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Abstract  In this paper, we present a new numerical method for solving first order differential equations. The new 
numerical integration scheme was obtained which is particularly suited to solve oscillatory and exponential problems. 
We verify the reliability of the new scheme and the results obtained show that the scheme is computationally reliable, 
and competes favourably with other existing ones. 
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1. Introduction 
We shall consider the initial value problem of the form  

 ( ) ( )0 0, , .y f x y y x y′ = =  (1) 

Which in time past, many scholars have derived different 
polynomial integrating functions to produce schemes 
capable of solving ordinary differential equations. 
Therefore we shall developed numerical scheme to solve 
problem (1) in tune with those developed by Fatunla [1,2], 
Ibijola [3], and Ogunrinde et.al [4]. 

2. Derivation of New Scheme 
The mathematical formulation of physical phenomena 

in almost every sphere of human endeavor, be it 
engineering, control theory, biological, and economics 
often leads to one or a set of nth order differential 
equations in the form  

Let us assume that the theoretical solution 𝑦𝑦(𝑥𝑥) to the 
initial value problem (1) can be locally represented in the 
interval [𝑥𝑥𝑛𝑛, 𝑥𝑥𝑛𝑛+1 ], 𝑛𝑛 ≥ 0  by the non-polynomial 
interpolating function; 

 ( ) ( ) 2 2
1 2 3 4 5

xF x e x xα α α α α−= + + + +  (2) 

Where 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼4  are real undetermined 
coefficients and 𝛼𝛼5 is a constant. We shall assume 𝑦𝑦𝑛𝑛  is a 
numerical estimate to the theoretical solution 𝑦𝑦(𝑥𝑥)  and 
𝑓𝑓𝑛𝑛 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑦𝑦𝑛𝑛). 

We define mesh points as follows: 

 ,
0,1, 2,

nx a nh
n

= +

= ……………
 (3) 

Imposing the following constraints on the interpolating 
function (2) in order to get the undetermined coefficients. 

2.1. The Interpolating Function. 
a. The interpolating function must coincide with the 

theoretical solution at 
 𝑥𝑥 = 𝑥𝑥𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑥𝑥𝑛𝑛+1. 
Hence we required that 

 
( )

( ) 2 2
1 2 3 4 5

n
xn n n

F x

e x xα α α α α−= + + + +
 (4) 

 ( ) ( ) 2 211 1 2 3 1

4 1 5

xnn n

n

F x e x
x

α α α

α α

− +
+ +

+

= + +

+ +
 (5) 

b. Secondly, the derivatives of the interpolating 
function are required to coincide with the differential 
equation as well as its first, second, and third derivatives 
with respect to 𝑥𝑥 𝑎𝑎𝑎𝑎 𝑥𝑥 = 𝑥𝑥𝑛𝑛  .We denote the ith total 
derivatives of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) with respect to 𝑥𝑥 with 𝑓𝑓(𝑖𝑖) such that  

 𝐹𝐹1(𝑥𝑥𝑛𝑛) = 𝑓𝑓𝑛𝑛  (6) 

 𝐹𝐹2(𝑥𝑥𝑛𝑛) = 𝑓𝑓𝑛𝑛1 (7) 
 𝐹𝐹3(𝑥𝑥𝑛𝑛) = 𝑓𝑓𝑛𝑛2 (8) 

2.2. The Derivatives of the Interpolant 

 ( ) 2
1 2 3 42 2xnn nf e xα α α α−= − + + +  (9) 

 𝑓𝑓𝑛𝑛
1 = 4(𝛼𝛼1 + 𝛼𝛼2)𝑒𝑒−2𝑥𝑥𝑛𝑛 + 2𝛼𝛼3   (10) 

 𝑓𝑓𝑛𝑛
2 = −8(𝛼𝛼1 + 𝛼𝛼2)𝑒𝑒−2𝑥𝑥𝑛𝑛    (11) 

Solving for 𝛼𝛼1 + 𝛼𝛼2 from equation (11), we have 
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 (𝛼𝛼1 + 𝛼𝛼2) = − 1
8
𝑓𝑓𝑛𝑛

2𝑒𝑒2𝑥𝑥𝑛𝑛    (12) 

Substituting (12) into (10), we have 

 𝛼𝛼3 = 1
2

(𝑓𝑓𝑛𝑛
1 + 1

2
𝑓𝑓𝑛𝑛2 )  (13) 

Substituting (12) and (13) into (9), we have 

 2 1 2
4

1 1( ) ( )
4 2n n n n nf f f f xα = − − +  (14) 

Since 𝐹𝐹(𝑥𝑥𝑛𝑛+1) = 𝑦𝑦(𝑥𝑥𝑛𝑛+1) and 𝐹𝐹(𝑥𝑥𝑛𝑛) = 𝑦𝑦(𝑥𝑥𝑛𝑛) 
Implies that 

 𝑦𝑦(𝑥𝑥𝑛𝑛+1) = 𝑦𝑦𝑛𝑛+1 and 𝑦𝑦(𝑥𝑥𝑛𝑛) = 𝑦𝑦𝑛𝑛  (15) 
 𝐹𝐹(𝑥𝑥𝑛𝑛+1) − 𝐹𝐹(𝑥𝑥𝑛𝑛) = 𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛  

