ISSN (Print): 2372-4668

ISSN (Online): 2372-4676


Editor-in-chief: Mehrdad Hamidi, Javad Verdi

Currrent Issue: Volume 3, Number 1, 2015


Surfactant Assisted Synthesis of Cuprous Oxide (Cu2O) Nanoparticles via Solvothermal Process

1Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

2High Tech Centralized Instrumentation Laboratory, UAJK, Muzaffarabad 13100, Pakistan

3Department of Physics, State University of New York at Albany, Albany, NY 12222, USA

4Department of Physics, COMSATS Institute of Information Technology, Defence Road Lahore

5Department of Physics, Quaid-i-Azam University Islamabad, 45320, Pakistan

Nanoscience and Nanotechnology Research. 2015, 3(1), 16-22
doi: 10.12691/nnr-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
M. A. Khan, Mahboob Ullah, Tariq Iqbal, Hasan Mahmood, Ayaz A. Khan, Muhammad Shafique, A. Majid, Azhar Ahmed, Nawazish A. Khan. Surfactant Assisted Synthesis of Cuprous Oxide (Cu2O) Nanoparticles via Solvothermal Process. Nanoscience and Nanotechnology Research. 2015; 3(1):16-22. doi: 10.12691/nnr-3-1-3.

Correspondence to: M.  A. Khan, Department of Physics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan. Email:


Cuprous oxide (Cu2O) nanoparticles have been synthesized by facile solvothermal scheme. The reduction of copper sulphate pentahydrate (CuSO4.5H2O) was carried out with D-glucose as a reductant, in the presence of organic additive polyvinyl pyrrolidone (PVP K-30). The synthesized CuO2 nanoparticles have been characterized by UV-Vis Spectroscopy, Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The SEM images showed that the morphology of the Cu2O nanostructures was highly uniform and growth was controlled. The nanoparticles were found to be single crystalline and monodispersed in octahedral shapes. Such type of morphology has not been reported yet using PVP K-30 as surfactant. XRD peaks confirmed the single crystalline phases of Cu2O nanoparticles. The growth of the monodispersed single crystals has been explained on the basis of diffusion mechanism. The grain size of the nanoparticles was found to be in the range of 34- 45 nm. UV-visible absorptions spectra showed that the bandgap transition is around 635 nm (~ 2.0 eV). FTIR transmission peak at 623 cm-1 confirmed Cu(I)-O vibrations, which is very well consistent with the reported value.



