ISSN (Print): 2333-1178

ISSN (Online): 2333-1283

Website: http://www.sciepub.com/journal/wjac

Editor-in-chief: Raluca-Ioana Stefan-van Staden

Currrent Issue: Volume 3, Number 1A, 2015

Article

Spectroscopic Methods for Analysis of Cephalosporins in Pharmaceutical Formulations

1Department of Chemistry, Faculty of Science and Humanities, Hutat Sudair, Majmaah, University, Saudi Arabia

2Chemistry Department, Faculty of Science, University of Khartoum, P.O Box 321, Khartoum 11115, Sudan

3Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Giza 12622, Egypt


World Journal of Analytical Chemistry. 2015, 3(1A), 21-32
doi: 10.12691/wjac-3-1A-5
Copyright © 2015 Science and Education Publishing

Cite this paper:
Shazalia Mahmoud Ali, Abdalla A. Elbashir, Hassan Y. Aboul-Enein. Spectroscopic Methods for Analysis of Cephalosporins in Pharmaceutical Formulations. World Journal of Analytical Chemistry. 2015; 3(1A):21-32. doi: 10.12691/wjac-3-1A-5.

Correspondence to: Abdalla  A. Elbashir, Chemistry Department, Faculty of Science, University of Khartoum, P.O Box 321, Khartoum 11115, Sudan. Email: hajaae@yahoo.com

Abstract

Cephalosporins are the most commonly prescribed β-lactam antibiotics. Spectrophotometry is probably the most convenient analytical technique for routine analysis, because of its inherent simplicity, low cost and wide availability in quality control laboratories. Several papers have been presented in recent years regarding the development and validation for spectrophotometry methods for analysis of cephalosporins in pharmaceutical formulations. In this review article, various spectroscopic methods for analysis of cephalosporins are presented and discussed.

Keywords

References

[1]  Klein, N.C., and Cunha, B. A. Third-generation cephalosporins. Medical Clinics of North America, 79: 705-719. 1995.
 
[2]  Kuntz, I. D. Structure based strategies for drug design and discovery. Science, 257: 1079-1082. 1992.
 
[3]  Beam, T. The 3rd generation of cephalosporins. Rational drug Therapy, 16: 1-5. 1982.
 
[4]  Brown, A. G. New naturally occurring β-lactam antibiotics and related compounds. Journal of antimicrobial chemotherapy, 7: 15-48. 1981.
 
[5]  Delgad, J. N. Wilson, W. A. Textbook of organic medicinal and pharmaceutical Chemistry. Lippincott Williams and Wilkins. 10thed, New York. 2004.
 
Show More References
[6]  Dollery, C. (1999) Therapeutic drugs. Churchill. 3rded, Livingstone, Edinburgh.
 
[7]  Mary, J., Richard, A., and Pamela, C. (2000) Pharmacology. Lippincott Williams and Wilkins. 2nded, New York.
 
[8]  El-Shaboury, S. R. Analysis of cephalosporin antibiotics. Journal of Pharmaceutical and Biomedical Analysis, 45: 1-19. 2007.
 
[9]  Molavi, A., Dipalma, J. R., and Gregorio, D. J. Basic pharmacology in medicine. McGraw-hill. 3rded, New York. 1990.
 
[10]  Saleh, G. A., Askal, H. F., Darwish, I. A., El-Shorbagi, A. N. A. Spectroscopic analytical study for the charge-transfer complexation of certain cephalosporins with chloranilic acid. Analytical Sciences, 19: 281-287. 2003.
 
[11]  Ayad, M. M., Shalaby, A. A., Abdellatef, H. E., Elsaid, H. M. Spectrophotometric and atomic absorption spectrometric determination of certain cephalosporins. Journal of Pharmaceutical and Biomedical Analysis, 18: 975-983. 1999.
 
[12]  Saleh, G. A., Askal, H. F., Radwan, M. F., Omar, M. A. Use of charge-transfer complexation in the spectrophotometric analysis of certain cephalosporins. Talanta, 54: 1205-1215. 2001.
 
[13]  Aly, F. A., Hefnawy, M. M., Belal, F. A Selective spectrofluorimetric method for the determination of some α-aminocephalosporins in formulations and biological fluids. Analytical Letters, 29: 117-130. 1996.
 
[14]  Misztal, G. Determination of cefotaxime and ceftriaxone in pharmaceuticals by HPLC. Pharmazie, 53: 723-724. 1998.
 
[15]  Moore, C. M., Sato, K. High-performance liquid chromatographic determination of cephalosporin antibiotics using 0.3 mm I.D. columns. Journal of Chromatography A, 539: 215-220. 1991.
 
[16]  Baranowska, I., Markowski, P., Baranowski, J. Simultaneous determination of 11 drugs belonging to four different groups in human urine samples by reversed-phase high-performance liquid chromatography method. Analytica Chimica Acta, 570: 46-58. 2006.
 
[17]  Tsai, T. H., Chen, Y. F. Simultaneous determination of cefazolin in rat blood and brain by microdialysis and microbore liquid chromatography. Biomedical Chromatography, 14: 274-278. 2000.
 
[18]  De Diego Glaría, M., Moscciati, G. G., Ramos, R. G. Determination of ceftriaxone in cerebrospinal fluid by ion-pair liquid chromatography. Journal of AOAC International, 88: 436-439. 2005.
 
[19]  Sørensen, L. K., Snor, L. K. Determination of cephalosporins in raw bovine milk by high-performance liquid chromatography. Journal of Chromatography A, 882: 145-151. 2000.
 
[20]  Chen, X., Zhong, D., Huang, B., Cui, J. Determination of cefaclor in human plasma by a sensitive and specific liquidchromatographic-tandem mass spectrometric method. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 784: 17-24. 2003.
 
[21]  Lima, J. L. F. C., Montenegro, M. C. B. S. M., Sales, M. G. F. Cefuroxime selective electrodes for batch and FIA determinations in pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 18: 93-103. 1998.
 
[22]  Özkan, S. A., Erk, N., Uslu, B., Yilmaz, N., Biryol, I. Study on electrooxidation of cefadroxil monohydrate and its determination by differential pulse voltammetry. Journal of Pharmaceutical and Biomedical Analysis, 23: 263-273. 2000.
 
[23]  Jin, H.-E., Jin, S.-E., Maeng, H.-J. Recent bioanalytical methods for quantification of third-generation cephalosporins using HPLC and LC-MS(/MS) and their applications in pharmacokinetic studies. Biomedical. Chromatography, 28: 1565-1587. 2014.
 
[24]  El-Obeid, H. A., Gad-Kariem, E. A. and Al-Rashood, K. A. A selective colorimetric method for the determination of penicillins and cephalosporins with α-aminoacyl functions. Analytical letters, 32: 2809-2823. 1999.
 
[25]  Pedroso, T. M., Salgado, H. R. N. Validation of cefazolin Sodium by UV-Spectrophotometric method. Physical Chemistry, 3: 11-20. 2013.
 
