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Abstract  In this paper we investigated the terrestrial seasonal correlation between total column ozone (TCO) and 
solar variables, viz. mass of coronal mass ejections (CMEs) and sunspot number (SSN) over three major cities 
Karachi (24.870 o N & 67.030 o E, 49 m), Lahore (31.550 o N & 74.330 o E, 215 m) and Quetta (30.1798 o N & 
66.975 o E, 1721 m) of Pakistan. The analysis has been carried out for the 23rd and 24th solar cycles. The non-
stationary characteristics of solar data variables and the impact of climate fluctuations (QBO and ENSO) on TCO 
have been removed by applying the empirical mode decomposition (EMD) technique. A polynomial model has been 
developed between CMEs mass with TCO and SSN with TCO for all three stations during all seasons. The goodness 
of the model has been checked on basis of the chai square (χ2) test, coefficient of determination (R2), sum square 
error (SSE), and root mean square error (RMSE). The correlation coefficient has been calculated between the studied 
variables. This study reveals that TCO over all three stations is negatively correlated with CMEs mass and SSN 
during all seasons. The maximum value of the correlation coefficient between CMEs mass and TCO is observed for 
the Lahore station during the winter season. Whereas, the maximum value of the correlation coefficient between 
SSN and TCO is observed for Lahore and Quetta during the spring season. The weakest correlation between CMEs 
mass with TCO and SSN with TCO is observed for Karachi station during the summer season. The negative 
correlation between TCO-CMEs mass and TCO-SSN indicates that TCO decreases with increasing the CMEs mass 
and SSN. 
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1. Introduction 

Re-connection of the sun’s magnetic field gives rise to 
sunspots on the surface of the sun. The sunspot numbers 
(SSN) correlate with solar activity and show periodicity 
over the solar cycle [1]. Coronal mass ejections (CMEs) 
are formed over magnetically active regions on the sun’s 
corona in the vicinity of sunspots [2]. CMEs are the large 
eruptions of magnetized plasma from the sun’s corona 
[3,4,5]. The analysis of the physical parameters (mass, 
energy, velocity, angular width, etc.) of CMEs has been 
reported since their first appearance on coronagraph in 
1971 [6,7]. During CMEs eruption, the sun ejects billion 
tons of coronal material mostly electrons, protons, and 
heavy nuclei (He ions), which travel outward at speeds 
ranging from 250 km/sec to 3000 km/sec into sun-earth 
space [8]. CMEs are highly energetic particle events that 
can significantly influence interplanetary space [9]. 

Ozone (O3) is a highly reactive gas that is present in the 
shape of a 3 mm thick layer in the lower part of the 
stratosphere and protects life on earth from harmful UV-B 

radiations [10,11]. On the other hand, the presence of 
ozone in the troposphere acts like a pollutant/greenhouse 
gas and plays a significant role in climate change on earth 
[12]. The ozone concentration in the stratosphere responds 
directly to ultraviolet as well as corpuscular radiations 
coming from the sun. UV-B radiation causes the 
formation of ozone through the photolysis process and the 
reduction of ozone through the chemical process [13].  

The ozone concentration varies with seasonal changes, 
for higher and lower altitudes the transportation process 
increases ozone in winter and the chemical destruction 
decreases ozone in summer [14]. The seasonal impact of 
solar activities on the concentration of ozone has attracted 
interest yet remains unclear. Several attempts have been 
made to find out the correlation between ozone and solar 
activity. Willet showed that a significant negative 
correlation existed between the monthly average of total 
ozone and the monthly mean of sunspot number [15]. The 
dynamic impact of solar and geomagnetic activities on 
total ozone has been studied in China. It is found that 
TCO is negatively affected during the low solar cycle and 
the direct forcing effect of solar or geomagnetic activities 
is latitudinal [16]. The physical parameters of CMEs 
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(width, kinetic energy & initial speed) and SSN seasonal 
impact on ionosphere critical frequency foF2 have been 
reported in a recent study. The study revealed that the 
highest impact of CMEs energy and width on foF2 is 
during summer than spring, autumn, and winter seasons. 
However, the initial speed of CMEs shows a different 
result. For faster CMEs, the strong correlation with 
ionosphere critical frequency foF2 was observed during the 
spring and winter seasons [17]. As CMEs physical 
parameters have a significant effect on the ionosphere 
region, therefore, there is a need to investigate the 
seasonal impact of CMEs physical parameters on total 
column ozone (TCO) over the stratospheric region. The 
seasonal effect of CMEs mass and SSN on Pakistan’s 
stratospheric region during the 23rd and 24th solar cycles 
has not been widely reported. In the present study, we aim 
to investigate the seasonal variation of CMEs mass and 
SSN with TCO over three major cities (Karachi, Lahore & 
Quetta) of Pakistan during the 23rd and 24th solar cycles.  