[1]  Service R. F. “Nanotoxicology. Nanotechnology grows up” Science, 18, 1732-1734 (2004).
[2]  Sahoo S. K., Parveen S, Panda, “Nanotechnology platforms and physiological challenges for cancer therapeutics J., Nanomedicine, 3 20-31 (2007).
[3]  Twan L., Vladimir S., Karel U., “Cuprous oxide nanoparticles selectively induce apoptosis of tumor cells” Nano Today, 5 197-212 (2010).
[4]  Yang F., Tang Q., Zhong X., “Cerium oxide nanoparticles in cancer” Int J Nanomedicine, 7 835-844 (2012).
[5]  Lee P., Zhang R., Li V., et al., “Enhancement of anticancer efficacy using modified lipophilic nanoparticle drug encapsulation” Int J Nanomedicine, 7 731-737 (2012).
Show More References
[6]  Murphy E. A., Majeti B. K., Barnes L. A., et al., “Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis” Proc Natl Acad Sci USA, 105 9343-9348 (2008).
[7]  Siddiqui I. A., Adhami V. M., Christopher J., Chamcheu, Mukhtar H., “Impact of nanotechnology in cancer: emphasis on nanochemoprevention” Int J Nanomedicine, 7 591-605 (2012).
[8]  Stevens M. M., Ghadiali J. E., Cohen B. E., “Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space” ACS Nano, 4 4915-4919 (2010).
[9]  Jopnani N., Kushwaha S., Athar T., “Surface Plasmon Spectroscopy of Nanosized Metal Particles” International journal of green nanotechnology: Mat. Sci. Eng., 1 67-73 (2009).
[10]  Guajardo-Pacheo M. J., Morales-Sanchz J. E., Gernandez J. and Ruiz F., “Multifunctionalized cotton fabric using Cu nanoparticles” Material Letters, 64 (12), 1361-1364 (2010).
[11]  Prem kumar T., Geckeler K. E., “Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application” Small, 2 (5), 616-620 (2006).
[12]  Ren G., Hu D., Cheng E. W., Vargas-Reus M. A., Reip P., Allaker R. P., “Characterisation of copper oxide nanoparticles for antimicrobial applications” Int J Antimicrob Agents, 33 (6), 587-590 (2009).
[13]  Hsieh C. T., Chen J. M., Lin H. H., Shih H. C., “Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism” Appl Phys Lett., 82 (19) 3316-3318 (2003).
[14]  Zhang X., Wang G., Liu X., “Antitumor Activities of Metal Oxide Nanoparticles, “J Phys Chem C Nanomater Interfaces, 112 (43), 16845-16849 (2008).
[15]  Perelshtein I., Applerot G., Perkas N., “Preparation and Characterization of Some Nanometal Oxides Using Microwave Technique and Their Application to Cotton Fabrics” Surface and Coatings Technology, 204 (1-2), 54-57 (2009).
[16]  Grozdanov I., “Electroless chemical deposition technique for Cu2O thin films” Mater. Lett. 19, 281 (1994).
[17]  Shen M. Y., Yokouchi T., Koyama S., Goto T., “American Association for the Advancement of Science” Phys. Rev. B, 56, 1306 (1997).
[18]  Shi W., Lim K., Liu X., “Ultra-high efficiency white light emitting diodes” J. Appl. Phys. 81, 2822 (1997).
[19]  Briskman R. N., “A Study of Electrodeposited Cuprous-Oxide Photovoltaic Cells” Sol. Energy Mater. Sol. Cells, 27, 361 (1992).
[20]  Olsen L. C., Addis F. W., Miller W., “As a solar cell material, cuprous oxide -Cu2O, has the advantages of low cost and great availability” Sol. Cells 7, 247 (1982).
[21]  Hara M., Kondo T., Komoda M., Ikeda S., Shinohara K., Tanaka A., Kondo J. N., Domen K., “Graphene oxide as the passivation layer for CuxO photocatalyst on a plasmonic Au film and the corresponding photoluminescence study” Chem. Commun. 357 (1998).
[22]  Ikeda S., Takata T., Kondo T., Hitoki G., Hara M., Kondo J. N., Domen K., Hosono H., Kawazoe H., Tanaka A., “Visible-light-responsive copper (II) borate photocatalysts with intrinsic midgap states for water splitting”, Chem. Commun. 2185 (1998).
[23]  De Jongh P. E., Vanmaekelbergh D., Kelly J. J., “Cu2O: a catalyst for the photochemical decomposition of water?”, Chem. Commun. 1069 (1999).
[24]  Chun-Hong K. and Michael H. H., “Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices” Nano Today, 5, 106 (2010).
[25]  Wang Z., Wang H., Wang L. and Pan L., “Supercapacitors based on nanostructured carbon”, J. Phys. Chem. Sol. 70, 719 (2009).
[26]  Zhang X., Xie Y., Xu F., Liu X. and Xu D., “Transition-Metal-Catalyzed Reactions in Heterocyclic Synthesis” Inorg. Chem. Commun. 6, 1390-9 (2003).
[27]  Xu H., Wang W. and Zhu W., “A Self-Assembly Mechanism Of Cuprous Oxide Nanoparticles In Aqueous Colloidal Solutions”, Micropor. Mesopor. Mat. 95, 321 (2006).
[28]  Suleiman M., Mousa M., Amjad H., Belkheir H., Taibi. H., Ismail W., “Copper (II)-Oxide Nanostructures: Synthesis, Characterizations and their Applications–Review”, Mater. Environ. Sci. 1 (5), 792-797 (2013).
[29]  Miss Ritu, Int. Chem. Res., 3 (i-3), 10-17 (2013).
[30]  Huang L., Peng F., Yu H. and Wang H., “Synthesis of Cu2O nanoboxes”, Mater. Res. Bull. 43, 3407 (2008).
[31]  Shin H. S., Song J. Y. and Yu J., “Template-assisted electrochemical synthesis of cuprous oxide nanowires”, Mater. Lett. 63, 397 (2009).
[32]  Wang C. Y., Zhou Y., Chen Z. Y., Cheng B., Liu H. J., Mo X., “Photonic & Sonic Band-Gap and Metamaterial Bibliography”, J. Colloid Interface Sci. 220, 468 (1999).
[33]  Shu-Jian C., Xue-Tai C., Xue Z., Li-Hong L., Xiao-Zeng Y., “Crystal Structure Control of CdSe Nanocrystals in Growth and Nucleation”, Journal of Crystal Growth 246, 169-175 (2002).
[34]  Karthik K., Ponnuswamy S., Nano Vision. 1, 68-73 (2011).
[35]  Ming Y., Chun-Kwei W., Yongbing L., Clemens B., Jeffrey T. K., Yimei Z. and Stephen O., J. Am. Chem. Soc. 127 (26), 9507 (2005).
[36]  Socrates, G., “Infrared and Raman Characteristic Group Frequencies”, John Wiley & Sons Ltd., New York, USA (2001).
[37]  Melendres C. A., Bowmaker G. A., Leger J. M. and Beden B., “Advances in in-situ Spectroelectrochemical fourier transform infrared spectroscopy”, J., Electroanal. Chem. 449, 215-218 (1998).
[38]  Zhang Y. C., Tang J.Y., Wang G.L., Zhang M. and Hu X.Y., “Tailor the crystal shape in high-temperature solution resulted in a simultaneous growth of CuO and Cu2O”, J. Cryst. Growth, 294, 278-282 (2006).
[39]  Prakash I., Muralidharan P. N., Nallamuthu M., Venkateswarlu and Satyanarayana N., “Nanocrystallite size cuprous oxide: Characterization of copper nanopowders after natural aging”, Mater. Res. Bull. 42, 1619-1624 (2007).
Show Less References