[26]  Saleh, G. A., Askal, H. F., Refaat, I. H., and Mohmed, N. A. New redox spectrophotometric methods for the analysis of certain cephalosporins through formazan formation. STP Pharma Sciences, 12: 133-137. 2002.
 
[27]  Game, M. D., Sakarkar, D. M., Gabhane, K. B., and Tapar, K. K. Validated spectrophotometric methods for the determination of cefuroxime axetil in bulk drug and tablets. International Journal of Chemtech Research, 2: 1259-1262. 2010.
 
[28]  Sastry, C. S. P., Rao, S. G., and Naidu, P. Y. New spectrophotometric method for the determination of some drugs with iodine and wool fast blue BL. Talanta, 45: 1227-1234. 1998.
 
[29]  Prayanka, P., Suresh, P. Development of colorimetric method for cephalexin in dosage forms. Asian Journal of Pharmaceutics, 2: 120-122. 2008.
 
[30]  Sayed, R., Hassan, W., Mammli, M., and Abdalla, A. A new extractive spectrophotometric method for the determination of gatifloxacin and cefotaxime sodium in pure and pharmaceutical dosage forms. Oriental Journal of Chemistry, 28: 639-650. 2012.
 
[31]  Medikondu, I., Jayaprakash, M., and Vijayabhaskarareddy, T. New spectrophotometric methods for quantitative determination of 7-adca in pharmaceutical formulations. International Journal of Applied Biology and Pharmaceutical Technology, 1: 1194-1201. 2010.
 
[32]  Rageh, A. H., Elshaboury, S. R., Saleh, G. A., and Mohamed, F.A. Spectophotometric method for determination of certain cephalosporins using 4-chloro-7-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl). Natural Science, 2: 828-840. 2010.
 
[33]  Alothman, Z. A., and Abdalla, M. A. Oxidative coupling for the spectrophotometric determination of certain cephalosporins and acetaminophen in drug formulations. Arabian Journal of Chemistry, 4: 239-242. 2011.
 
[34]  Agbaba, D., Eric, S., Karljikovic-Rajic. K.,Vladimirov, S., and Zivanov-Stakic, D. Spectrophotometric determination of certain cephalosporins using ferrihydroxamate method. Spectroscopy Letters, 2: 309-319. 1997.
 
[35]  Arun, K. C., Saravanan, R., Balachandar, M. V., and Kumuthavalli, B. UV-Spectrophotometric determination of ceftazidime in pure and pharmaceutical formulation. Journal of Chemical and Pharmaceutical Research, 2: 424-431. 2010.
 
[36]  De Paula, C. E. R., Almeida, V. G. K., and Cassella, R. J. Spectrophotometric determination of cephalexin in pharmaceutical formulations exploring its charge transfer reaction with quinalizarin. Quimica Nova, 4: 914-919. 2010.
 
[37]  Lakshmi, K. S., Ilango, K., Nithya, M. N., Balaji, S., Kibe, V. D. W., and Sathish, K. V. Spectrophotometric methods for the estimation of ceftriaxone sodium in vials. International Journal of Phrmaceutical Sciences, 1: 22-25. 2009.
 
[38]  Pash, C., and Narayana, B. A simple method for the spectrophotometric determination of cephalosporins in pharmaceuticals using variamineblue. Eclética Química, 2: 41-46. 2008.
 
[39]  Omar, M. A., Osama, H., Abdelmageed, H., and Attia, T. Z. Kinetic spectrophotometric determination of certain cephalosporins in pharmaceutical formulations. International Journal of Analytical Chemistry, 2009: 1-12. 2009.
 
[40]  Nkeoma, N. O., Godwin. I. C. N., Nkechinyere, N. U., and Festus, B. C. O. Spectrophotometric determination of some cephalosporin antibiotics using Prussian blue reaction. Scientific Research and Essay, 2: 342-347. 2007.
 
[41]  Pritam, J., Manish, P., and Sanjay, S. Development and validation of UV spectrophotometric method for determination of cefuroxime axetil in bulk and in formulation, International. Journal for Drug Development & Research, 3: 318-322. 2011.
 
[42]  Ramadan, A., Mandil, H., and Dahhan, M. UV-VIS Spectrophotometric study for determination of cefixime in pure form and in pharmaceuticals through complexation with Cu(II) using acetate-NaOH buffer in water: methanol. International Journal of Pharmacy and Pharmaceutical Sciences, 5: 428-433. 2013.
 
[43]  Ayad, M. M., Shalaby, A. A., Abdellatef, H. E., and Elsaid, H. M. Spectrophotometric and atomic absorption spectrometric determination of certain cephalosporins. Journal of Pharmaceutical and Biomedical Analysis, 20: 557-564. 1999.
 
[44]  Asad, R., Abdul Subhan, I., and Shabbir, A. Development and application of spectrophotometric method for the determination of cefaclor in pharmaceutical formulations. Química Nova, 32: 1180-1183. 2009.
 
[45]  Chavala, A. K., Bannimath, G., Sama, N. S., and Prasanth, K. V. R. Spectrophotometric determination some cephalosporins containing amino group using 1, 2-napthaquinone-4-sulfonic acid sodium in pharmaceutical dosage form. International Journal of Pharmaceutical Technology, 3: 1750-1767. 2011.
 
[46]  Ali, S. M., Elbashir, A. A., and Aboul-Enein, H. Y. New spectrophotometric method for determination of cephalosporins in pharmaceutical formulations. Arabian Journal of Chemistry, 8: 233-239. 2015.
 
[47]  Elbashir. A. A., Ali. S. M., and Suleiman, O. A novel spectrophotometric for the determination of cephalosporins using 8-hydroxy-1, 3, 6-pyrenetrisulfonic acid trisodium salt (HPTS) as a chromogenic reagent. American Academic & Scholarly Research Journal, 4: 4-17. 2012.
 
[48]  Ali, S. M., and Elbashir, A. A. Development and validation of spectrophotometric method for the determination of cefadroxile and cefuroxime sodium in pharmaceutical formulations via derivitization with 8-hydroxy-1, 3,6-pyrenesulfonic acid trisodium. Asian Journal of Pharmaceutical Technology & Innovation, 2: 1-12. 2013.
 
[49]  Perdroso, T. M., and Salgado, H. R. N. Validation of cefazoline sodium by UV spectrophotometric method. Physical Chemistry, 3: 11-20. 2013.
 
[50]  Syed, N. H., Azmia, B. I., Nada, S. H. A., Iman, R. S. A., Noora, A. S., and Nafisur, R. Quantitative analysis of cefixime via complexation with palladium(II) in pharmaceutical formulations by spectrophotometry. Journal of Pharmaceutical Analysis, 3: 248-256. 2013.
 
[51]  Alothman, Z. A., and Abdalla, M. A. Oxidative coupling for the spectrophotometric determination of certain cephalosporins and acetaminophen in drug formulations. Arabian Journal of Chemistry, 4: 239-242.
 
