Journal of Polymer and Biopolymer Physics Chemistry: Latest Articles  More >>

Article

Reduction of COD and Color by Polymeric Coagulant (Chitosan)

1Department of Chemical Engineering, ITGGV, Bilaspur (C.G.), India


Journal of Polymer and Biopolymer Physics Chemistry. 2013, 1(1), 22-25
DOI: 10.12691/jpbpc-1-1-4
Copyright © 2013 Science and Education Publishing

Cite this paper:
Ram Krishna, Omprakash Sahu. Reduction of COD and Color by Polymeric Coagulant (Chitosan). Journal of Polymer and Biopolymer Physics Chemistry. 2013; 1(1):22-25. doi: 10.12691/jpbpc-1-1-4.

Correspondence to: Omprakash  Sahu, Department of Chemical Engineering, ITGGV, Bilaspur (C.G.), India. Email: ops0121@gmail.com

Abstract

Wastewater treatment is becoming ever more critical due to diminishing water resources, increasing wastewater disposal costs, and stricter discharge regulations that have lowered permissible contaminant levels in waste streams. The ultimate goal of wastewater management is the protection of the environment in a manner commensurate with public health and socio-economic concerns. The aim of our study is to use natural occurring polymeric coagulant to reduce the chemical oxygen demand and color from the industrial waste water. It was found that 83% of Chemical oxygen demand and 90% of color reduction was observed with chitosan.

Keywords

References

[1]  Crittenden, J.C., Trussel, R.R., Hand, D. W., Howe, K. J., Tchobanoglous, G. (eds) “Coagulation, mixing and flocculation”, in Water Treatment: Principles and Design. 2nd edition, John Wiley & Sons, 2005, New Jersey, USA.
 
[2]  Duan, J., Gregory, J., Coagulation by hydrolysing metal salts, Advances in Colloid & Interface Science, Vol. 100-102, 2003, pp. 475-502.
 
[3]  Jiang J., Development of coagulation theory and pre-polymerised coagulants for water treatment, Separation and Purification Methods, Vol. 30, No. 1, 2001, pp. 127-141.
 
[4]  Bi, S., Wang, C., Cao, Q. and Zhang, C., Studies on the mechanism of hydrolysis and polymerization of aluminium salts in aqueous solution: correlations between the Core-links model and Cage-like keggin-Al13 model, Coordination Chemistry Reviews, Vol. 248, 2004, 441-455.
 
[5]  Jia, Z., He, F. and Liu, Z., Synthesis of polyaluminum chloride with a membrane reactor: operating parameter effects and reaction pathways, Ind Chem Res, Vol. 43, 2004, 12-17.
 
Show More References
[6]  Bertsch, P.M., Grant, W. T., Barnhisel, L., Characterization of hydroxyl-aluminum solutions by aluminium-27 Nuclear Magnetic Resonance Spectroscopy, Soil Science Society of America Journal, Vol. 50, 1986, pp. 825-829.
 
[7]  Wang, M. and Muhammed, M., Novel synthesis of Al13-cluster based alumina materials, NanoStructured Materials, Vol. 11, 1999, 1219-1229.
 
[8]  Parker, D. R. and Bertsch, P. M, Formation of the Al13 tridecameric polycation under diverse synthesis conditions, Environmental Science and Technology, Vol. 26, 1992, pp. 914-921.
 
[9]  Dulko, J. M., Polyaluminum chlorides and polyaluminum chlorosulfates methods and compositions, United States Patent 5.985.234, 1999.
 
[10]  Graham N., Preparation and uses of polyferric sulphate, US Patent 5.785.862, 1998.
 
[11]  Bertsch, P.M., Conditions for Al13 polymer formation in partially neutralized aluminum solutions, Soil Science Society of America Journal, Vol. 51, 1987, pp. 825-828.
 
[12]  Tang H. X, Tian B. Z., Luan Z. K., Zhang Y., Inorganic polymer flocculant polyferric chloride, its properties, efficiency and production, In Chemical Water and Wastewater treatment, Vol III, eds R. Klute and H. Hahn, Springer, Berlin, 1994, pp. 57-69.
 
[13]  Zhang, P., Hahn, H.H., Hoffmann, E., Zeng, G., Influence of some additives to aluminium species distribution in aluminium coagulants, Chemosphere, 57, 2004, pp. 1489-1494.
 