Study on Biological Synthesis of Cadmium Sulfide Nanoparticles by Bacillus licheniformis and Its Antimicrobial Properties against Food Borne Pathogens

1Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Technical Institutions Campus, Mysuru

Nanoscience and Nanotechnology Research. 2015, 3(1), 6-15
doi: 10.12691/nnr-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Aishwarya Shivashankarappa, K R Sanjay. Study on Biological Synthesis of Cadmium Sulfide Nanoparticles by Bacillus licheniformis and Its Antimicrobial Properties against Food Borne Pathogens. Nanoscience and Nanotechnology Research. 2015; 3(1):6-15. doi: 10.12691/nnr-3-1-2.

Correspondence to: K  R Sanjay, Department of Biotechnology, Sri Jayachamarajendra College of Engineering, JSS Technical Institutions Campus, Mysuru. Email:


The green synthesis of cadmium sulfide (CdS) nanoparticles has been regarded as the most promising technique for their prospective applications in biological system. The bacterial strain Bacillus licheniformis has shown to be efficient in synthesizing cadmium sulfide nanoparticles. We report the effect on nanocrystal formation by varying the ratios of cadmium chloride and sodium sulfide ranging from 1:1, 2:1, 3:1 and 4:1 respectively. The resultant CdS nanoparticles was tested for antimicrobial activity against a range of food borne bacteria E coli, Bacillus licheniformis, Pseudomonas aeruginosa, Bacillus cereus and Staphylococcus aureus and fungi Fusarium oxysporum, Aspergillus flavus and Penicillium expansum. The results showed that the CdS nanoparticles were crystalline in nature with size varying from 20-40 nm. The stability of nanoparticles was due to protein interaction which may have played an important role as capping agents. The antimicrobial activity showed that the CdS nanoparticles of ratio 4:1 of cadmium chloride and sodium sulfide at a concentration of 40 mg/ml showed highest zone of inhibition in Psedomonas aeruginosa (26.5±0.70) and Aspergillus flavus (27.8±0.28). The present study explains a simple, cost effective way of nanoparticle synthesis suitable for large scale production. The green synthesis approach extends the horizon of applications to biological systems as an effective medicinal agent.