[52]  Ni, Y., Chen, J., and Kokot, S. Investigation of the pharmacokinetics and determination of certain cephalosporins in rabbit plasma by a kinetic spectrophotometric method with the aid of chemometrics. Science China Chemistry, 10: 1-8. 2010.
 
[53]  Souza, M. J. E. P., Canedo, N. A., Filho, P. S. S., and Bergold, A. M. Development of an ultraviolet spectrophotometric method for the determination of ceftiofur sodium powder. Journal of AOAC International, 92: 1673-1680. 2009.
 
[54]  Zhao, W., Zhang, Y., Li, Q. Indirect spectrophotometric determination of sodium ceftriaxone with n-propyl alcohol-ammonium sulfate-water system by extraction flotation of copperII. Clinica Chimica Acta, 391: 80-84. 2008.
 
[55]  Choragudi, S. F., and Settaluri, V. S. Spectrophotometric methods for the determination of a Cephalosporin antibiotic in pharmaceutical formulations. Biosciences Biotechnology Research Asia, 4: 725-727. 2007.
 
[56]  Amin, A. S., and Ragab, G. H. Spectrophotometric determination of certain cephalosporins in pure form and in pharmaceutical formulations. Spectrochimica Acta- Part A: Molecular and Biomolecular Spectroscopy, 60: 2831-2835. 2004.
 
[57]  Buhl, F., and Szpikowska-Sroka, B. Spectrophotometric determination of cephalosporins with leuco crystal violet. Chemia Analityczna, 48: 145-149. 2003.
 
[58]  Rind, F. M. A., Laghari, M. G. H., Memon, A. H., Mughal, U. R., Almani, F., Memon, N., Khuhawar, M. Y., and Maheshwari, M. L. Spectrophotometric determination of ceftriaxone using 4-Dimethylaminobenzaldehyde. Pakstan Journal of Analytical and Environmental Chemistry, 9: 43-48. 2008.
 
[59]  Nawal, A., El-Hanaa, M., Abdel-Wadood, M. S., and Mousa, H. Spectrophotometric analysis of cefepime through itsHg(I) complex. Bulletin Pharmaceutical Sciences, 35: 55-65. 2012.
 
[60]  Metwally, F. H., Alwarthan, A. A., and Al-Tamimi, S. A. Flow-injection spectrophotometric determination of certain cephalosporins based on the formation of dyes. II Farmaco, 56: 601-607. 2001.
 
[61]  Al-Momani, I. F. Spectrophotometric determination of selected cephalosporins in drug formulations using flow injection analysis. Journal of Pharmaceutical and Biomedical Analysis, 25: 751-757. 2001.
 
[62]  ElWalily, A. F. M., Gazy, A. A. K., Belal, S. F., and Khamis, E. F. Use of cerium (IV) in the spectrophotometric and spectrofluorimetric determinations of penicillins and cephalosporins in their pharmaceutical preparations. Spectroscopy Letters, 33: 931-948. 2000.
 
[63]  El Walily, A. F. M., Abdel-Kader, A., Gazy, S. F., and Belal, S. F. Selective spectrofluorimetric determination of phenolic β-lactam antibiotics through the formation of their coumarin derivatives. Journal of Pharmaceutical and Biomedical Analysis, 20: 642-653. 1999.
 
[64]  Ródenas, V., García, M. S., Sánchez-Pedreño, C., and Albero, M. I. Spectrophotometric methods for the determination of cephradine or ceftazidine in human urine using batch and flow-injection procedures. Journal of Pharmaceutical and Biomedical Analysis, 15: 1687-1693. 1997.
 
[65]  Kumar, A., Sanju, N., and Chomwal, R. Spectrophotometric estimation of cefixime and ofloxacin in tablet formulation. Journal of Chemical and Pharmaceutical Research, 3: 705-709. 2011.
 
[66]  Manoj, D., Raut, S. P., Rahul. S., Makarand, V. Puri., and Hemant, S. Spectrophotometric method for the simultaneous estimation of cefotaxime, sodium and sulbactum in parentral dosage forms. International Journal of ChemTech Research, 3: 1506-1510. 2011.
 
[67]  Binglin, F.,Mingjivan, G.,Yingtuy, W., and Quanmin, L. Spectrophotometric determination of cefotaxime by using sodium 1,2-naphthoquinone-4-sulfonate. Journal of Analytical Chemistry, 68: 965-968. 2013.
 
[68]  Mouyed, Q., Al-bachr. H. S., Alward, Y., and Mohammad, H. Batch and flow injection spectrophotometric determination of sodium cefotaxime in pharmaceutical preparations. Iraqi Journal of Science, 53: 241-249. 2012.
 
[69]  Thabit, S., Al-Ghabsha, N., and Subhi, M. Spectrophotometric determination of cephradine and cefadroxil using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone reagent. Journal of Pure & Applied Sciences, 4: 13-28. 2007.
 
[70]  Kumar, C. H. A., Anil, T., Gurupadayya, B. M., NavyaSloka, S., and Rahul, M. B. Novel spectrophotometric determination of Valacyclovir and Cefotaxime using 1, 2-napthaquinone-4-sulfonic acid sodium in bulk and pharmaceutical dosage form. Archives of Applied Science Research, 4: 278-287. 2010.
 
[71]  Adegoke, O. A., and Quadri, M. O. Novel spectrophotometric determinations of some cephalosporins following azodye formation with p-dimethylaminobenzaldehyde. Arabian Journal of Chemistry.
 
[72]  Issopoulos, B. P. Spectrophotometric determination of certain cephalosporins using molybdophosphoric acid. Part II. Determination of cefadroxil, cefapirin, ceforanide and cefuroxime. Analyst, 114: 237-239. 1989.
 
[73]  Issopoulos, P. B. Spectrophotometric determination of certain cephalosporins using molibdophosphoric acid. Analyst, 113: 1083-1086. 1988.
 
[74]  Alaa, A. S., and Ragab, G. H. Spectrophotometric determination of certain cephalosporins in pure form and in pharmaceutical formulations. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 60: 2831-2835. 2004.
 
[75]  El-Ansary, A., Abdel-Gawad, F. M., Badawy, S. S., and Ibrahim, M. M. J. Spectrophotometric determination of some cephalosporins using palladium(II) chloride. Drug Research, 25: 7-12. 2004.
 
[76]  Hassan, M., Abeed, F. A., Saif, B. A new kinetic spectrophotometric method for determination of cefadroxil in pharmacetical formulation using lawsonia inermis (Henna) as natural reagent. Analytical and Bioanalytical Chemsitry, 4: 116-128. 2014.
 
[77]  Mallapu, R., Hindustan, A., Sreenivasulu, M., Kumar, A., and Ashwan, K. Spectrophotometric determination of cefadroxil in pharmaceuticals dosage Forms by bromination method. Journal of Pharmacy Research, 4: 739-740. 2014.
 