[14]  Zouboulis A. I., Moussas P.A., Vasilakou F., Polyferric Sulphate: Preparation, characterization and application in coagulation experiments, submitted for publication in Journal of Hazardous Materials, 2007.
 
[15]  AWWA, AWWA standard for liquid polyaluminum chloride, American Water Works Association, Denver, Colorado USA, 1999.
 
Show Less References

Article

High Energy Electron Irradiated Polystyrene: Free Volume and Thermal Properties Studied by PALS and DSC

1Physics Department, Visva-Bharati Central University, P.O.- Santiniketan, West Bengal, India

2Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore, India


Journal of Polymer and Biopolymer Physics Chemistry. 2013, 1(1), 26-30
DOI: 10.12691/jpbpc-1-1-5
Copyright © 2013 Science and Education Publishing

Cite this paper:
Arunava Mandal, Sandip Pan, Subrata Mukherjee, Achintya K. Saha, C. Ranganathaiah, Asmita Sengupta. High Energy Electron Irradiated Polystyrene: Free Volume and Thermal Properties Studied by PALS and DSC. Journal of Polymer and Biopolymer Physics Chemistry. 2013; 1(1):26-30. doi: 10.12691/jpbpc-1-1-5.

Correspondence to: Asmita  Sengupta, Physics Department, Visva-Bharati Central University, P.O.- Santiniketan, West Bengal, India. Email: asmita_sengupta@hotmail.com

Abstract

The variation in the microstructure in terms of free volume and the thermal properties, such as specific heat(Cp), glass transition temperature(Tg) of 8 MeV electron irradiated Polystyrene (PS) at different doses have been measured using Positron Annihilation Lifetime Spectroscopy (PALS) and Differential Scanning Calorimetry (DSC) respectively. PALS results showed that at irradiation dose 75 KGy the free volume of the polymer matrix decreases suggesting cross liking of the inter chain and structure appears to be stabilized. In the DSC measurements the specific heat at constant pressure suggests the scission of chains at 100 KGy which is well reflected in the increase of the free volume at this dosage. The observed changes in Tg are not prominent and do not really reflect the changes in free volume upon irradiation.

Keywords

References

[1]  Jean, Y. C., “Positron Annihilation Spectroscopy for Chemical Analysis: A Novel Probe for Microstructural Analysis of Polymers”, Microchem J, 42. 72. 1990.
 
[2]  Mogensen, O.E, Positron Annihilation in Chemistry, Springer-Verlag, Barlin, vol.-58, 1995.
 
[3]  Jean, Y. C, Mallon, P. E and Schrader, D. M, Principles and Application of Positron and Positronium Chemistry, World Scientific, Singapore, 2003.
 
[4]  Raj J.M. and Ranganathaiah, C., “A new method of stabilization and characterization of the interface in binary polymer blends by irradiation: A positron annihilation study,” J. Polym. Sci. B: Polym. Phys. 47. 619-632. 2009.
 
[5]  Chandrashekar, M.N. and Ranganathaiah, C., “Diffusion of permanent liquid dye molecules in human hair investigated by positron lifetime spectroscopy,” Colloids. Surf. B 69. 129-134 2009.
 
Show More References
[6]  Vleeshouwers, S., Kluin, J. E., McGervey, J. D., Jamieson, A. M., and Simha, R., “Monte Carlo calculations of hole size distribution: simulation of positron annihilation spectroscopy J. Polym. Sci., Part B. Polym. Phys., 30. 1429. 1992.
 
[7]  Schmitz, H. and Muller- Plathe, F., “Calculation of the lifetime of positronium in polymers via molecular dynamics simulations”, J. Chem. Phys., 11. 1040. 2000.
 
[8]  Wang, J., Vincent, J. and Quarles, C. A., “Review of positron annihilation spectroscopy studies of rubber with carbon black filler”, Nuclear Instruments and Methods in Physics Research B, 241. 271-275. 2005.
 
[9]  Mandal, A., Mukherjee, S., Pan, S.and Sengupta, A., “positron lifetime measurements in natural rubber with different fillers” Int. Journal of Modern Physics, 22. 112-117. 2013.
 