Then we shall have  

 
( ) 2 211 1 2

2 2
3 1 4 1[ ]

x xn nn n

n n n n

y y e e

x x x x

α α

α α

− −+
+

+ +

 − + − 
 + − + − 

=
 (16) 

Recall that 

 ( )1 wit, 1 0,1,2hn nx a nh x a n h n+= + = + + = ……(17) 

Substitute (12), (13) and (14) into (16), we have  

 
( )2 2

1

1 2 2 2

1 1
8

1 1 1( ) ( )
2 2 4

h
n n n

n n n n

y y f e

f f h f f h

−
+ = − −

+ + + −
 (18) 

Hence (18) is the new schemes for solution of the first 
order differential equation. 

3. The Implementation of the Scheme 

Example 1 

Table 3.1 
Using scheme (18) to solve the initial value problem 
𝒚𝒚′ = 𝒚𝒚, 𝒚𝒚(𝟎𝟎) = 𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒕𝒕𝒕𝒕𝒕𝒕 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝟏𝟏, The theoretical solution 
𝒚𝒚(𝒙𝒙) = 𝒆𝒆𝒙𝒙, 𝒉𝒉 = 𝟎𝟎. 𝟏𝟏 
S/N Xn Scheme Exact Error 
[0] [0.00] [1.000000000000000] [1.000000000000000] [0.00000000000000] 
[1] [0.10] [1.105158655865252] [1.105170918075648] [1.226221039551945e-005] 
[2] [0.20] [1.221389206321850] [1.221402758160170] [1.355183832019158e-005] 
[3] [0.30] [1.349843830478405] [1.349858807576003] [1.497709759790133e-005] 
[4] [0.40] [1.491808145388568] [1.491824697641270] [1.655225270247307e-005] 
[5] [0.50] [1.648702977631813] [1.648721270700128] [1.829306831546695e-005] 
[6] [0.60] [1.822098583423405] [1.822118800390509] [2.021696710463594e-005] 
[7] [0.70] [2.013730364266381] [2.013752707470477] [2.234320409577606e-005] 
[8] [0.80] [2.225516235433084] [2.225540928492468] [2.469305938346267e-005] 
[9] [0.90] [2.459575821105841] [2.459603111156950] [2.729005110868599e-005] 
[10] [1.00] [2.718251668288208] [2.718281828459046] [3.016017083767864e-005] 

Hence the graph of Table 3.1 
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Example 2. 

Table 3.2 
Using scheme (18) to solve the initial value problem 
𝒚𝒚′ = 𝒙𝒙𝟐𝟐 + 𝒚𝒚, 𝒚𝒚(𝟎𝟎) = 𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒕𝒕𝒕𝒕𝒕𝒕 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝟏𝟏  
The theoretical solution 𝒚𝒚(𝒙𝒙) = −𝟐𝟐 − 𝟐𝟐𝟐𝟐 − 𝒙𝒙𝟐𝟐 + 𝟑𝟑𝟑𝟑𝒙𝒙, 𝒉𝒉 = 𝟎𝟎. 𝟏𝟏 
S/N Xn Scheme Exact Error 
[0] [0.00] [1.000000000000000] [1.000000000000000] [0.000000000000000] 
[1] [0.10] [1.110317311730505] [1.110341836151295] [2.452442079081685e-005] 
[2] [0.20] [1.242778412643699] [1.242805516320340] [2.710367664016111e-005] 
[3] [0.30] [1.399687660956810] [1.399717615152007] [2.995419519646880e-005] 
[4] [0.40] [1.583616290777136] [1.583649395282541] [3.310450540472409e-005] 
[5] [0.50] [1.797405955263626] [1.797442541400256] [3.658613663071186e-005] 
[6] [0.60] [2.044197166846809] [2.044237600781018] [4.043393420927188e-005] 
[7] [0.70] [2.327460728532762] [2.327505414940953] [4.468640819110803e-005] 
[8] [0.80] [2.651032470866169] [2.651081856984936] [4.938611876692534e-005] 
[9] [0.90] [3.019151642211683] [3.019206222313899] [5.458010221648380e-005] 
[10] [1.00] [3.436503336576414] [3.436563656918091] [6.032034167668954e-005] 

Hence the graph of Table 3.2 

 