[1]  Alvarez-Peral F J., Zaragoza O., Pedreno Y., and Arguelles J C., “Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans”, Microbiology., 148. 2599-2606. Aug. 2002.
[2]  Bai H, Zhang Z., Guo Y., and Jia W., “Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides Nanoscale Research Letters., 4. 717-723. Apr. 2009.
[3]  Bai H J., Zhang Z M., Guo Y., and Yang G E., “Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris”, Colloids and Surfaces B: Biointerfaces., 70. 142-146. Apr. 2009.
[4]  Bhadwal A S., Tripathi R M., Gupta R K., Kumar N., Singh R P., and Shrivastav A., “Biogenic synthesis and photocatalytic activity of CdS nanoparticles”, RSC Advances., 4. 9484-9490. Dec. 2013.
[5]  Chen G., Yi B., Zeng G., Niu Q., Yan M., Chen A., Du J., Huang J., and Zhang Q., “Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosprium”, Colloids and Surfaces B: Biointerfaces.,117. 199-205. May. 2014.
Show More References
[6]  Fernandez C A., and Wai C M., “Continuous tuning of cadmium sulfide and zinc sulfide nanoparticle size in a water-in-supercritical carbon dioxide microemulsion, Chemistry- A European Journal, 13(20). 5838-5844. Apr. 2007.
[7]  Ghows N and Entezari MH., “ A novel method for the synthesis of cds annoparticleswithout surfactant”, Ultrason Sonochem, 18(1). 269-275. Jan 2011.
[8]  Giertsen E.,“Effects of mouth rinses with triclosan, zinc ions, copolymer and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque invivo”, Caries research., 38. 430-435. Oct. 2004.
[9]  He L., Liu Y., Mustapha A., and Lin M., “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiological Research., 166(3). 207-215. Mar. 2011.
[10]  Hossain S T., and Mukherjee S K., “Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells”, Journal of Hazardous Materials., 260. 1073-1082. Sep. 2013.
[11]  Kalishwaralal K., Deepak V., Pandian S R K., and Gurunathan S., “Biological synthesis of gold nanocubes from Bacillus licheniformis”, Bioresource Technology., 100(21). 5356-5258. Nov. 2009.
[12]  Kim K J., Sung W S., Suh B K., Moon S K., Choi J S., Kim J G., and Lee D G., “Antifungal activity and mode of action of silver nano-particles on Candida albicans”, Biometals., 22(2). 235-242. Apr. 2009.
[13]  Kim K J., Sung W S., Moon S K., Choi J S., Kim J G., and Lee D G., “Antifungal activity of silver nanoparticles on dermatophytes”, Journal of Microbiology and Biotechnology., 18(8). 1482-1484. Apr. 2008.
[14]  Kowshik M., Deshmukh N., Vogel W., Urban J., Kulkarni S K., and Paknikar K M., “Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode”, Biotechnology and Bioengineering., 78(5). 583-588. Jun. 2001.
[15]  Li K G., Chen J T., Bai S S., Wen X., Song S Y., Yu Q., Li J., and Wang Y Q., “Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots”, Toxicology In Vitro., 23(6). 1007-1013. Sep. 2009.
[16]  Malarkodi C., Chitra K., Rajeshkumar S., Gnanajobitha G., Paulkumar K., Vanaja M., and Annadurai G., “Novel eco-friendly synthesis of titanium oxide nanoparticles by using Planomicrobium sp. and its antimicrobial evaluation”, Der Pharmacia Sinica., 4(3). 59-66. 2013.
[17]  Malarkodi C., Rajeshkumar S., Paulkumar K., Jobitha G G., Vanaja M., and Annadurai G., “Biosynthesis of semiconductor nanoparticles by using sulphur reducing bacteria Serratia nematodiphila”, Advances in Nano Research., 1(2). 83-91. 2013.
[18]  Malarkodi C., Rajeshkumar S., Paulkumar K., Vanaja M., Gnanajobitha G., and Annadurai G., “Biosynthesis and antimicrobial activity of semiconductor nanoparticles against oral pathogens,” Bioinorganic Chemistry and Application, Mar. 2014.
[19]  Mandal D., Bolander M E., Mukhopadhyay D., Sarkar G., and Mukherjee P., “The use of microorganisms for the formation of metal nanoparticles and their application”, Applied Microbial Biotechnology., 69(5). 485-492. Nov. 2006.
[20]  Monte A F G., Dantas N O., Morais P C., and Rabelo D., “Synthesis and characterization of CdS nanoparticles in mesoporous copolymer template”, Brazilian Journal of Physics., 36(2). 427-429. Jun. 2006.
[21]  Mousavi R A., Sepahy A A., and Fazeli M R., “Biosynthesis, purification and characterization of cadmium sulfide nanoparticles using Enterobacteriaceae and their application”, Scientific Research Publication, 2012. [Online]. Available: [Accessed 23 July 2013].