[10]  Mandal, A., Mukherjee, S., Pan, S., Saha, A. K. and Sengupta, A., “PALS and DSC studies in high energy electron irradiated semicrystalline polypropylene” Int. Conf. on Recent Trends in Applied Physics and Ma terial Science. AIP Conf. Proc. 1536. 839. 2013.
 
[11]  Dlubek, G., Shaikh, M. Q., Krause-Rehberg, R. and Paluch, M., “Effect of free volume and temperature on the structural relaxation in polymethylphenyl-siloxane: a positron lifetime and pressure-volume-temperature study.” The Journal of Chemical Physics, 126. 0249006. 2007.
 
[12]  Cao, H., Zhang, R., Yuan, J. P., Huang, C. M., Jean, Y. C., Suzuki, R., Ohdaira, T. and Nielsen, B., “Free-volume hole model for positronium formation in polymers: surface studies.”, J. Phys. Condens. Matter, 10. 10429-10442. 1998.
 
[13]  Tao, S. J., “Positronium annihilation in molecular substances”, J.Chem. Phy., 56. 5499. 1972.
 
[14]  Pethrick, R. A., “Positron annihilation – a probe for nanoscale voids and free volume”, Prog. Polym Sci, 22. 1. 1997.
 
[15]  Sangappa, A., Mahadevaiah, T., Ganesha, S., Divakara, S., Pattabi, M. and Somashekar, R., “Physical and Thermal Properties of 8 MeV Electron Beam Irradiated HPMC Polymer Films”, Nuclear Instruments and Methods in Physics Research B, 266 3975–3980. 2008.
 
[16]  Hareesh, K. and Sanjeev, G., “8 MeV Electron Induced Changes in Structural and Thermal Properties of Lexan Polycarbonate, Materials Sciences and Applications, 2. No. 11. 1682-1687. 2011.
 
[17]  Bershtein, V. A., Sirota, A. G. and Egorova, L. M., “Differential Scanning Calorimetry of Irradiated Polymers” Journal of Thermal Analysis, 38. 1215-1231. 1992 and references therein.
 
[18]  Abdel-Hady, E. E., Abdel-Hadmid, H. M. and Mohemed Hamdy, F. M., “Electron beam and gamma irradiation effects on conducting polystyrene studied by positron annihilation technique”, Radiation measurements, 38. 211-216. 2004.
 
[19]  Ziaie, F., Noori, A., Anvari, F., Ghaffari, M., Ahmadian, V. and Durrani, S.A., “Effect of high-dose electron irradiation on specific heat capacity of high-impact polystyrene”, Radiation Measurements, 40. 758-761. 2005.
 
[20]  Mirzaev, S. Z., Heimburg, T. and Kaatze, U., “Critical behavior of polystyrene-cyclohexane: Heat capacity and mass density”, Physical Rev. E, 82. 061502. 2010.
 
[21]  Kilburn, D., Bamford, D., Lupke, T., Dlubek, G., Menke, T. J. and Alam, M. A., “Free volume and glass transition in ethylene/1-octene copolymers: positron lifetime studies and dynamic mechanical analysis”, Polymer, 43. 6973-6983. 2002.
 
[22]  Eldrup, M., Lightbody, D. and Sherwood, J. H., “The temperature dependence of positron lifetimes in solid pivalic acid”, Chem. Phys., 63. 51. 1981.
 
[23]  Gregory, R. B., “Free‐volume and pore size distributions determined by numerical Laplace inversion of positron annihilation lifetime data”, J. Appl. Phys., 70. 4665. 1991.
 
[24]  Marzocca, A. J., Cerveny, S., Salgueiro, W., Somoza, A. and Gonzalez, L., “Characterization of free volume during vulcanization of styrene butadiene rubber by means of positron annihilation lifetime spectroscopy and dynamic mechanical test”, Physical Rev. E, 65. 021801. 2002.
 
[25]  Wastlund, C. and Maurer, F. H. J., “Positron Lifetime Distributions and Free Volume Parameters of PEO/PMMA Blends Determined with the Maximum Entropy Method”, Macromolecules, 30. 5870-5876. 1997.
 
[26]  Dlubek, G., Sengupta, A., Pionteck, J., Krause-Rehberg, R., Kaspar Harald and Helmut Lochhaas, K., “Temperature Dependence of the Free Volume in Fluoroelastomers from Positron Lifetime and PVT Experiments”, Macromolecules, 37. 6606-6618. 2004.
 