[78]  Siddaiah, G. M., Hefnawy, Y., and El-Shabrawy, F. Spectrofluormetric determination of alpha-aminocephalosporins in biological fluids and pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 21: 703-707. 1999.
 
[79]  Omar, H., Osama, Z., and Tamer, A. Kinetic spectrofluorimetric determination of certain cephalosporins in human plasma. Talanta, 77: 1394-1404. 2008.
 
[80]  Bukhari, N., Al-Warthan, A., Wabaidur, M., and Othman, AL. H. Spectrofluorimetric determination of cefixime in pharmaceutical preparation and biological fluids using calcein as a fluorescence Probe. Sensor Letters, 8: 280-284. 2010.
 
[81]  Jasmin, S. M., Rasul J. S., and Sultan, I. Spectrofluorimetric method for determination and validation of cefixime in pharmaceutical preparations through derivatization with 2-Cyanoacetamide. Journal of Fluorescence, 21: 579-585. 2010.
 
[82]  Yang, J., Zhou, G., and Zhang, G. Determination of some cephalosporins in pharmaceutical formulations by a fluorescence quenching method. Analytical Community, 33: 167-169. 1996.
 
[83]  Elbashir, A. A., Ali, S. M., and Aboul-Enein, H. Y. New Spectrofluorimetric Method for determination of cephalosporins in pharmaceutical formulations. Journal of Fluorescence, 21: 1-8. 2011.
 
[84]  Elbashir, A. A.,Ali, S. M., and Aboul-Enein, H. Y. Optimization and validation of spectrofluorimetric method for determination of cefadroxile and cefuroxime sodium in pharmaceutical formulations. Luminescence, 28: 490-495. 2013.
 
[85]  Elbashir, A. A., Ali, S. M., Suliman, F., and Aboul-Enein, H. Y. New spectrofluorimetric method for determination of cephalosporins in pharmaceutical formulations. Luminescence, 28: 734-741. 2012.
 
[86]  Manzoori, J. L., Amjadi, M., Soltani, N. J. Spectrofluorimetric determination of cefixime using terbiumand ofloxacin. Iran Journal of Basic Medical Sciences, 17: 256-262. 2014.
 
Show Less References

Article

Analysis of Essential Oil in Sophora japonica L. Flower Buds on Different Stages of Development by Gas Chromatography-Mass Spectrometry

1Faculty of Pharmacy, Isra University, 11622 Amman, Jordan,

2Department of Pharmaceutical Chemistry, Pharmacy Program, Batterjee Medical College for Sciences and Technology (BMC), 21442 Jeddah, Kingdom of Saudi Arabia

3O.O. Bogomolets National Medical University, T. Shevchenko Boulevard, 13, Kiev, Ukraine

4Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Tahrir Street, Dokki, Cairo 12311, Egypt


World Journal of Analytical Chemistry. 2015, 3(1A), 15-20
doi: 10.12691/wjac-3-1A-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
Zead Helmi Mahmoud Abudayeh, Khaldun M. Al Azzam, Iryna Semenivna Cholak, Uliana Vladimirovna karpiuk, Ahmad Naddaf, Hassan Y. Aboul-Enein. Analysis of Essential Oil in Sophora japonica L. Flower Buds on Different Stages of Development by Gas Chromatography-Mass Spectrometry. World Journal of Analytical Chemistry. 2015; 3(1A):15-20. doi: 10.12691/wjac-3-1A-4.

Correspondence to: Zead  Helmi Mahmoud Abudayeh, Faculty of Pharmacy, Isra University, 11622 Amman, Jordan,. Email: zead09@meta.ua

Abstract

To investigate, for the first time, the chemical composition of essential oil of the buds species of Sophora japonica L., a native to eastern Asia and a popular species in almost all Europe, growing in Ukraine. A hydrodistillation apparatus was used for the extraction of volatile components of buds species and then it was analysed by gas chromatography equipped with a split-splitless injector (split ratio, 1:50) and flame ionization detector (FID). The oil was analyzed under linear temperature programming applied at 4°C/min from 50°C - 340°C. Temperatures of the injector and FID detector were maintained at 280°C and 300°C, respectively. The chemical analysis of the oil was carried out using gas chromatography coupled to mass spectrometry (GC-MS), to determine the chemical composition of the volatile fraction. The essential oil content in green bud, formed bud, and beginning of bud opening ranged from 0.00002 – 0.00193 g/100 g, 0.00002 – 0.00684 g/100 g and from 0.00003 – 0.00638 g/100 g, respectively. The qualitative and quantitative analysis led to the identification of 80 components that were identified in Sophora japonica L. flower buds. Out of these 71 components are from the green flower bud and the beginning of flower bud opening stages, and 67 components are from the formed flower bud stage. The major component found in green bud was 3-methoxypyridine (0.00193 g/100 g). In both formed bud and beginning of bud opening was dodecanoic acid with concentrations of 0.00684 g/100 g and 0.00638 g/100 g, respectively. Contents of Sophora japonica L. were significantly affected by the harvesting stage of bud flower. Harvesting at the formed bud stage yielded the highest essential oil content compared to buds harvested at other stages. Flowers harvested at the green bud and beginning of bud opening stages yielded a lower quality essential oil compared with flowers harvested at the formed bud stage.

Keywords

References

[1]  Jing, J., Wei, C.R., Si, B.C., Ming, W., Harendra, S.P. Advances in analytical technologies to evaluate the quality of traditional Chinese medicines. TrAC, Trends Anal Chem. 44: 39-45. 2013.
 
[2]  Xing-Nuo, L., Na, S., Hai-Xia, Y., Xiao-Yan, P., Shu-Hong, G., Min, Y., Hui-Ming, H., Li-Jun, W., De-An, G. Isoprenylated flavonoids from the roots of Sophora tonkinensis. Phytochemistry Letters. 1: 163-167. 2008.
 
[3]  Yuanying, Q., Ailing, S., Renmin, L., Zhaoling, M., Hongyan, X. Isolation and purification of flavonoid and isoflavonoid compounds from the pericarp of Sophora japonica L. by adsorption chromatography on 12% cross-linked agarose gel media. Journal of Chromatography A. 1140: 219-224. 2007.
 
[4]  Qiang, S. Analysis of Rare Earth Elements in Sophora japonica L by Inductively Coupled Plasma Mass Spectrometry. istan. 34: 1096-1100. 2012.
 
[5]  Lai-Bin, Z., Jie-Li, L., Hong-Li, C. Japonicasins A and B, two new isoprenylated flavanones from Sophora japonica, Fitoterapia. 87: 89-92. 2013.
 
Show More References
[6]  Sajdak, M., Velazquez-Marti, B. Estimation of pruned biomass form dendrometric parameters on urban forests: Case study of Sophora japonica. Renewable Energy. 47: 188-193. 2012.
 
