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Abstract  The main objective of the present study is to predict the ultimate shear capacity of reinforced concrete 

beams no contains web reinforcement. Fuzzy inference system (FIS) was developed to predict the shear strength of 

these beams using Mamadani method. Fuzzy inference system (FIS) model has been proved to be very effective in 

predicting the ultimate shear strength of concrete beams without stirrups. The regression analysis between the output 

of the FIS model and the corresponding target, R
2
 = 0.9969 and 0.9509 for training and testing data, respectively. 

Based on FIS results , a parametric analysis was carried out to study the influence of each parameter affecting the 

shear strength of beams without stirrups  and these results are compared with the provisions of ACI-code. 

Keywords: high strength concrete, fuzzy inference system, shear strength 

1. Introduction 

High-strength concrete (HSC) has been increasingly 

used in the construction industry during the last years. An 

increase in the strength of concrete is directly associated 

with an improvement in most of its properties, in 

particular the durability, but this also produces an increase 

in its britt leness and smoother crack surfaces which affects 

significantly the shear strength. The failure of HSC beams 

without web reinforcement occurs suddenly, and some 

current codes limit the magnitude of compressive strength 

used in the design formulae to around 60 MPa or 70 MPa 

to prevent it [1]. Many researchers were studied the 

influence of different parameters that affecting the shear 

strength of beams. Collins and Kuchma [2] found out that 

HSC beam specimens showed a more significant size 

effect in shear than normal-strength concrete members. 

Experimental tests carried out by Fu jita et al. [3] showed 

that shear fracture in HSC is characterised by a 

conspicuous localisation of cracking in  comparison with 

ordinary strength concrete, and that the propagation of 

these cracks was rapid, resulting in a more brittle fractur.  

In today fast paced world of increasing and innovative 

new technology, fuzzy  log ic is a practical mathemat ical 

addition to classic Boolean logic. Fuzzy logic is 

considered as a superset of standard logic which is 

extended to deal with partial truth. Fuzzy set theory is 

basically used to mathematically represent uncertainty and 

vagueness and provide tools to deal with the imprecision 

in many problems [4]. For the last two decades, fuzzy set 

theory has been successfully applied in many d ifferent 

areas of engineering including automat ic control, system 

identification, pattern recognition, design of structures, 

structural modeling and many more. There have been 

quite a good number of applications of fuzzy logic in  

different fields of civ il engineering [5-11]. 

In this paper, a fuzzy inference system is developed for 

predicting ult imate shear strength of concrete rectangular 

beams without web reinforcement based on a database 

with 268 test beams and the results obtained are compared 

with those determined according to the ACI code for 

rectangular concrete beams. 

2. ACI-Code Models 

ACI code of pract ice presents two different procedures 

for calcu lating the failure shear strength for concrete 

beams without transverse reinforcement. The simplified 

method, equation 11-3, is as follows [12]: 
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The second procedure, equation 11-5, applies for those 

members, a/d≥1.4. 
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3. Fuzzy Inference System (FIS) 

3.1. General 

Term "Fuzzy" was used by Prof. Lotfi Zadeh for the 

first time in 1962 [13]. The "Fuzzy set" theory developed 

by Zadeh in 1965 [14] provides as a mathemat ical 

framework to deal vagueness associated with the 
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description of a variab le. The fuzzy sets have since spread 

practically to all aspects of scientific  disciplines. It may  be 

regarded both as a generalizat ion of classical set theory 

and as a generalizat ion of dual logic.  

The fuzzy inference system (FIS), also known as fuzzy  

rule-based systems or fuzzy models, is the process of 

formulat ing the mapping from a g iven input to an output 

using fuzzy logic. The dynamic behavior of an FIS is 

characterized by a set of linguistic description rules based 

on expert knowledge. This expert knowledge is usually of 

the form:  

IF - a  set of antecedent conditions is satisfied. 

THEN - a set of consequences can be inferred. 