[22]  Nahar L., and Arachchige I U., “Sol-Gel methods for the assembly of metal and semiconductor nanoparticles”, JSM Nanotechnology and Nanomedicne., 1(1). 1004. Aug. 2013.
[23]  Pandian S R K., Deepak V., Kalishwarala K., and Gurunathan S.,“Biologically synthesized fluorescent CdS NPs encapsulated by PHB”, Enzyme and Microbial Technology., 48(4-5). 319-325. Apr. 2011.
[24]  Tyagi C, Sharma A and Kurchania R, “Synthesis of CdS quatum dots using wet chemical co-precipitation method”, Journal of Non-Oxide Glasses., 6(2). 23-26. Mar. 2014.
[25]  Prabhu S., and Poulose E K., “Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications and toxicity effects”, International Nano Letters., 2. 32. Oct. 2012.
[26]  Raheem A E., El-Shanshoury R., Elsilk S E., and Ebeid M E., “Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T”, African Journal of Biotechnology., 11(31). 7957-7965. Apr. 2012.
[27]  Rajeshkumar S., Ponnanikajamideen M., Malarkodi C., Malini M., and Annadurai G., “Microbe mediated synthesis of antimicrobial semiconductor nanoparticles by marine bacteria”, Journal of Nanostructure in Chemistry., 4. 96. Mar. 2014.
[28]  Ramrakhiani M.,“Luminescence of cadmium sulfide nanoparticles and nanocomposites”, International Journal of Luminescence and Applications., 3(1). 15-22. 2013.
[29]  Ravikumar S., Gokulakrishnan R., and Boomi P., “Invitro antimicrobial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens”, Asian Pacific Journal of Tropical Disease., 85-89. Apr. 2012.
[30]  Rezaei-Zarchi S., javed A., Ghani M J., Soufian S., Firouzabadi F B., Moghaddam A B., and Mirjilili S H., “Comparative study of antimicrobial activities of TiO2 and CdO nanoparticles against the pathogenic strain of Escherichia coli”, Iranian Journal of Pathology., 5(2). 83-89. Spring. 2010.
[31]  Rodriguez-Fragoso P., Reyes-Esparza J., Leon-Buitimea A., and Rodriguez-Fragoso L., “Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos”, Journal of Nanobiotechnology., 10(47). 1-11(47). Dec. 2012.
[32]  Rohovec J., Touskova J., Tousek J., Schauer F., and Kuritka I., “New cadmium sulfide nanoparticle for heterogeneous organic photovoltaic cells”, World Renewable Energy Congress, 2011. [Online] Available: [Accessed 15 March 2014].
[33]  Sanghi R., and Verma P., “A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus”, Chemical Engineering Journal., 155. 886-891. Dec. 2009.
[34]  Shukla M., kumari S., Shukla S., and Shukla R K., “Potent antimicrobial activity of nano CdO synthesized via microemulsion scheme”, Journal of Material and Environmental Science., 3(4). 678-685. 2012.
[35]  Sweeney R Y., Mao C., Gao X., Burt J L., Belcher A M., Georgiou G., and Iverson B L., “Bacterial biosynthesis of cadmium sulfide nanoparticles”, Chemistry and Biology., 11(11). 1553-1559. Nov. 2004.
[36]  Thakkar K N MS., Mhatre S S MS., Parikh R Y., and MS., “Biological synthesis of metallic nanoparticles”, Nanomedicine : Nanotechnology, Biology and Medicine., 6(2). 257-262. Apr. 2009.
[37]  Torimoto T., Reyes J P., Iwasaki K., Pal B., Shibayama T., Sugawara K., Takahashi H., Ohtani B., “Preparation of novel silica-cadmium sulfidecomposite nanoparticles having adjustable void space by size-selective photoetching”, Journal of American Chemical Society., 125(2). 316-317. Jan. 2002.
[38]  Vanaja M., and Annadurai G., “Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity”, Applied Nanoscience., 3(3). 217-223. Jun. 2013.
[39]  Wang G Z., Chen W., Liang C H., Wang Y W., Meng G W., and Zhang L D., “Preparation and characterization of CdS nanoparticles by ultrasonic irradiation”, Inorganic Chemistry Communications., 4(4). 208-210. Apr. 2001.
[40]  Yong K T., Wang Y., Roy I., Rui H., Swihart M T., Law W C., Kwak S K., Liu J., Mahajan S D., and Reynolds J L., “Preparation of Quantum Dot/Drug Nanoparticle Formulations for Tracea-ble Targeted Delivery and Therapy”, Theranostics., 2(7). 681-694. 2012.
[41]  Zhang H., and Chen G., “Potent antimicrobial activities of Ag/TiO2 nanocomposite powders synthesized by a one–pot sol–gel method”, Environmental Science and Technology., 43(8). 2905-2910. Mar. 2009.
[42]  Zhu H., Jiang R, Xiao L., Chang Y., Guan Y., Li X., and Zeng G., “Photocatalytic decolorization and degradation of Congo Red on innovative cross linked chitosan/nano-CdS composite catalyst under visible light irradiation”, Journal of Hazardous Materials., 169(1-3). 933-940. Sep. 2009.
Show Less References