[27]  Al-Qaradawi, I. Y., “Electron Irradiated Low Density Polyethylene Studied by Positron Annihilation Lifetime Spectroscopy”, Radiation Physics and Chemistry, 68. 467-470. 2003.
 
[28]  O’Neill, M. J., “Measurement of Specific Heat Functions by Differential Scanning Calorimetry”, Analytical Chemistry, 38(10). 1331. 1966.
 
[29]  Pyda, M., “Conformational Heat Capacity of Interacting Systems of Polymer and Water”, Macromolecules, 35. 4009-4016. 2002.
 
[30]  Reading, M. and Hourston, D. J., “Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Application in Polymer characterization”, Springer, 2006.
 
Show Less References

Article

Physicochemical and Functional Properties of Native and Modified by Crosslinking, Dark-Cush-Cush Yam (Dioscorea Trifida) and Cassava (Manihot Esculenta) Starch

1Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela, Apartado, Caracas 1041-A, Venezuela

2LP&MC, Dep. de Física, Facultad de Ciencias Exactas y Naturales and IFIBA-CONICET, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 1, (C1428EHA), Buenos Aires, Argentina


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(1), 1-5
DOI: 10.12691/jpbpc-2-1-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Tomy J. Gutiérrez, Elevina Pérez, Romel Guzmán, María Soledad Tapia, Lucía Famá. Physicochemical and Functional Properties of Native and Modified by Crosslinking, Dark-Cush-Cush Yam (Dioscorea Trifida) and Cassava (Manihot Esculenta) Starch. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(1):1-5. doi: 10.12691/jpbpc-2-1-1.

Correspondence to: Tomy  J. Gutiérrez, Instituto de Ciencia y Tecnología de Alimentos, Facultad de Ciencias, Universidad Central de Venezuela, Apartado, Caracas 1041-A, Venezuela. Email: tomy.gutierrez@ciens.ucv.ve

Abstract

Cush-cush yam (Dioscorea trifida), is a sub-utilized tropical crop, rich in starch, which grown in tropical areas. The exploitation of its starch has great potential. The objectives of this research was to modify starch isolated from dark-cush-cush yam, which grown in the Venezuelan Amazonian, and commercial cassava starch, by cross linking, in order to characterize and compare them with their native counterparts. The results showed that differences in the amylose content affected the composition, structure and functional properties of both starches. The degree of substitution (DS) was more significant in the cush-cush starch yam than that of the cassava starch, even if both were within the ranges allowed by the FDA. The granular size of cassava starch was slightly changed by modification. The rheological properties also changed, increasing the viscosity peak, breakdown, consistency and setback. Finally, that modification method conferred great stability to the starches gelatinization.

Keywords

References

[1]  Li, J.H., Vasanthan, T., Hoover, R., Rossnagel, B.G., “Starch from hull-less barley: IV. Morphological and structural changes in waxy, normal and high-amylose starch granules during heating”, Journal Food Research International, 37, 417-428, 2004.
 
[2]  Pérez, E., Gibert, O., Rolland-Sabaté, A., Jiménez, Y., Sánchez, T., Giraldo, A., Pontoire, B., Guilois, S., Lahon, M.C., Reynes, M. and Dufour, D., “Physicochemical, Functional, and Macromolecular Properties of Waxy Yam Starches Discovered from “Mapuey” (Dioscorea trifida) Genotypes in the Venezuelan Amazon”, Journal Agricultural and Food Chemistry, 59, 263-273, 2011.
 
[3]  Sívoli, L., Pérez, E., Rodríguez, P., De Abrisqueta, A. and Raymúndez, M.B., “Cambios en la estructura granular durante el proceso de modificación química (fosfatado-acetilado) del almidón de yuca analizados por microscopía óptica y electronic”, Acta Microscópica, 14(1 and 2), 5-9, 2005.
 
[4]  FDA US Federal Drug Administration. CFR-code of federal regulations. Title 21. Part 172. Food additives permitted for direct addition to food for human consumption, Subpart I: Multipurpose additives. Silver Spring, MD: US Food and Drug Administration, 2011. [E-book] Available: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr¼172.892.
 
[5]  Pérez, E., Segovia, X., Tapia, M.A. and Schroeder, M., “Native and cross-linked modified Dioscorea trifida (cush-cush yam) starches as bio-matrices for edible films”, Journal of Cellular Plastics, 48 (6), 545-556, 2012.
 