2. Materials & Methods 

2.1. Data Acquisition 
The data of the mass of CMEs was obtained from the 

online “The Large Angle and Spectrometric Coronagraph 
(LASCO) on-board the Solar and Heliospheric 
Observatory (SOHO) available in CMEs catalogue” which 
can be found at https://cdaw.gsfc.nasa.gov/CME_list/. 
This catalogue was designed by NASA to obtain accurate 
data of the physical properties (mass, Kinetic energy, 
speed, angular width, etc.) of CMEs [18]. In this catalogue 
30126 CMEs data along with central position angle (CPA) 
ranging from 1° to 360° is available for the 23rd and 24th 
solar cycle (August 1996 to December 2019). For the 
present study, 3353 CMEs were selected ranging from 300° 
to 360° CPA. 

The data of sunspot numbers (SSN) was obtained from 
Sunspot Index and Long-term Solar Observations (SILSO) 
website (https://wwwbis.sidc.be/silso/datafiles). The data 
of total column ozone (TCO) for three stations (Karachi, 
Lahore & Quetta) of Pakistan was collected from Solar 
Backscatter Ultra Violet (SBUV and SBUV/2) instruments 
on-board the National Oceanic and Atmospheric 
Administration (NOAA) satellites from SBUV Merged 
Ozone Data Set (nasa.gov) [19]. The monthly data of 
mass of CMEs, TCO, and SSN was obtained from the 
above-mentioned websites by taking the average for four 
seasons winter (December, January & February), spring 
(March, April & May), summer (June, July & August) and 
autumn (September, October & November).  

2.2. Data Smoothing Technique  
(Empirical Mode Decomposition) 

The monthly data of all the variables considered for the 
present study was non-stationary. The non-stationary data 
referred to the existence of trend or seasonality due to the 
additional overlapping signals of various frequencies 
along the original data [20]. The empirical mode 
decomposition (EMD) technique is a suitable method to 
deal with non-stationary and non-linear data [21]. EMD 

de-noises or suppresses the unwanted baseline de-trending 
of the signal by breaking the data signal into several 
intrinsic mode functions (IMFs) and using the residual 
signal 𝑟𝑟𝑁𝑁(𝑡𝑡)  to keep the time domain unaltered. The 
advantage of EMD is that it is an adaptive analysis. This 
technique is based on the extraction of energies associated 
with various intrinsic time scales of the data signal starting 
from high-frequency to low-frequency mode. The first two 
IMFs (IMF1 & IMF2) are the finest mode and dominated 
the major part of noises in the signal [22]. EMD was 
applied to remove the noise from the mass of CMEs, SSN, 
and TCO month average data. 

2.3. Augment Dickey-Fuller Test  
Most of the solar data recorded are non-stationary 

therefore testing the stationarity of solar data series is very 
important. There are many methods used to check the 
stationarity test of data, we focused on Augment Dickey-
Fuller Test (ADFT). ADF test is a very common statistical 
unit root test used to check the stationarity of time series. 
ADF gives the null hypothesis that the unit root is present 
in a given time series. In general, if the p-value is less than 
5 % (p-value < 0.05) rejects the null hypothesis that there 
is a unit root. The stationarity of data has been checked 
using Augmented Dickey-Fuller (ADF) test on the 
smoothed signals of mass of CMEs, SSN, and TCO (all 
stations). The ADF test is checked for trend-stationary (TS) 
and auto regression drift (ARD) models using F-statistics 
for 0, 1 & 2 lags, and 0.05 significant levels [23]. 