Isolation and Characterization of Bionanofibers from Moringa Oleifera Gum as a Platform for Drug Delivery

1Department of Pharmaceutics (PG), Sanjivani College of Pharmaceutical Education and Research, Kopargaon

Nanoscience and Nanotechnology Research. 2015, 3(1), 1-5
doi: 10.12691/nnr-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Gitanjali Mehetre, Vishal Pande, Prakash Kendre. Isolation and Characterization of Bionanofibers from Moringa Oleifera Gum as a Platform for Drug Delivery. Nanoscience and Nanotechnology Research. 2015; 3(1):1-5. doi: 10.12691/nnr-3-1-1.

Correspondence to: Vishal  Pande, Department of Pharmaceutics (PG), Sanjivani College of Pharmaceutical Education and Research, Kopargaon. Email:


Bionanofibers were isolated from Moringa Oleifera gum by carrying out combination of acid hydrolysis and probe sonication treatment. Acid hydrolysis of hemicelluloses was carried out to remove amorphous region. An increase in sulphuric acid concentration from 20 to 60 wt% accelerates the breakages in hemicelluloses molecules, leading to narrower, less polydisperse bionanofibers. After sonication, the fibers were cleaved into small fibers with dimensions on the nanoscale. The characterization of bionanofibers was performed by Scanning Electron Microscopy (SEM), Particle size, Differential Scanning Calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR). Surface morphology was observed by SEM which confirms presence of bionanofibers. Bionanofibers having diameter at 98 nm while length of 20 µm. The thermal analysis of Moringa oleifera gum was done by DSC. Fourier transform infrared spectroscopy (FTIR) showed that some breakages of intramolecular hydrogen bonds and glycosidic bonds held during hydrolysis reaction of Moringa Oleifera. The isolated nanofibers can be used in novel drug delivery system as platform to load the desired drug.