Show More References
[6]  Lim, S. and Seib, A.P., “Preparation and properties of wheat and corn starch phosphates”, Journal Cereal Chemistry, 70 (2), 137-144, 1993.
 
[7]  AACC, Approved methods of the American Association of Cereal Chemists, Methods no. 44-15A, 08-01, 46-13, 02-52 and 02-31, St Paul, MN, USA: American Association of Cereal Chemists, 2003.
 
[8]  Schoch, T.J., Fatty substances in starch, In: Whistler RL (ed.) Methods in carbohydrates, Vol. IV, New York, NY, USA: Academic Press, pp. 56-61 and 101-103, 1964.
 
[9]  Mc Grance, S.J., Cornell, H.J. and Rix, J.C., “A simple and rapid colorimetric method for the determination of amylose in starch products”. Starch/Stärke, 50 (4), 158-163, 1998.
 
[10]  Deetae, P., Shobsngob, S., Varanyanond, W., Chinachoti, P., Naivikul, O., and Varavinit, S., “Preparation, pasting properties and freeze-thaw stability of dual modified crosslink-phosphorylated rice starch”, Journal Carbohydrate Polymers, 73, 351-358, 2008.
 
[11]  HunterLab. Universal software user’s manual, 2002. [E-book] Available: www.hunterlab.com.
 
[12]  Hsua, C.-L., Chen, W., Weng, Y.-M., and Tseng, C.-Y., “Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods”, Journal Food Chemistry, 83, 85-92, 2003.
 
[13]  Bello-Pérez, L.A., Meza-León, K., Contreras-Ramos, S. and Paredes-López, O., “Functional properties of corn, banana and potato starch blends”, Acta Científica Venezolana, 52, 62-67. 2001.
 
[14]  Cagampang, G., Perez, C. and Juliano, B., “A gel consistency for esting quality of rice”, Journal Food Science and Agriculture, 1589-1594, 1973.
 
[15]  Sívoli, L. Cambios en la estructura granular, molecular y cristalina del almidón de yuca por efecto de la modificación química (Fosfatación-Acetilación). Tesis Doctoral. Trabajo de Grado. Instituto de Ciencias y Tecnología de Alimentos. Facultad de Ciencias. Universidad Central de Venezuela, 2009.
 
[16]  Jay, J.M., Modern food microbiology, 5th Ed.Chapman & Hall Pub. New York, 1996.
 
Show Less References

Article

Knowledge of the Mechanism of Dreams can Aid in Problems Related to Room-Temperature Superconductivity

1A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(1), 6-11
DOI: 10.12691/jpbpc-2-1-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Delik. D. Gabaev. Knowledge of the Mechanism of Dreams can Aid in Problems Related to Room-Temperature Superconductivity. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(1):6-11. doi: 10.12691/jpbpc-2-1-2.

Correspondence to: Delik.  D. Gabaev, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia. Email: gabaevdd1@hotmail.com

Abstract

High – temperature superconductors are required in many fields of modern technology. However the difficulties related to creation of low temperature conditions for superconductors and the labor-intensive production and operation are hinder their widespread application. After analyzing the possible causative mechanism of dreams, I surmised that in order to signals from the information field penetrating through the sleeper’s eyes into a brain during the rapid eye movement sleep, axoplasm of neurons must possess a high conductivity. I then inferred that this high conductivity was due to the effect of the cranial bones. These bones apparently protect the brain not only from physical injuries but also from various kinds of wave “noise”; this noise produces oscillating motions of positive ions in the axoplasm of neurons, and, as a result, electrical resistance is increased. I measured the electrical resistance of a number of metallic conductors, which I coated with materials of various compositions and found that when nichrome wires were covered with clean bone glue, there was a conspicuous decrease in this resistance; in conductors containing iron, covered with clean bone glue, the resistance decreased to zero. If a thin layer of bone glue is covered with Moment rubber glue, the coating of ardent superconductor becomes elastic that makes the superconductor shockproof and resistant to moisture and magnetic fields and thus promising for modern engineering.

Keywords

References

[1]  Collins, G.P, “Ferrous clue”. V mire nauki (Sci Amer),10. 60-67. 2009.
 