Example 3 

Table 3.3 
Using scheme (18) to solve the initial value problem 
𝒚𝒚′ = 𝟐𝟐𝟐𝟐𝟐𝟐, 𝒚𝒚(𝟎𝟎) = 𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒕𝒕𝒕𝒕𝒕𝒕 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝟏𝟏  
The theoretical solution 𝒚𝒚(𝒙𝒙) = 𝒆𝒆𝒙𝒙𝟐𝟐, 𝒉𝒉 = 𝟎𝟎. 𝟏𝟏 
S/N Xn Scheme Exact Error 
[0] [0.00] [1.000000000000000] [1.000000000000000] [0.000000000000000] 
[1] [0.10] [1.200000000000000] [1.010050167084168] [0.189949832915832] 
[2] [0.20] [1.212263492537484] [1.040810774192388] [0.171452718345096] 
[3] [0.30] [1.249816146017192] [1.094174283705210] [0.155641862311982] 
[4] [0.40] [1.315016151145149] [1.173510870991810] [0.141505280153339] 
[5] [0.50] [1.412063606381248] [1.284025416687741] [0.128038189693506] 
[6] [0.60] [1.547454345272219] [1.433329414560340] [0.114124930711879] 
[7] [0.70] [1.730708227029939] [1.632316219955379] [0.098392007074560] 
[8] [0.80] [1.975486794533931] [1.896480879304952] [0.079005915228979] 
[9] [0.90] [2.301284446910632] [2.247907986676472] [0.053376460234161] 
[10] [1.00] [2.735985639959573] [2.718281828459046] [0.017703811500527] 
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Hence the graph of Table 3.3 

 

Example 4 

Table 3.4 
Using scheme (18) to solve the initial value problem 
𝒚𝒚′ = 𝟐𝟐𝟐𝟐𝟐𝟐 + 𝟒𝟒𝟒𝟒, 𝒚𝒚(𝟎𝟎) = 𝟏𝟏, 𝒊𝒊𝒊𝒊 𝒕𝒕𝒕𝒕𝒕𝒕 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟎𝟎 ≤ 𝒙𝒙 ≤ 𝟏𝟏, 
The theoretical solution 𝒚𝒚(𝒙𝒙) = 𝟑𝟑𝟑𝟑𝒙𝒙𝟐𝟐 − 𝟐𝟐, 𝒉𝒉 = 𝟎𝟎. 𝟏𝟏 
S/N Xn Scheme Exact Error 
[0] [0.00] [3.000000000000000] [3.000000000000000] [0.000000000000000] 
[1] [0.10] [3.200000000000000] [3.010050167084168] [0.189949832915832] 
[2] [0.20] [3.212263492537484] [3.040810774192388] [0.171452718345096] 
[3] [0.30] [3.249816146017192] [3.094174283705210] [0.155641862311982] 
[4] [0.40] [3.315016151145149] [3.173510870991811] [0.141505280153338] 
[5] [0.50] [3.412063606381248] [3.284025416687741] [0.128038189693506] 
[6] [0.60] [3.547454345272219] [3.433329414560340] [0.114124930711878] 
[7] [0.70] [3.730708227029940] [3.632316219955379] [0.098392007074561] 
[8] [0.80] [3.975486794533931] [3.896480879304952] [0.079005915228979] 
[9] [0.90] [4.301284446910633] [4.247907986676472] [0.053376460234161] 
[10] [1.00] [4.735985639959573] [4.718281828459046] [0.017703811500527] 

Hence the graph of Table 3.4 
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4. Summary and Conclusion 
The following can be deduced from this numerical 

experiment as summary and conclusion 
(i) The results obtained from the implementation of the 

scheme revealed that the approximation/numerical 
solution and the exact/theoretical solution obtained leads 
to error that is miniature in size. 

(ii) The smaller the step-size “h” the more accurate is 
the numerical methods. 

(iii) It can be clearly seen from the results that the 
scheme can be used to solve any standard initial value 
problems as the scheme converges easily. 

(iv) Since the error is not blown off, it showed the 
reasonability of the stability of the scheme. 

 

References 
[1] Fatunla, S. O., (1976). A New Algorithm for the Numerical 

Solution of ODEs. Computers and Mathematics with Applications. 
USA. 2, 247-253. 

[2] Fatunla, S. O., (1988). Numerical Methods for initial Value 
Problems in Ordinary Differential Equations, Academic Press, San 
Diego, U. S.A. 

[3] Ibijola, E. A., (1997). New Schemes for Numerical Integration of 
Special Initial Value Problems in Ordinary Differential Equations. 
Ph.d Thesis, University of Benin, Nigeria. 

[4] Ogunrinde, R.B., Fadugba, S.E., and Okunlola J. T. (2012). On 
some Numerical methods for solving initial value problem in 
ODEs. IOSR Journal of Mathematics  (IOSRJM). 1(3), 25-31. 

[5] Kama, P. and Ibijola, E. A. (2000). On a New One – Step Method 
for Numerical Integration of Ordinary Differential Equtions. 
International Journal of Computer Mathematics, Vol.78, No. 3,4. 

[6] Lambert, J. D. (1991). Numerical methods for Ordinary 
Differential Systems: the initial value problem. John Wiley & 
Sons, Inc., New York. 

[7] Shepley L. Ross (1984). Differential Equations. Third Edition. 
John Wiley & Sons, Inc., New York. 

 