[7]  China Pharmacopoeia Committee, Pharmacopoeia of the People’s Republic of China the First Division of 2000 Edition, Beijing: China Chemical Industry Press, 1999. P. 60.
 
[8]  Yuan-Hsin, L., Rong-Dih, L., Yi-Pei, L., Yan-Ling, L., Mei-Hsien, L. Active constituents from Sophora japonica exhibiting cellular tyrosinase inhibition in human epidermal melanocytes, Journal of Ethnopharmacology. 124: 625-629. 2009.
 
[9]  Lingwen, Z., Hongfang, J., Ailin, D., Shuang, L., Mingduo, Y. Characterization and antioxidant properties of polysaccharides from flowers of Sophora japonica L. (Huaihua). Journal of Medicinal plant Research. 7: 1543-1549. 2013.
 
[10]  Imelouane, B., , H., , J.P., , M., Chemical Composition and Antimicrobial Activity of Essential Oil of Thyme (Thymus vulgaris) from Eastern Morocco. . 11: 205-208. 2009.
 
[11]  Prabuseenivasan, S., Jayakumar, M., Ignacimuthu, S. In vitro antimicrobial activity of some plant essential oils. BMC Complementary and Alternative Medicine. 6: 39-44. 2006.
 
[12]  Xiangjun, L., Yuping, Z., Zhuobin, Y. Determination of Rutin and Quercetin in the Flowers of Sophora japonica L. by Capillary Electrophoresis with Electrochemical Detection. Chromatographia. 55: 243-246. 2002.
 
[13]  Di-Ya L, Yan C, Ling L, Zhen-Yu Z, Xin D, Hai Z, Yi-Feng C, Zi-Yang L. Comparative analysis of essential oils found in Rhizomes Curcumae and Radix Curcumae by gas chromatography-mass spectrometry. J Pharm Biomed Anal 2011; 1: 203-207.
 
[14]  Javier, M., Jerónimo, G., Luis, R., Rafael, A.B. Analysis of sugars by liquid chromatography-mass spectrometry in Jerusalem artichoke tubers for bioethanol production optimization. Biomass and Bioenergy. 35: 2006-2012. 2011.
 
[15]  European Pharmacopoeia, vol. 11 (1/2005), Council of Europe, Strasbourg, 5th ed. 2004. P. 217.
 
[16]  Adams, R.P. Identification of essential oils by ion trap mass spectroscopy. New York: Academic Press, Inc.; 1989.
 
[17]  Wiley, Registry, eighth ed. with NIST 05 MS Spectra, Revision 2005 D.06.00. s.l. Agilent Technologies, 2007.
 
[18]  Okoh, O.O., Sadimenko, A.P., Afolayan, A.J. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chemistry. 120: 308-312. 2010.
 
[19]  Peanaa, A.T., De Montis, M.G., Nieddu, E., Spano, M.T., D’Aquila, P.S., Pippia, P. Profile of spinal and supra-spinal antinociception of (-)-linalool. European Journal of Pharmacology. 485: 165-174. 2004.
 
[20]  De Cássia, S.R., Luciana, N.A., de Sousa, D.P. A Review on Anti-Inflammatory Activity of Monoterpenes. Molecules. 18: 1227-1254. 2013.
 
[21]  Guy, P.K., Ilze, V., Alvaro, M.V. Eugenol—From the Remote Maluku Islands to the International Market Place: A Review of a Remarkable and Versatile Molecule. Molecules. 17: 6953-6981. 2012.
 
[22]  Ayoola, G.A., Lawore, F.M., Adelowotan, T., Aibinu, I.E., Adenipekun, E., Coker, H.A.B., Odugbemi, T.O. Chemical analysis and antimicrobial activity of the essential oil of Syzigium aromaticum (clove). African Journal of Microbiology Research. 2: 162-166. 2008.
 
[23]  Katherine, C.P.M., Gerd, B., Chad, J.M., Matthew, J.C. Conjugated linoleic acid decreases prostaglandin synthesis in bovine luteal cells in vitro. Molecular Reproduction and Development. 78: 328-336. 2011.
 
[24]  Kováts, E. Gas chromatographic characterization of organic substances in the retention index system. Advances in Chromatography, Giddings JC, Keller RA (eds). Marcel Dekker: New York; 1965. P. 229-247.
 
Show Less References

Article

Antioxidant Capacity and Determination of Total Phenolic Compounds in Daisy (Matricaria chamomilla, Fam. Asteraceae)

1Gaziosmanpaşa University, Faculty of Science and Arts, Department of Chemistry 60240-Tokat-Turkey

2Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre., Giza 12622, Egypt


World Journal of Analytical Chemistry. 2015, 3(1A), 9-14
doi: 10.12691/wjac-3-1A-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Mahfuz Elmastaș, Sed Çinkiliç, Hassan Y. Aboul-Enein. Antioxidant Capacity and Determination of Total Phenolic Compounds in Daisy (Matricaria chamomilla, Fam. Asteraceae). World Journal of Analytical Chemistry. 2015; 3(1A):9-14. doi: 10.12691/wjac-3-1A-3.

Correspondence to: Mahfuz  Elmastaș, Gaziosmanpaşa University, Faculty of Science and Arts, Department of Chemistry 60240-Tokat-Turkey. Email: mahfuz.elmastas@gop.edu.tr

Abstract

Daisy is a medicinal plant which is used for treating several diseases. This investigation describes the antioxidant capacity of different parts of daisy, collected from Tokat-Turkey, using various antioxidant assays. It was understood that all parts (flower, stem, and whole herb) of daisy have antioxidant activity. It was determined that there is extra activity of reduction power in the whole herb, extra activity of scavenging of superoxide anion radical in the stem of the plant, extra activity of total antioxidant activity in the whole herb, extra activity of metal chelating activity in the flower, but there is almost equal activity of scavenging free radical in the flower, in the stem and in the whole herb. In addition, total phenolic compounds were analyzed. The concentration of total phenolic compounds was 29.4 µg kg-1 dry weight in the flower, 22.3 µg kg-1 dry weight in the stem, and 32.1 µg kg-1 dry weight in the whole herb.

Keywords

References

[1]  Gardiner, P. Complementary, holistic, and integrative medicine: chamomile. Pediatrics in review / American Academy of Pediatrics, 28: 16-18. 2007.
 
[2]  Srivastava, J. K., Gupta, S. Extraction, characterization, stability and biological activity of flavonoids isolated from chamomile flowers. Molecular and Cellular Pharmacology, 1: 138-147. 2009.
 
[3]  McKay, D. L., Blumberg, J. B. A review of the bioactivity and potential health benefits of peppermint tea (Mentha piperita L.). Phytotherapy Research, 20: 619-633. 2006.
 
[4]  Ganzera, M., Schneider, P., Stuppner, H. Inhibitory effects of the essential oil of chamomile (Matricaria recutita L.) and its major constituents on human cytochrome P450 enzymes. Life Sciences, 78: 856-861. 2006.
 