3.2. Basic Design of FIS 

In order to solve a problem which  is based on uncertain 

or fuzzy observations or correlations, it is necessary to 

describe, map, and process the influencing factors in  fuzzy  

terms and to provide the result of this processing in a 

useable form. These requirements result in the following 

basic elements of a FIS [15]:
 

1 Knowledge base (definit ion of the linguistic variab les, 

terms and rules) 

2 Processing of the input variables (fuzzification) 

3 Inference engine (analysis) 

4 Processing results (defuzzification) 

The (scalar) inputs are transformed  into memberships 

of fuzzy sets by fuzzification functions. This information, 

together with the declared rules, is given to the inference 

engine; the result again being a set of memberships of 

fuzzy sets (terms for the output variables). The last step is 

to transform these membership values into the required 

scalar output variables by defuzzification. The following 

sections will discuss in detail each of these individual 

steps. 

The knowledge base defines the relationships between 

the input and output parameters of a system. The most 

commonly  used representation of the input-output 

relationships is Mamdani type fuzzy  models. In this type 

of fuzzy models, linguistic propositions are used both in 

antecedent and consequent parts of the IF-THEN ru les. 

Another type of representing the input-output 

relationships is Sugeno fuzzy models
 

in which the 

antecedent part of the rules is composed of linguistic 

propositions, but the consequent parts is defined by either 

a constant number (zero order) or linear equations (first 

order). A Mamdani model and a zero-order Sugeno model 

of a mult i-input-single-output system may be represented 

by a set of linear subsystems (ru les) shown in Equation. (3) 

and Equation (4) respectively, as: 
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Thus, every rule is a local fuzzy relationship that maps 

a part of the multidimensional input space U into a certain  

part of the output space V. The inference mechanis m of 

Mamdani type, as shown in Figure (1a), consists of three 

connectives: the aggregation of antecedents in each rule 

(AND connectives), implication (i.e., IF-THEN 

connectives), and accumulation (or aggregation) of the 

rules (ALSO connectives). The operators performing the 

connectives distinguish the type of fuzzy inferencing. The 

AND and ALSO connectives are chosen from a family of 

t-norm (e.g., minimum and product operators) and t-

conorm operators (e.g. maximum and sum operators), 

respectively. The implication (IF-THEN connective) also 

uses t-norm operators, but not necessarily identical to the 

ones used for the AND connectives. 

 

Figure 1. Fuzzy reasoning models 
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The inference mechanism of Sugeno models (Figure 

(1b)) is more straightforward than the more common 

Mamdani’s type because the outputs of individual 

subsystems are crisp numbers. An algebraic p roduct 

operator is usually selected to perform the t-norm to 

simplify the computations. The result of implication of 

each rule is a weight factor that indicates the rule degree 

of firing. The aggregation of the rules is simply adding the 

weighted result of the output of the individual rules. 

4. FIS Model Development for Prediction 
Ultimate Shear Strength 

The FIS is used to predict the ult imate shear strength of 

concrete beams. The FIS model is implemented using 

Fuzzy Logic Toolbox in MATLAB program version 7 

(R14) [16]. This program implements two different FIS 

models, Mamdani and Sugeno model. In  this study, the 

results of using Mamadani FIS model is presented and 

discussed to examine the ability of this model to predict 

the ultimate shear strength of concrete beams without 

stirrups. 

4.1. Preparation of Data 

To provide sufficient information to t rain and verify the 

FIS, a comprehensive set of data has to be collected. An 

extensive review of the literature was therefore conducted 

to compile a database of test results on RC beams that fail 

in shear. All together, 268 test results available in  

literature were used [17]. The data used to build the FIS 

model should be div ided into two subsets: training set and 

validating or testing set. Among the collected data, 236  

experimental data were sampled randomly and used for 

the training data (constructing rules) and the remain ing 32 

data for the testing data of the FIS model.  

4.2. Input and Output Variables 

The input and output variables are usually determined 

by the nature of the problem. In this study the parameters 

which may be introduced as the components of the input 

vector consist of the total depth to width ratio (d/bw), 

depth of beam (d), the concrete cylinder compressive 

strength (f'c), longitudinal reinforcement rat io (  ) and 

shear span to depth ratio,(a/d). The output includes one 

output variable represents the ultimate shear force V (kN). 

The ranges of input and output variables are summarized 

in Table 1. 

