is 
better. 

Usually data may be horizontally) fragmented. 
For example, 

Site1: ASG1 = σENo≤”E3”(ASG) 
Site2: ASG2 = σENo>”E3”(ASG) 
Site3: EMP1 = σENo≤”E3”(EMP) 
Site4: EMP2 = σENo>”E3”(EMP) 
Site5: Result 

Relations ASG and EMP may also be fragmented in the 
same way. 

Relations ASG and EMP may also be locally clustered 
on attributes Resp and ENo, respectively. 

Now consider the expression ∏EName(EMP ⋊ENO 
(σDur>37(ASG))) 

Tuples are uniformly distributed to the fragments; 20 
tuples satisfy Dur>37 

size(EMP) = 400, size(ASG) = 1000 
tuple access cost = 1 unit; tuple transfer cost = 10 units 
ASG and EMP have a local index on Dur and ENo 
For example, Produce ASG’s: (10+10) * tuple access 

cost =20 
Transfer ASG’s to the sites of EMPs: (10+10) * tuple 

transfer cost =200 
Produce EMP’s: (10+10) * tuple access cost * 2 =40 
Transfer EMP’s to result site: (10+10) * tuple transfer 

cost =200 
Total cost= 460 
Query processing is done in the following sequence: (1) 

query decomposition, (2) data localization, (3)global 
optimization, (4) local optimization. 

Table 4.1. Cost of Particle and Swarm( Relation R1, Relation R2) 

Sl.No. 
Relation ( R1) Relation( R2) 

Cost of 
particle 

Cost of 
swarm 

Cost of 
particle 

Cost of 
swarm 

1 60.817 121.52 60.164 120.87 
2 61.387 122.09 61.414 122.12 
3 61.543 122.25 60.288 120.99 
4 60.992 121.69 61.291 121.99 
5 60.83 121.53 61.77 122.47 
6 61.066 121.77 61.66 122.26 
7 61.529 122.23 60.304 121.01 
8 59.764 120.47 61.139 121.84 
9 60.554 121.26 61.835 122.54 

10 61.18 121.88 60.86 121.56 
Query optimization is a crucial and difficult part of the 

overall query processing. The objective of query 
optimization is to minimize the following cost function: 
I/O cost + CPU cost + communication cost. 

Size of the swarm = 10;  
No. of relations e.g. dimension of the problem,= 2; 

Maximum number of iterations e.g. maximum no. of 
query = 100; 

No. of optimization variables, npar=2; 
Cognitive parameter, c1 = 1;  
Social parameter, c2 = 4-c1;  
Constriction factor, C=1;  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

100

110

120

130

 
Figure 4.1. (Plan generation VS cost of swarm) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

80

90

100

110

120

130

140

150

 

Figure 4.2. (Plan generation VS average cost of particle of swarm) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

 

Figure 4.3. (Plan genetaion VS particle velocity) 



 American Journal of Information Systems 55 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

 

Figure 4.4. (Plan generation VS average cost of particle along with 
velocity) 

5. Discussion & Future Direction 
Usually data may be required to process the user query 

that may be spread over various locations with 
heterogeneity. So there may be a need to arrive at a query 
processing plan that entails an optimal cost for query 
processing. The query plans generated for the particular 
set of queries generally posed on databases distributed 
across various locations. The efficiency of query 
processing depends upon the closeness of the required 
data. Many query plans may be generated for a given 
query from multiple relations at various locations. So 
there may be a number of combinations of relations at 
various locations for query processing. As a result it may 
generate a quite large number of query plans. Among 
these query plans, optimal query plans may be identified 
having the required relations. It may be a complex 
problem if the number of relations accessed by the query 
is quite huge in number and each of the relations may 
have multiple copies across various locations. In the 
experimental evaluation it is seen that that the query plans 
generated are directly proportional to particles in the 
swarm as well as cost of swarm. 

6. Conclusion 

In this paper the query plans are generated to improve 
the response time of user queries. It is usually achieved by 
formulating the distributed query processing plan 
generation as a single-objective algorithm problem. It was 
also aimed to generate query plans with the desired data, 
for answering the user queries residing close to each other. 
It is found that the query plans generated are directly 
proportional to particles in the swarm as well as cost of 
swarm. 

References 
[1] Y.E. Ioannidis and Y.C. Kang, “Randomized algorithms for 

optimizing large join queries, ACM 1990. 
[2] M. Jarke and J. Koch, “Query optimization in database systems,” 

ACM Computing Surveys, volume 16, no. 2, pp. 111-152, June 
1984. 

[3] L. P. Mahalingam and K. S. Candan, Multi-Criteria Query 
Optimization in the Presence of Result Size and Quality Tradeoffs, 
Multimedia Tools and Applications Journal 23(3) (2004), 167-183. 

[4] Ch. Li, Kevin Ch.-Ch. Chang, I. F. Ilyas, and S. Song, RankSQL: 
query algebra and optimization for relational top-k queries. In: F. 
Ozcan, editor, SIGMOD Conference. ACM, 2005, 131-142.  

[5] Stefan Riezler, Statistical Machine Translation for Query 
Expansion in Answer Retrieval, Proceedings of the 45th Annual 
Meeting of the Association of Computational Linguistics, pages 
464-471, Prague, Czech Republic, June 2007.  

[6] Raymond T. Ng and V. S. Subrahmanian. Probabilistic logic 
programming. Information and Computation, 101(2):150-201, 
1992. 

[7] Norbert Fuhr and Thomas Rolleke. A probabilistic relational 
algebra for the integration of information retrieval and database 
systems. ACM Trans. Inf. Syst., 15(1):32-66, 1997. 

[8] Praveen Seshadri, Hamid Pirahesh, and T. Y. Cliff Leung. 
Complex query decorrelation. In Intl. Conf. on Data Engineering, 
1996. 

[9] Subbu N. Subramanian and Shivakumar Venkataraman. Cost 
based optimization of decision support queries using transient 
views. In SIGMOD Intl. Conf. on Management of Data, Seattle, 
WA, 1998. 

[10] A. Pérez-Uribe and B. Hirsbrunner,―Learning and foraging in 
robot-bees‖, in Meyer, Berthoz, Floreano, Roitblat andWilson 
(eds.)’, SAB2000 Proceedings Supplement Book, Intermit. Soc. 
For Adaptive Behavior, Honolulu, Hawaii, pp. 185-194. 

[11] K. Bennett, M.C. Ferris, and Y.E. Ioannidis, ―A genetic 
algorithm for database query optimization‖, In Proc. of the 4th 
International Conference on Genetic Algorithms, 400-407, 1991. 

[12] M.J. Franklin, S.R. Jeffery, S. Krishnamurthy, F. Reiss, S. Rizvi, 
et al., ―Design considerations for high fan-in systems: the HiFi 
approach‖, In Proc. Of the CIDR Conf., Jan. 2005. 

[13] A. Sokolov and D. Whitley, “Unbiased Tournament Selection,” in 
proceedings of the 2005 conference on Genetic and Evolutionary 
Computation, pp. 1131-1138, 2005 

[14] T.V. VijayKumar, Vikram Singh and Ajay Kumar Verma, 
“Generating Distributed Query Processing Plans using Genetic 
Algorithm”, In the proceedings of the International Conference on 
Data Storage and Data Engineering (DSDE 2010), Bangalore, 
February 9-10, 2010, pp. 173-177, 2010. 

 