[5]  Rekka, E. A., Kourounakis, A. P., Kourounakis, P. N. Investigation of the effect of chamazulene on lipid peroxidation and free radical processes. Research Communications in Molecular Pathology and Pharmacology, 92: 361-364.1996.
 
Show More References
[6]  Avallone, R., Zanoli, P., Puia, G., Kleinschnitz, M., Schreier, P., Baraldi, M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochemical Pharmacology, 59: 1387-1394. 2000.
 
[7]  Svehliková, V., Bennett, R. N., Mellon, F. A., Needs, P. W., Piacente, S., Kroon, P. A., Bao, Y. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry, 65: 2323-2332. 2004.
 
[8]  Gulcin, I., Sat, I.G., Beydemir, S., Elmastas, M., Kufrevioglu, O. I. Comparison of antioxidant activity of clove (Eugenia caryophylata Thunb) buds and lavender (Lavandula stoechas L.). Food Chemistry, 87: 393-400. 2004.
 
[9]  Kumaran, A., Karunakaran, R. J. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97:109-1014. 2006.
 
[10]  Wichi, H. P. Enhanced tumour development by butylated hydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food and Chemical Toxicology, 26: 717-7123. 1988.
 
[11]  Elmastas, M., Isildak, O., Turkekul, I., Temur, N. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. Journal of Food Composition and Analysis, 20: 337-345. 2007.
 
[12]  Elmastas, M., Turkekul, I., Ozturk, L., Gulcin, I., Isildak, O., Aboul-Enein, H. Y. Antioxidant activity of two wild edible mushrooms (Morchella vulgaris and Morchella esculanta) from North Turkey. Combinatorial Chemistry & High Throughput Screening, 9: 443-448. 2006.
 
[13]  Moure, A., Cruz, J. M., Franco, D., Domnguez, J. M., Sineiro, J., Domnguez, H., Jose, Nunez, M.; Parajo, J. C. Natural antioxidants from residual sources. Food Chemistry, 72: 145-171. 2001.
 
[14]  Parejo, I., Viladomat, F., Bastida, J., Rosas-Romero, A., Flerlage, N., Burillo, J., Codina, C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. Journal of Agricultural and Food Chemistry, 50: 6882-6890. 2002.
 
[15]  Mitsuda, H., Yuasumoto, K. K., Iwami, K. Antioxidation action of indole compounds during the autoxidation of linoleic acid. Japan Society of Nutrition and Food Science, 19: 210-214. 1996.
 
[16]  Oyaizu, M. Studies on product of browning reaction prepared from glucose amine. Japanese Journal of Nutrition, 44: 307-315. 1986.
 
[17]  Dinis, T. C., Maderia, V. M., Almeida, L. M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and biophysics, 315: 161-169. 1994.
 
[18]  Blois, M. S. Antioxidant determinations by the use of a stable free radical. Nature, 26: 1199-1200. 1958.
 
[19]  Zhishen, J., Mengcheng, T., Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64: 555-559. 1999.
 
[20]  Slinkard, J., Singleton, V. L. Total phenol analysis: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55. 1979.
 
[21]  Gulcin, I., Elias, R., Gepdiremen, A., Taoubi, K., Koksal, E. Antioxidant secoiridoids from fringe tree (Chionanthus virginicus L.). Wood Science and Technology, 43: 195-212. 2009.
 
[22]  Yen, G. C., Duh, P. D. Scavenging effect of methanolic extract of peanut hulls on free radical and active oxygen species. Journal of Agricultural and Food Chemistry, 42: 629-32. 1994.
 
[23]  Velioglu, Y. S., Mazza, G., Gao, L., Oomah, B. D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46: 4113-4117. 1998.
 
[24]  Perry, G., Raina, A. K., Nunomura, A., Wataya, T., Sayre, L. M., Smith, M. A. How important is oxidative damage? Lessons from Alzheimer's disease. Free Radical Biology & Medicine, 28: 831-834. 2000.
 
[25]  Cemek, M., Kaga, S., Simsek, N., Buyukokuroglu, M. E., Konuk, M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. Journal of Natural Medicines, 62: 284-93. 2008.
 
[26]  Siddhuraju, P., Mohan, P. S., Becker, K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chemistry, 79: 61-67. 2002.
 
[27]  Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F., Chou, S. T. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. Journal of Agricultural and Food Chemistry, 50: 2454-2458. 2002.
 
[28]  Wood, L. G., Gibson, P. G., Garg, M. L. A review of the methodology for assessing in vivo antioxidant capacity. Journal of the Science of Food and Agriculture, 86: 2057-2066. 2006.
 
[29]  Halliwell, B. Oxidative stress and neurodegeneration: where are we now? Journal of Neurochemistry, 97: 1634-1658. 2006.
 
[30]  Bendini, A., Cerretani, L., Pizzolante, L., Toschi, T. G., Guzzo, F., Ceoldo, S., Marconi, A. M., Andreetta, F., Levi, M. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. European Food Research and Technology, 223: 102-109. 2006.
 
[31]  Özcelik, B., Lee, J. H., Min, D. B. Effects of light, oxygen and pH on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants. Journal of Food Science, 68: 487-90. 2003.
 
[32]  Amarowicz, R., Pegg, R. B., Rahimi-Moghaddam, P., Barl, B., Weil, J. A. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chemistry, 84: 551-562. 2004.
 
[33]  Wickens, A. P. Ageing and the free radical theory. Respiration Physiology, 128: 379-391. 2001.
 
[34]  Pietta, P. G. Flavonoids as antioxidants. Journal of Natural Products, 63: 1035-1042. 2000.
 
[35]  Liu, F., Ooi, V. E., Chang, S. T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sciences, 60: 763-771. 1997.
 
[36]  Cos, P., Ying, L., Calomme, M., Hu, J. P., Cimanga, K., Van Poel, B., Pieters, L., Vlietinck, A. J., Vanden, B. D. Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers. Journal of Natural Products, 61: 71-76. 1998.
 
[37]  Thaipong, K., Boonprakob, U., Crosby, K., Cisneros-Zevallos, L., Byrne, D. H. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 19: 669-675. 2006.
 
Show Less References

Article

Effect of Vitamin C on Blood Glucose and Glycosylated Hemoglobin in Type II Diabetes Mellitus

1Department of Physiology, Medicine program, Batterjee Medical College for Sciences and Technology (BMC), 21442 Jeddah, Kingdom of Saudi Arabia

2Department of Pharmaceutical Chemistry, Pharmacy Program, Batterjee Medical College for Sciences and Technology (BMC), 21442 Jeddah, Kingdom of Saudi Arabia


World Journal of Analytical Chemistry. 2015, 3(1A), 6-8
doi: 10.12691/wjac-3-1A-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Ashraf kotb, Khaldun M. Al Azzam. Effect of Vitamin C on Blood Glucose and Glycosylated Hemoglobin in Type II Diabetes Mellitus. World Journal of Analytical Chemistry. 2015; 3(1A):6-8. doi: 10.12691/wjac-3-1A-2.