Table 1. Range of input and output parameters 

Parameters Range 

Concrete cylinder compressive strength (f'c) (MPa) 12.6-110.9 

Ratio of longitudinal reinforcement (  ) (%) 0.25-5.03 

Depth of beam (d) (mm) 111-930 

Depth to width ratio (d/bw) 0.25-3.75 

Shear span to depth ratio (a/d) 2.41-7.03 

Shear force V (kN) 15-379 

4.3. Membership Functions 

According to the collected data, and using the scatter 

method for partit ioning, different linguistic terms to 

describe the input and output variables were chosen as 

shown in Table 2. To account for the non-linearity, each 

input variable is modeled using a Gaussian type 

membership function. While the output variable is 

modeled using a triangular (linear) type membership 

function. Based on this concept of the data classification, 

membership functions were determined for all input 

variables and output variable, as shown in Figures 2 to 7. 

Table 2. Linguistic terms of input and output parameters 
Parameters No. of linguistic terms 

(f'c) 10 

(  ) 19 

(d) 9 

(d/bw) 14 

(a/d) 18 

V 32 

 

Figure 2. Membership functions for depth to width ratio (d/bw) 

 

Figure 3. Membership functions for depth of beam (d) 

 

Figure 4. Membership functions for shear span to depth ratio (a/d) 

4.4. Rule Definition 

Since there are just 236 train ing data, then a rule base of 

236 rules would be performed. Hence, 236 fuzzy rules 

were constructed with appropriate relat ions between input 

and output. Figure 8 shows a sample of the ru le base, 

while the rule viewer is shown in Figure 9. 
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Figure 5. Membership functions for concrete compressive strength (f'c) 

 

Figure 6. Membership functions for longitudinal reinforcement ratio (  ) 

 

Figure 7. Membership functions for ultimate shear load (V) 

4.5. Model Construction 

In the Mamdani model, the variab les were combined 

into rules using the concept of ‘AND’. The fuzzy  operator 

‘minimum’ was applied as the ‘AND’ function to combine 

the variables. No weightings were applied, which means 

no rule was emphasized as more important in respect to 

estimating the ultimate shear. Implicat ion was performed 

with the minimum function, and accumulation (or 

aggregation) was performed with the maximum function. 

The centroid, or centre of gravity method was applied as a 

means of defuzzification of the output membership 

functions to determine a crisp set. Based on this structure, 

a Mamdani FIS model for u ltimate shear force predict ion 

was constructed for concrete beams. Alternate functions 

for the FIS were investigated through sensitivity analysis 

in the next section. 

 

Figure 8. A segment of the rules 

4.6. Sensitivity Analysis 

A sensitivity analysis was performed for the fuzzy logic 

operator AND, and for the methods of implication, 

accumulat ion (or aggregation), and defuzzification. The 

results of changing a single operator or method while the 

rest of the model was held constant were compared with 

the actual results. In the present study, two norms were 

used to control the performance of the prediction capacity 

of the predictive models developed in the study. These 

norms are the root mean square error (RMSE) and mean 

percentage error (MAPE) between models' results and 

experimental results and they are given, respectively, as: 
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If RMSE and MAPE are 0 then the model will be 

excellent. 

Based on the sensitivity analysis, for the Mamdani 

model a modification on the prototype model 

configuration was developed using product for the AND 

operator, product for the implication, maximum for the 

aggregation, and the centroid for the defuzzification 

method. 

4.7. FIS Model Validation 

Model validation must be carried out using the input-

output data that are not used for training  (i.e., testing data) 

to evaluate the efficiency of the FIS models in predict ing 

ultimate shear. The testing data are used in the model 

validation, which resulted in a total o f 32 testing data for 

the FIS model. The FIS model pred iction and target 

(actual) ult imate shear is used for model validation. 
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The performance of a FIS model can be measured to 

some extent by the errors on the training and testing sets, 

but it is often useful to investigate the model response in 

more detail. One option is to perform a regression analysis 

between the model response and the corresponding targets. 

Figures 10 and 11 show the results of the regression 

analysis between the output of the FIS model and the 

corresponding target for training and testing data 

respectively. From Figure 10 and Figure 11, R
2
 = 0.9969, 

0.9509 for training and testing data, respectively. These 

values indicate an excellent agreement between the 

predicted and the actual values for FIS model.  

 

Figure 9. Inference module (the rules viewer) 

 

Figure 10. Regression analysis between predicted and actual values for 

training data 

 

Figure 11. Regression analysis between predicted and actual values for 

testing data 

5. Parametrical Analyses Based on the 

FIS Results 

After the FIS model has been adequately trained, it is 

possible to generate new beams to study the influence of 

the different parameters on the shear strength. The most 

important conclusions of the parametrical analyses are 

then presented. 