[1]  Thakur V. K., Thakur M. K., “Processing and characterization of natural cellulose fibers/thermoset polymercomposites”, Carbohydrate Polymers, 109: 102-117, 2014.
[2]  Mori Oliveira de L. S. C., Passos dos A. N., Oliveira E. J., et. al., “Electrospinning of zein/tannin bio-nanofibers”, Industrial Crops and Products, 52: 298-304, 2014.
[3]  Cintil J. C., Lovely M., Sabu T., “Review of recent research in nano cellulose preparation from different lignocellulosic fibers”, Rev. Adv. Mater. Sci., 37: 20-28, 2014.
[4]  Motonari S., Tsubouchi G., Nakamura M., Hayashi M., “Polysaccharide nanofiber made from euglenoid alga”, Carbohydrate Polymers, 93: 499-505, 2013.
[5]  Wenshuai C., Haipeng Y., Liu Y., Chen P., Zhang M., Hai Y., “Indiviualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments”, Carbohydrate Polymers, 83: 1804-1811, 2011.
Show More References
[6]  Peng P., She D., “Isolation, structural characterization and potential applications of hemicelluloses from bamboo: A review”, Carbohydrate Polymers, 112: 701-720, 2014.
[7]  Marziyeh R. M., Bahrami H. S., Joghataei M. T., “Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties”, Materials Science and Engineering C, 33: 4935-4943, 2013.
[8]  Goyal B. R., Agrawal B. B., Goyal R. K., Mehta A. A., “Phyto-pharmacology of MoringaOleifera Lam. 6 An overview”, Natural Product Radiance, 6 (4): 347-353, 2007.
[9]  Varma R. JN., Kumar P. C., Reddy K., Raju P. P., “Evaluation of MoringaOleifera gum as a sustained release polymer in diclofenac sodium tablet formulation”, International Journal of Research in Pharmacy and Chemistry, 4 (3): 687-693, 2014.
[10]  Patel V. B., Chobey N., “Evaluation of MoringaOleifera gum as tablet disintegrant”, International Journal of Pharmacy and Pharmaceutical Sciences, 4 (1): 210-214, 2012.
[11]  Aney J. S., Tambe R., Kulkarni M., Bhise K., “Pharmacological and pharmaceutical potential of MoringaOleifera: A Review”, Journal of Pharmacy Research, 2 (9): 1424-1426, 2009.
[12]  Panda D. S., Choudhury N. S. K., Yedukondalu M., “Evaluation of gum of MoringaOleifera as binder and release retardant in tablet formulation”, Indian Journal of Pharmaceutical Sciences, 70 (5): 614-618, 2008.
[13]  Panda D. S., “Studies on gum of MoringaOleifera for its emulsifying properties”, Journal of Pharmacy and Bioallied Sciences, 6 (2): 92-96, 2014.
[14]  Patel B. V., Patel D., “Study of disintegrant property of MoringaOleifera gum and its comparison with other superdisintegrants”, International Journal of Chem Tech Research, 3 (3); 1119-1124, 2011.
[15]  Khandelwal K. R., Sethi V. K., “Practical Pharmacognosy Techniques and Experiments”, Nirali Prakashan, Twenty- Fourth Edition, page no. 25.1-25.2, 2014.
[16]  He W., Jiang S., Zhang Q., Pan M., “Isolation and characterization of cellulose nanofibers from Bambusarigida”, BioResources, 8(4): 5678-5689, 2013.
[17]  Pan M., Zhou X., and Chen M., “Cellulose nanowhiskers isolation and properties from acid hydrolysis combined with high pressure homogenization”, BioResources, 8 (1): 933-943, 2013
[18]  Panda D. S., Ansari S. A., “Preformulation study on the gum of Moringa Oleifera”, Malaysian Journal of Pharmaceutical sciences, 11 (2): 41-47, 2013.
[19]  Pavia D. L., Lampman G. M., Kriz G. S., Vyvan J. R., “Spectroscop”.
Show Less References