Correspondence to: Ashraf  kotb, Department of Physiology, Medicine program, Batterjee Medical College for Sciences and Technology (BMC), 21442 Jeddah, Kingdom of Saudi Arabia. Email: drashrafsalem@hotmail.com

Abstract

Ascorbic acid (vitamin C) is an antioxidant which is hypothesized to have an effect on the blood glucose in patients with type II diabetes. The aim of the study is to examine the effect of oral vitamin C on fasting blood glucose (FBG), two hours postprandial blood glucose (PPBG) as well as glycosylated hemoglobin (HbA1c) in the treatment of type 2 diabetes mellitus (DM). One hundred patients participated in this study were divided into two groups. The first group was the control group contained fifty normal patients. The second group contained fifty patients having type II DM and given the drug Glucophage at a dose of 2000 mg/day beside healthy diet to control diabetes. They were left for three months then the blood samples were collected from both groups to detect the FBG, two hours PPBG and HbA1c. After that, the diabetic group was given beside the drug and diet treatment vitamin C drug (Vitacid calcium) 1000 mg orally three times /day for another three months. At the end of the three months, blood samples were collected from both groups to examine the FBG, two hours PPBG and the HbA1c. The diabetic group recorded a significantly higher level of FBG, two hours PPBG and HbA1c compared to the control group after the first three months. The diabetic group after being given vitamin C beside the drug and diet for three months recorded a significant decreased level of FBG, two hours PPBG, and HbA1c compared to the levels it recorded before without being given the vitamin C. In conclusion, oral supplementation of vitamin C reduces FBG, two hours PPBG, and improves HbA1c. Hence, its combination with diabetic drugs may be beneficial in the treatment of type II DM to maintain good glycemic control.

Keywords

References

[1]  Mesallamy, H. E., Suwailem, S., and Hamdy N. Evaluation of C-reactive protein, endothelin-1, adhesion molecule (s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators of Inflammation, 2007: 1-7. 2007.
 
[2]  Bianchi, C., Miccoli, R., Daniele, G., Penno, G., and Del Prato S., “Is there evidence that oral hypoglycemic agents reduce cardiovascular morbidity/mortality? Yes. Diabetes Care, 32: S337-S341. 2009.
 
[3]  Fadupin, G.T., Akpoghor, A. U., and Okunade, K. A. A comparative study of serum ascorbic acid level in people with and without type 2 diabetes in Ibadan, Nigeria. African Journal of Medicine and Medical Sciences, 36: 335-339. 2007.
 
[4]  Ardekani, M. A., and Ardekani, A. S. Effect of vitamin C on blood glucose, serum lipids & serum insulin in type II diabetes patients. Indian Journal of Medical Research, 126: 471-474. 2007.
 
[5]  Sargeant, L. A., Wareham, N. J., Bingham, S., Day, N. E., Luben, R. N., Oakes, S., Welch, A., and Khaw, K. T. Vitamin C and hyperglycemia in the European Prospective Investigation into Cancer--Norfolk (EPIC-Norfolk) study: a population-based study. Diabetes Care. 23: 726-732. 2000.
 
Show More References
[6]  Davies, M. B., Austin, J. A., Partridge, D.A. Vitamin C: Its Chemistry and Biochemistry. The Royal Society of Chemistry, 1991. p. 48.
 
[7]  Heitzer,T., schling, T., Krohn, K.. Oxidative stress and risk of cardiovascular events in patients with coronary disease. Circulation. 104: 2673-2678. 2001.
 
[8]  Sridulyakul, P., Chakraphan, D., Patumraj, S. Vitamin C supplementation could reverse diabetes-induced endothelial cell dysfunction in mesenteric microcirculation in STZ-rats. Clinical Hemorheology and Microcirculation. 34: 315-321. 2006.
 
[9]  Ardekani, M. A., Mohiti, J., Amirchaghmaghi, E., and Modarresi, M. The effect of vitamin C supplementation on insulin level, HbA1c and blood glucose in type 2 diabetic patients. Journal of Kerman University of Medical Sciences. 11: 12-18. 2006.
 
[10]  Bonnefont-Rousselot, D., Bastard, J. P., Jaudon, M. C., and Delattre, J. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes and Metabolism. 26: 163-176. 2000.
 
[11]  Vincent, T. E., Mendiratta, S., May, J. M. Inhibition of aldose reductase in human erythrocytes by vitamin C. Diabetes Research and Clinical Practice. 43: 1-8. 1999.
 
[12]  Srivatsan, R., Das, S., Gadde, R., Manoj-Kumar, K., Taduri, S., Rao, N., Ramesh, B., Baharani, A., Shah, K., Kamireddy, S. C., Priyatham, G., Balakumaran, T. A., Balakumaran, S. S., Kamath, and A., Rao, A. Antioxidants and lipid peroxidation status in diabetic patients with and without complications. Archives of Iranian Medicine. 12: 121-127. 2009.
 
[13]  Craven, P. A., DeRubertis, F. R., Kagan, V. E., Melhem, M., and Studer, R. K. Effects of supplementation with vitamin C or E on albuminuria, glomerular TGF-β, and glomerular size in diabetes. Journal of the American Society of Nephrology. 89: 1405-1414. 1997.
 
[14]  Sridulyakul, P., Chakraphan, D., Patumraj, S. Vitamin C supplementation could reverse diabetes-induced endothelial cell dysfunction in mesenteric microcirculation in STZ-rats. Clinical Hemorheology and Microcirculation. 34: 315-321. 2006.
 
[15]  Szaleczky, E., ózsef Prechl, J., Ruzicska, E., Feher, J., Braun, L., Banhegyi, G., Csala, M., Mandl, J., and Somogyi, A. Reduction of glycated hemoglobin levels by long term, high dose ascorbic acid supplementation in healthy and diabetic patients. Medical Science Monitor. 4: 241-244. 1998.
 
[16]  Montonen, J., Knekt, P., Järvinen, R., Reunanen, A. Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care. 27: 362-366. 2004.
 
[17]  Czernichow, S., Couthouis, A., Bertrais, S., Vergnaud, A. C., Dauchet, L., Galan, P., Hercberg, S. Antioxidant supplementation does not affect fasting plasma glucose in the supplementation with antioxidant vitamins and minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. American Journal of Clinical Nutrition. 84: 395-399. 2006.
 