5.1. Influence of Concrete Compressive 

Strength 

Figure 12 shows the effect of concrete cylinder 

compressive strength on ultimate shear strength of 

reinforced concrete beams. It can be seen that as the 

concrete compressive strength increases, the ultimate 

shear strength increases. 

ACI 11-3 equation, limits the concrete compressive 

strength to 70MPa, lead ing to more conservative factor for 

beams with high strength concrete. 

5.2. Influence of Ratio of Longitudinal 

Reinforcement 

The influence of the ratio of longitudinal rein forcement 

as predicted by Fuzzy inference system is analyzed here 

and compared with the ACI 11-3 equation. 

Figure 13 shows that the increase of amount of 

longitudinal reinforcement leads to increase in the 

ultimate shear strength. The failure shear strength is 

slightly increased if the amount of the longitudinal 

reinforcement  is higher than 3.5%. However the ACI 11-3 

equation do not reveals this effect for the longitudinal 
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reinforcement and fo r beams with amount of longitudinal 

steel approximately  less than 1% it may be unconservative. 

The FIS predicts a non-linear response of beams with the 

amount of longitudinal reinforcement.  

 

Figure 12. influence of concrete compressive strength on shear strength 

of beams 

 

Figure 13. influence of longitudinal reinforcement amount on shear 

strength of beams 

5.3. Size Effect 

Figure 14 shows the effect of the beam depth on the 

ultimate shear capacity of beams. It is obvious from this 

figure that the ultimate shear capacity of the concrete 

beam increases with the increase of the beam depth and 

reasonable agreement between the results of ACI-Code 

equation and of the FIS is achieved.  

Figure 15 illustrates the relation between shear strength 

and beam depth for results obtains from FIS and ACI 

equation. This expression does not take into account the 

size effect on shear strength. The ACI 11-3 equation does 

not correlate properly with FIS results, and for beams with 

high effective depth it may be unconservative. 

5.4. Influence of A/D Ratio 

The effect o f the shear span to depth ratio is depicted in  

Figure 16. In  this figure, it can  be seen that the increase of 

a/d, results in a decrease in the shear strength. The 

ultimate shear strength is reduced about 28.7% as the a/d 

ratio increased from 2.41 to 7. The ACI 11-3 equation do 

not take into consideration the influence of a/d rat io. 

 

Figure 14. influence of size effect on shear of beams 

 

Figure 15. influence of size effect on shear strength of beams 

 

Figure 16. influence of shear span to depth ratio on shear strength of 

beams 

6. Conclusions 

This study investigates the feasibility of using fuzzy  

inference system to evaluate the ult imate shear strength of 

concrete rectangular beams without web reinforcement. 
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The fuzzy inference system is particu larly useful for 

evaluating systems with multitude of variab les. The FIS 

has been proved to accurately predicting the ultimate shear 

strength of concrete beams without web reinforcement. 

FIS can be used as a reliab le alternative to costly 

experimental testing as well as lengthy empirical 

calculations for predicting ult imate shear strength of 

concrete beams. 

The ultimate shear strength of beams is found to be 

nonlinearly related to the ratio of longitudinal 

reinforcement. 

The increasing of amount of longitudinal rein forced 

steel leads to increase the ultimate shear strength. 

The influence of concrete compressive strength 

predicted by FIS was compared with ACI equation. ACI 

equation seems to be more conservative for beams with 

high strength concrete. 

Nomenclature 

a . Shear span 

a/d. Shear span to depth ratio 

Aij. Input fuzzy set defined in the  

input space Uj 

As. Area of longitudinal reinforcement 

bw . Web width 

Bi. Output fuzzy set defined in the output  

space Vi 

Ci. Constant 

d . Effective depth of beam 

d/bw. Total depth to width ratio  

'f c . Cylinder compressive strength of  

concrete 

n. Total number of rules 

Pa. Actual values 

Pp. Predicted values 

Ri. Represents the i
th

 rule 

Uj. Input space 

V. Ult imate shear force of beam 

cV . Shear strength of concrete 

Vi. Output space 

xj Input variables 

yi. Output variable 

w . Ratio of longitudinal reinforcement 

area to effective web area (As/ .bwd ) 
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