[2]  Kamihara,Y., Watanabe, T., Hirano, M. and Hosono, H., “Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc =26 K”, J Am Chem Soc, 130 (11). 3296-3297. Jan. 2008.
 
[3]  Garwin, L., “Whorls upon whorls”, Nature, 350 (6316). 277. 1991.
 
[4]  Matsuishi, S., Inoue, Y., Nomura, T., Yanagi, H., Hirano, M., and Hosono, H., “Supercon-ductivity induced by co-doping in quaternary fluoroarsenide CaFeAsF”, J Am Chem Soc, 130(44).14428-14429. Aug. 2008.
 
[5]  Imamura, N., Mizoguchi, H., and Hosono, H., “Superconductivity in LaTmBN and La3Tm2B2N3 (Tm = transition metal) synthesized under high pressure”, J Am Chem Soc, 134. 2516-2519. Jan. 2012.
 
Show More References
[6]  Scheidt. E-W., Hathwar, V.R., Schmitz, D., Dunbar, A., Scheree,W., et al., “Superconductivity at Tc = 44 K in LixFe2Se2(NH3)y”, Eur Phys J B, 85. 279–283. Aug. 2012.
 
[7]  Engelmann, J., Müller, K.H, Nenkov, K., Schultz, L., Holzapfel, B.,et al., “Metamagnetic effects in epitaxial BaFe1.8Cr0.2As2 thin films”, Eur Phys J B, 85. 406-409. Dec. 2012.
 
[8]  Gatsunaev, N.,” Rectification of space”, Be sound! 9.96-99. 1999.
 
[9]  Daou, R., Chang, J., LeBoeuf, D., Cyr- Choiniére, O., Laliberté, F., and Doiron-Leyrand, N., “Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor”, Nature, 463(7280). 519-522. 2010.
 
[10]  Moler, K.A., “How the cuprates hid their stripes”, Nature, 468(7324).643-644. 2010.
 
[11]  Comarov, S.M., "Superconductor", Chem and life, 4.26-29. 2012.
 
[12]  Gerber, C., Anselmetti, D., Bednorz, J.G., Mannhart, J. and Schlom, D.G., ”Screw dislocations in high –Tc films”, Nature, 350(6316). 279-280. 1991.
 
[13]  Hawley, M., Raistrick, I.D., Beery, J.G., and Schlom, D.G., ”Growth mechanism of sputtered films of Yba2Cu3O7 studied by scanning tunneling microscopy”, Science, 251(5001). 49-51. 1991.
 
[14]  Taylor, D.J., Green, N.P.O., Stout, G.W., Biological Science. MIR, Moskow, 1-436. 2010.
 
[15]  Clarke, K.R., Green, R.H., “Statistical design and analisis for a “biological effects” study”, Mar Ecol Prog Ser, 46. 213-226. 1988.
 
[16]  Amato, I., “Spiral forest” may hold clue to thin-film superconductivity”, Science, 251(5001). 1564-1565. 1991.
 
[17]  Saper, C.B, Thomas, E., Lu, J. “Hypothalamic regulation of sleep and circadian rhythms”, Nature, 437.1257- 1263. Oct. 2005.
 
[18]  Mahowald, M., Schenck, C.H., “Insights from studying human sleep disorders”, Nature, 437. 1279-1285. Oct. 2005.
 
[19]  Nelson, S., McCarley, R., Hobson, S., “REM sleep burst neurons, PGO waves and eye movement information”, J Neuroph, 50(4). 784-797.1983.
 
[20]  Demkin, S., prophetic dreams. Be sound! 11.71-77. 2000.
 
[21]  Hobson, J.A., “Sleep is of the brain, by the brain and for the brain”, Nature, 437.1254-1256. Oct. 2005.
 
[22]  Martinez-Conde, S., Mechnik, S.L, “Window on the mind”, V mire nauki (Sci Amer), 11.52-59. 2011.
 
[23]  Shin, J., “The code of memory”, V mire nauki (Sci Amer), 11.18-25. 2007.
 
Show Less References

Article

Physicochemical, Spectroscopic and Rheological Studies on Eucalyptus Citriodora (EC) Gum

1Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria

2Department of Chemistry, Akwa Ibom State University, Ikot Akpaeden, Akwa Ibom State


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(1), 12-24
DOI: 10.12691/jpbpc-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Nnabuk Okon Eddy, Inemesit Udofia, Adamu Uzairu, Anduang O. Odiongenyi, Clement Obadimu. Physicochemical, Spectroscopic and Rheological Studies on Eucalyptus Citriodora (EC) Gum. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(1):12-24. doi: 10.12691/jpbpc-2-1-3.