2.4. Pearson Correlation 
The strength and existence of the linear relationship 

between two variables are defined by Pearson correlation. 
The correlation explains the monotonic relationship 
between two variables. The correlation coefficient ‘ρ’ lies 
between -1 (negative correlation) and +1 (positive 
correlation) [24].  
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𝜇𝜇 and 𝜎𝜎 are the mean and standard deviation of A & B 
variables. The relationship between two variables in 
regards to the correlation coefficient is categorized as a 
“weak”, “moderate” and “strong” relationship. Most 
researchers agreed that ρ < ± 0.1 indicate a negligible and 
ρ > ± 0.9 indicate a very strong relationship [25]. 

3. Results and Discussion 

The bar charts plotted in Figure 1 (a & b) are showing 
the comparison of mean month average values of original 
and decomposed signals of TCO measured in Dobson unit 
(DU) for all three stations (Karachi, Lahore & Quetta) of 
Pakistan during winter (December to February), spring 
(March to May), summer (June to August) and autumn 
(September to November) seasons. The maximum mean 
month average value of the TCO original signal (Figure 1a) 
is observed in the spring and summer seasons for Karachi 
station (24.87 ° N & 67.03 ° E) and minimum in the 

 



 Applied Ecology and Environmental Sciences 3 

winter season. For Lahore (31.55 ° N & 74.33 ° E) and 
Quetta (30.179 ° N & 66.975 ° E) stations the maximum 
value is observed in the spring season and minimum in the 
autumn season.  

 
Figure 1. The comparison of mean month average values of TCO 
measure in Dobson unit (DU) for Karachi (K), Lahore (L) & Quetta (Q) 
stations recorded during winter, spring, summer, and autumn seasons (a) 
original signal and (b) decomposed signal 

A similar trend of seasonal variation of TCO over 
Pakistan with latitude is already on record. The region of 
Pakistan covering the 23 ° N to 29 ° N range of latitude 
gives the maximum value of TCO in the summer season 
and minimum in the winter season. Similarly for the 
region ranging from 30 ° N to 37 ° N latitude, maximum 
TCO is observed during winter and spring seasons and 
minimum during summer and autumn seasons [26]. It is 
well known that the TCO concentration changes 
seasonally because of the variation in the magnitude of 
solar radiations reaching the earth's atmosphere and 
transportation processes like quasi-biennial oscillation 
(QBO) and ENSO [27].  

The original data signals of CMEs mass and SSN are 
non-stationary and possess noises. To study the impact of 
CMEs mass and SSN on TCO the noises, spikes and 
climate fluctuations present in the original data signals 
have been removed by applying the empirical mode 
decomposition technique. The decomposition break CMEs 
mass, SSN, and TCOs signals into several frequencies of 
intrinsic mode functions (IMFs) and residual signals and 
calculate their corresponding relative energies measured in 
percentage during all seasons. The IMFs 1 & 2 represents 

the maximum part of the noise. All the IMFs and their 
corresponding energies have been eliminated that are 
causing the signal non-stationary and residual signals are 
used for further analysis. 

The mean month average values of decompose signals 
of TCO for Karachi, Lahore, and Quetta stations during all 
four seasons are shown in bar charts Figure 1b. The 
decomposed signal of TCO for Karachi, Lahore, and 
Quetta stations gives small variation in magnitude during 
all seasons, clearly indicating that the climate fluctuations 
or transportation process causing the change in the 
concentration of TCOs has been removed from data 
signals. 

The ADF test is performed to confirm the stationarity 
of de-noise signals of CMEs mass and SSN. It is found 
that the p-values for CMEs mass and SSN during winter, 
spring, summer, and autumn seasons are less than 0.05 (p 
< 0.05) and reject the null hypothesis showing clearly that 
data series do not have a unit root, hence these data series 
are stationary [23].  