Show Less References

Article

A Comparative Study of the Contents of Cadmium and Chromium in Leaves of Seventeen Kinds of Road Greening Trees

1School of Resource and Environment Engineering, Wuhan University of Technology, Wuhan 430070, P. R. China

2School of Chemistry and Chemical Engineering, Xinxiang University, Henan Xinxiang 453000, P. R. China

3Department of Pharmaceutical Chemistry, Pharmacy Program, Batterjee Medical College for Sciences and Technology (BMC), 21442 Jeddah, Kingdom of Saudi Arabia

4Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Tahrir Street, Dokki, Cairo 12311, Egypt


World Journal of Analytical Chemistry. 2015, 3(1A), 1-5
doi: 10.12691/wjac-3-1A-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Liu Bing, Yong Zhou, Ye Li, Khaldun M. Al Azzam, Hassan Y. Aboul-Enein. A Comparative Study of the Contents of Cadmium and Chromium in Leaves of Seventeen Kinds of Road Greening Trees. World Journal of Analytical Chemistry. 2015; 3(1A):1-5. doi: 10.12691/wjac-3-1A-1.

Correspondence to: Hassan  Y. Aboul-Enein, Pharmaceutical and Medicinal Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Tahrir Street, Dokki, Cairo 12311, Egypt. Email: haboulenein@yahoo.com

Abstract

The greening trees can absorb heavy metal pollutants in the atmosphere. This study investigates the cadmium (Cd) and chromium (Cr) content in the leaves of 17 kinds of greening trees in Xinxiang City, China. The result shows that heavy metal content of the same greening tree in polluted area is more than that in clear area; that in autumn is more than that in spring; chromium content is more than cadmium content. Heavy mental content of different greening trees differ from each other, which ranks as follws: Populus alba > Acer mono > Populus tomentosa > Ligustrum quihoui > Ligustrum lucidum > Purple-leaf plum > Buxus megistophylla > Koelreuteria paniculata > Platanus acerifolia > Ailanthus altissima > Broussonetia papyrifera > Fraxinus > Sophora japonica > Photinia serrulata > Pittosporum tobira > Yucca gloriosa > Buxussinica. Chromium content ranks as follows: Acer mono > Populus tomentosa > Populus alba > Prunus ceraifera > Buxussinica > Photinia serrulata > Platanus acerifolia > Sophora japonica > Yucca gloriosa > Sophora japonica > Ligustrum quihoui Carr > Pittosporum tobira > Koelreuteria paniculata > Ligustrum lucidum > Altissima altissima > Fraxinus > Buxus megistophylla. The greening trees can be classified into three categories in term of cadmium and chromium content. The first category includes Populus tomentosa and Acer mono; Prunus ceraiferai, Platanus, Populus alba, Buxussinica and Photinia serrulata belong to the second category; the third category includs Fraxinus, Sophora japonica, Broussonetia papyrifera, Ailanthus altissima, Koelreuteria paniculata, Pittosporum tobira, Yucca gloriosa, Buxus megistophylla, Ligustrum lucidum and Ligustrum quihoui. Heavy metal contents in the leaves of greening trees are markedly different from each other in different function areas, seasons, and tree species.

Keywords

References

[1]  Zhuykova, T., Bezel, V., Zhuykova, V., Chankina, O., Kutsenogy, K. Chemical elements in the mineralization of plant residues under soil pollution with heavy metals. Contemporary Problems of Ecology, 6: 213-222. 2013.
 
[2]  Krämer, U. Metal hyperaccumulation in plants. Annual Review of plant Biology, 61: 517-534. 2010.
 
[3]  Fang, Y-M., Wei, Y., Zhang, X-P. Advance in bry-monotoring of atmosperic heavy metal pollution. Journal of Nanjing Forestry University, 24: 64-68. 2000.
 
[4]  Ye, J., Liu, C., Zhao, Z., Li, Y., Yu, S. Heavy metals in plants and substrate from simulated extensive green roofs. Ecological Engineering, 55: 29-34. 2013.
 
[5]  Memon, A. R., Schröder, P. Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollutant Research, 16: 162-175. 2009.
 
Show More References
[6]  Zhang, W-P., Chen, J-L., Huang, Q-N., Wang, Q-Y., Zhao, H., Xue, D. Trees’ Phytoextraction of Heavy Metals in the Soil of South China. Journal of Nanjing Forestry University, 31: 125-128. 2007.
 
[7]  Visioli, G., Marmiroli, N. The proteomics of heavy metal hyperaccumulation by plants. Journal of Proteomics, 79: 133-145. 2013.
 
[8]  Wang, A-X., Zhang, M., Fang, Y-M., Wang, S-C. The Content of Heavy Metals(Pb,Cd,Cu) in Leaves of Urban Trees and Its Indicatory Function in Air Pollution Evaluation in Nanjing Region. China Forestry Science and Technology, 22: 113-117. 2008.
 
[9]  Bi, B., Liu, Y-C., Chen, Q., Zjou, Z., Zhang, X-X., Sun, H. Heavy metal accumulation capability of ten broadleaved tree species to As, Hg, Pb, Cd and Cr. Journal of West China Forestry Science, 41, 79-83. 2012.
 
[10]  Mu, L-Q., Sun, H-Y., Zhu, N. Study on the absorption capacity of Northeast main greening tree species to As in the atmosphere. Bulletin of Botanical Research, 24: 220-222. 2004.
 
[11]  Qiu, Y., Guan, D-S., Chen, H., Li, X-Y., Huang, H. Heavy metal concentration in foliage and foliar dusts in huizhou, gongdong province. Scientiarum Naturalium Universitatis Sunyatseni, 46: 98-102. 2007.
 
[12]  Ma, Y-L., Jia, G-M., Wang, Y-P., Liu, H-P. Contents of heavy metal in leaves of plants and air pollution evaluation in Guangzhou region. Urban Environment and Urban Ecology, 14: 28-30. 2001.
 
[13]  Wei, H-Y., Fang, Y-M., Yin, Z-F., Wang, Z-S. Study on indication and accumulation of thuidium cymbifolium to lead and cadmium pollution. Bulletin of Botanical Research, 24: 41-44. 2004.
 
[14]  Ren, N-L., Chen, W-B., Huang, J-S., Chen, W-L., Yao, J-B. Study on air environment pollution by the content of heavy metals in leaves of plants. Trace Elements Science, 11: 41-45. 2004.
 
[15]  Jiang, G-M. The dynamics of sulphur and heavy metal content in the needles of pinus tabulaeformis carr and the relation between needle sulphur and air SO2. Acta Ecologica Sinica, 15: 407-412. 1995.
 
[16]  Lu, D-H., Yin, Y-L. Concentrations and accumulation function of greening plant leaves’ layer to heavy metals and N,S on urban trunk road. Journal of Nanjing Forestry University, 32: 51-55. 2008.
 
[17]  Chen, X-Z., Xie, Y-J., Peng, Z-H. Relationship between air pollution and contents of metal elements in leaves of urban plants. Urban Environment and Urban Ecology, 10: 45-47. 1997.
 
[18]  Jiang, X-Y., Zhao, K-F. Mechanism of heavy metal injury and resistance of plants. Chinese Journal of Applied and Environmental Biology, 7: 92-99. 2001.
 
[19]  Yang, Z. A study of 15 afforested tree species decontaminating heavy metals Pb and Zn in the atmosphere in nanjing. Journal of Chuzhou University, 11: 61-63. 2009.
 
Show Less References