The polynomial model has been developed between 
CMEs mass with TCOs and SSN with TCOs. Pearson 
correlation coefficient ‘ρ’ has also been calculated to 
explain the dependence of TCO (over all three stations) on 
solar variables (CMEs mass and SSN) during winter, 
spring, summer, and autumn seasons, and its values are 
mentioned in each plot (Figure 2 - Figure 4). The 
goodness of the model in terms of chai square (χ2) test 
coefficient of determination R2, sum square error (SSE), 
and root mean square error (RMSE) has been checked. 
The Chai square (χ2) test is a non-parametric test and can 
be performed on non-normal continuous data. This test is 
well known to check the goodness of fit. The test is 
performed by assuming the null hypothesis H0: there is no 
significant difference between the observed and the 
expected values, and an alternative hypothesis H1: there is 
a significant difference between the observed and the 
expected value, at a 5% confidence level. The χ2

calculated 

value
 found is less than the χ2

critical value for all stations using 
both variables (CMEs mass & SSN) during all seasons 
indicating that we fail to reject the null hypothesis hence 
there is no significant difference between observed and 
expected values. The values of R2, SSE, and RMSE are 
shown in Table 1. The maximum value of R2 of the model 
developed between CMEs mass and TCO, for Karachi 
(96.85 %) and Quetta (97.26 %) stations are observed in 
the autumn season and for Lahore station (92.09 %) is 
observed in the winter season. Similarly, the minimum 
value of R2 for Lahore (67.67 %) and Quetta (67.37 %) 
stations is found in the spring season and for Karachi 
station, it is observed in the summer season with a  
32.61 % value. The model developed between SSN and 
TCO gives the maximum value of R2 for Karachi 
(77.38 %) and Quetta (88.78 %) stations observed during 
the spring season and for Lahore (86.68 %) station it is 
observed in the autumn season. The minimum value of R2 
for all three stations, of the same model (SSN vs. TCO), is 
observed in the summer season (Table 1). It can be noted 
that the values of RMSE and SSE are found smaller 
during the autumn season for the model with CMEs mass. 
The model with the least value of RMSE and a greater 
value of R2 is considered to be satisfactory. This indicates 
that during the winter and autumn seasons, solar activity 
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shows more dependency on TCO than in the summer and 
spring seasons. Among both variables (CMEs mass & 
SSN) during all seasons, CMEs mass gives a more 
significant value of R2 during winter and autumn seasons. 

The dependence of SSN on TCO for all three stations 
follows a negative trend. The impact of SSN on TCO over 
Pakistan is discussed annually in [26] but the magnitude 
of the coefficient of determination R2 and correlation 
coefficient found is very small and hence the impact on 
basis of the season has been explained in the present study. 
The seasonal variation of TCO with SSN was also 
discussed for two stations Shimla (northern) and Imphal 
(eastern) of India and found a negative correlation for both 
periods during all seasons. The maximum negative 
correlation for Shimla station was observed in the rainy 
season and for Imphal, it was observed in the winter and 
summer seasons [28]. In the present study the seasonal 
dependence of TCO on SSN is discussed for three stations 
in Pakistan and the correlation coefficient ‘ρ’ is calculated 
using the statistical values mean (µ), standard deviation 
(σ), and no of observation (N) of SSN and TCOs 
mentioned in Table 2 and is shown in Figure 2 (a-d). For 
each station, during all seasons negative correlation is 
observed indicating an inverse relationship between TCO 
and SSN. The maximum correlation for Karachi station  
(- 0.63) is observed in the winter and spring season 
followed by autumn (- 0.57) and summer (- 0.35) seasons. 
For Lahore and Quetta, the maximum correlation (- 0.75) 
& (- 0.76) is observed in the spring season and the 
minimum correlation for Lahore (- 0.68) and Quetta  
(- 0.57) is observed in the summer and autumn seasons 
respectively (Table 3). Among all stations, Lahore with 
higher latitude gives a good correlation between SSN and 
TCO during all seasons. 

Figure 3 (a-d) represents the model fitting curve of the 
model developed between CMEs mass and TCOs. Each 
plot gives the value of correlation coefficient ‘ρ’ which is 

calculated using the average values (µ), standard deviation 
(σ), and no of observation (N) of TCO & CMEs mass 
mentioned in Table 2, using these statistical values 
correlation coefficient has been calculated. The negative 
correlation is found for all three stations during all four 
seasons exhibiting an inverse relationship between CMEs 
mass and TCOs. The maximum value of negative 
correlation coefficient (ρ = - 0.73) was observed for 
Lahore station during the winter season and Karachi  
(- 0.67) and Quetta (- 0.65), it was observed in the spring 
season. The minimum dependence of CMEs mass on TCO 
depletion for Karachi station (- 0.36) was observed in the 
summer season, for Lahore (- 0.61) it is found in the 
spring season and for Quetta (- 0.44) it was observed in 
the autumn season (Table 3). The variation in the 
correlation coefficient is due to the different latitudes of 
the stations. 

It has been already explained that TCO reduces due to 
solar energetic particle precipitation. The phenomena 
explained that when highly energetic solar particles 
interact with the gases present in the atmosphere of earth, 
the formation of NOx and HOx occurred causing the 
reduction of total column ozone present in the atmosphere. 
This formation of odd hydrogen and nitrogen ions is 
because of the ionization process [29]. In the present study, 
it is proposed that the mass of solar particles (CMEs mass) 
plays a significant role in producing the ionization of the 
earth's atmospheric gases due to solar particles. The 
greater CMEs mass indicates a larger number of solar 
heavy particles, causing more ionization and hence giving 
more reduction of TCO. 

It is also on record that for the Northern hemisphere 
during the winter season, the earth is closer to the sun 
hence there is more chance of maximum solar particles 
reaching the earth's atmosphere through the poles causing 
more ionization and more reduction of TCO than in other 
seasons. 

Table 1. The goodness of the polynomial (3) model developed between CMEs mass (BT), SSN and TCO (DU) Karachi (K), Lahore (L), and 
Quetta (Q) in terms of coefficient of determination R2, sum square error (SSE) and root mean square error (RMSE) for winter, spring, 
summer and autumn seasons.  

Variables R2 (%) SSE RMSE 
Season Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn 

CMEs Mass Vs. TCO (K) 82.98 45.8 32.61 96.85 103 160.1 61.14 3.54 1.25 1.56 0.96 0.22 
CMEs Mass Vs. TCO (L) 92.09 67.67 79.46 86.59 28.23 64.43 3.8 10.32 0.65 0.99 0.24 0.38 

CMEs Mass Vs. TCO (Q) 92.09 67.37 73.8 97.26 44.09 83.22 7.54 1.94 0.81 1.13 0.34 0.16 
SSN Vs. TCO (K) 74.03 77.38 26.36 58.91 157.3 66.83 66.82 46.18 1.54 1.01 1.00 0.82 

SSN Vs. TCO (L) 83.46 84.34 67.97 86.68 59.05 31.22 5.93 10.25 0.94 0.69 0.29 0.38 
SSN Vs. TCO (Q) 85.78 88.77 58.49 64.6 79.33 28.64 11.95 25.21 1.09 0.66 0.41 0.61 

Table 2. The statistical values mean (µ), standard deviation (σ), and the number of observations (N) of CMEs mass (BT), SSN and TCO (DU) 
Karachi (K), Lahore (L) & Quetta (Q) stations during all season. 

Season Winter Spring Summer Autumn 
Stat. Value µ Σ N µ σ N µ σ N µ σ N 
CMEs Mass  1.45 0.52 70 1.26 0.4 69 1.56 0.24 70 1.49 0.215 72 

SSN 73.38 14.76 70 68.79 13.54 69 69.8 11.72 70 70.09 16.13 72 
TCO (K) 256.7 2.96 70 281.9 2.08 69 280.9 1.15 70 269.9 1.26 72 

TCO (L) 278.5 2.27 70 290.9 1.71 69 278.1 0.52 70 268.1 1.04 72 
TCO (Q) 274.3 2.84 70 290.7 1.94 69 282.7 0.65 70 269.6 1 72 
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Table 3. The magnitude of the correlation coefficient (ρ) was calculated using mean (µ), standard deviation (σ), and the number of observations 
(N) indicating the dependence of TCO (DU) on CMEs mass (BT) and SSN for Karachi (K), Lahore (L) and Quetta (Q) stations for all four 
seasons 

S.No Variables 
Winter Spring Summer Autumn 

K L Q K L Q K L Q K L Q 

1 CMEs Mass Vs. TCO  - 0.62 - 0.73 - 0.62 - 0.67 - 0.61 - 0.65 - 0.36 - 0.69 - 0.62 - 0.43 - 0.64 - 0.44 

2 SSN Vs. TCO  - 0.63 - 0.73 - 0.62 - 0.63 - 0.75 - 0.76 - 0.35 - 0.68 - 0.59 - 0.57 - 0.73 - 0.57 

 

 
Figure 2. Variation of month average TCO in DU concerning sunspot 
number (SSN) for Karachi, Lahore & Quetta station along with the 
correlation coefficient (ρ) in winter (a), spring (b), summer (c) & autumn 
(d) seasons 

 
Figure 3. Variation of decomposed TCO measured in DU against 
decomposed CMEs mass in billion ton (BT) for Karachi, Lahore, and 
Quetta stations along with the correlation coefficient (ρ) values in winter 
(a), spring (b), summer (c) & autumn (d) seasons during 23rd and 24th 
solar cycle. Negative slopes in each plot exhibit an inverse relationship 
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Figure 4. The variation of TCO measure in DU for Karachi, Lahore & 
Quetta stations during the winter season with CMEs mass > 1 BT along 
with the value of the coefficient of determination R2. Lahore station 
gives a maximum value of R2 

The maximum negative correlation coefficient between 
CMEs mass and TCO was found for Lahore station  
during the winter season showing a strong correlation 
between CMEs mass and TCO. During the winter season  
(Figure 4) for CMEs mass > 1 BT, the linear inverse 
relationship was observed between CMEs mass and TCO 
over all three stations with a significant value of  
the coefficient of determination (R2) and the highest value 
of correlation coefficient. The maximum value of  
R2 = 98.87 % is observed for Lahore station followed by 
Karachi (96.91 %) and Quetta (91.86 %) stations. The 
maximum value of correlation coefficient (ρ = - 0.99) was 
found for Quetta station followed by Karachi (- 0.98) and 
Lahore (- 0.95) stations. The maximum magnitude of 
gradient (- 7.507 DU/BT) of the linear fit was also 
observed for the Lahore station indicating that during the 
winter season, 7.507 DU TCO decreased per billion ton 
(BT) CMEs mass. 

Although the magnitude of correlation coefficient  
‘ρ’ found using SSN is satisfactory but for the CMEs 
mass > 1 BT the highest value of R2 and ρ is observed 
hence the greater magnitude of R2 and ρ shows that CMEs 
mass has more contribution in TCO depletion than SSN 

during the winter season. Statistically, SSN and CMEs 
mass are directly correlated and are the result of the 
instability of the sun’s magnetic field. In the present study, 
it is proposed that CMEs mass parameter is more suitable 
to explain the energetic particle precipitation phenomena 
than SSN. 

4. Conclusion 

In the present study, the terrestrial seasonal dependence 
of CMEs physical parameter “CMEs mass" and sunspot 
number (SSN) on total column ozone (TCO) over 
Pakistan for three stations (Karachi, Lahore & Quetta) has 
been analyzed. The major findings on basis of the analysis 
are given below:  

•  A negative correlation was observed between 
CMEs mass with TCO and SSN with TCO for all 
stations during all seasons exhibiting the inverse 
relationship.  

•  The highest correlation between SSN and TCO was 
observed in the spring season for Lahore (- 0.75) 
and Quetta (- 0.76) stations and the weakest 
correlation was observed for Karachi station (- 0.35) 
during the summer season.  

•  The negative correlation coefficient between CMEs 
mass and TCO was found maximum (- 0.73) for the 
Lahore station during winter and a minimum (- 0.36) 
for the Karachi station during the summer season.  

•  For the CMEs mass > 1 BT, the linear inverse 
relationship was observed between CMEs mass and 
TCO over all three stations during the winter season. 
The maximum value of R2 (98.78 %) was observed 
for Lahore station followed by Karachi (96.91 %) 
and Quetta (91.86 %) stations and the highest 
correlation (- 0.99) was found for Quetta station 
followed by Karachi (- 0.98) and Lahore (- 0.95) 
stations. 

•  The magnitude of gradient observed between CMEs 
mass > 1 BT and TCO was found maximum for 
Lahore station followed by Karachi and Quetta 
stations. 

•  In past studies, the impact of solar activity on TCO 
was explained by SSN but CMEs mass is a more 
significant parameter to explain the variation of 
TCO with solar activities.  

Data Availability Statement 

The datasets generated during and/or analyzed  
during the current study are available at 
https://cdaw.gsfc.nasa.gov/CME_list/, 
https://wwwbis.sidc.be/silso/datafiles, SBUV Merged 
Ozone Data Set (nasa.gov) and 
https://psl.noaa.gov/data/index.html. 
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