Correspondence to: Nnabuk  Okon Eddy, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria. Email: nabukeddy@yahoo.com

Abstract

Analysis of physicochemical properties of Eucalyptus citriodora gum revealed that the gum is mildly acidic, brownish in colour, ionic and has the potentials to swell four times its original volume. GCMS analysis of the gum indicated the presence of some carboxylic acids, pyran-4-one, 1,3-dioxolane, benzofuran and 1,2-ethanediyl acetate while analysis of its FTIR spectrum revealed functional groups that are common to polysaccharides. Scanning electron micrograph of the gum also revealed the existence of particle aggregations with some internal bridges within the system. Rheological properties of the gum were found to be affected by pH, concentration, temperature and by the presence of some electrolytes (KCl, CaCl2, AlCl3 and urea). Average value of intrinsic viscosity deduced from Huggins and Kraemer plots was 3.51 dL/g while the sum of their constants was 0.36 (i,e< 0.5 and suggested the absence of molecular association). Calculated value of the Power law constant was (b= 0.812) less than unity and pointed to a rod like conformation. From the Master’s curve, the existence of dilute and concentrated regimes, (corresponding to ηsp0α C1.04 (at C> C*) and ηsp0 α C0.95 (at C < C*) respectively) was established. Eucalyptus citriodora gum is a shear thinning, non-Newtonian polymer that is characterized by pseudoplastic behavior. The gum has some potentials for use as food additives and for other industrial applications.

Keywords

References

[1]  D. Verbeken, S. Diekx, K. Dewettinck, Applied Microbiological Biotechnology, 2003, 63, 10.
 
[2]  R.C.M de paula,.,S.A. Santana, J.F. Rodrigues, Carbohydrate Polymers, 2001, 44, 133.
 
[3]  G.S. Mhinzi, Food Chemistry, 2002, 77, 30.
 
[4]  L.R.C. Pablyana,, C.M.R. de Paula, P.A. Feitosa, International Journal of Biological macromolecules, 2007, 41, 324.
 
[5]  Q. Wang, P.R. Ellis, S.B. Ross-Murphy, W. Burchard, Carbohydrate Polymer, 1997, 33, 115.
 
Show More References
[6]  M.P.Yadav, N. Parris, D.B. Johnson, K.B. Hicks, Journal of Agricultural and Food Chemistry, 2008, 56, 4181.
 
[7]  M. Elmanan, S. Al-Assaf, G.O. Phillips, P.A. Williams, Food hydrocolloids, 2008, 22, 682.
 
[8]  S.E. Ahmed, B.E. Mohamed, K.A.Karamalla, Pakistan J. Nutrit. 2009, 8(6), 782.
 
[9]  M. Rinaudo, Food Hydrocolloids, 2001, 15, 433.
 
[10]  H.A. Khouryieh, T.J. Herald, F.Aramouni, S.Alavi, Food Research International, 2007, 40, 883.
 
[11]  A.R.R.Menon,. Iranian Polymer Journal, 2003, 12(4), 305.
 
[12]  N. O. Eddy, P. Ameh, C.E.Gimba, E.E.Ebenso, Asian Journal of Chemistry, 2012a, 25(3),1666.
 
[13]  D.M.W. Anderson, F.L. McDougal, Food additives and contaminants, 1983, 4(3), 257.
 
[14]  M.M.Jafar, E. Zahra, S. Mohammad, M. Mohammad, G.Babak, Iranian Journal of Chemistry and Chemical Engineering, 2007, 26(3), 81.
 
[15]  K.A.Karamalla, N.E. Siddig,, M.E. Osman, Food Hydrocolloids, 1998, 12, 373.
 
[16]  O.H.M. Idris, P.A.Williams, G.O. Phillips, Food Hydrocolloids, 1998, 12, 379.
 
[17]  J.K. Lelon, I.O. Jumba, J.K. Keter, W. Chemuku, F.D.O. Oduor, African J. Phys. Chem., 2010, 4(4), 95.
 
[18]  N. E. Siddig, M.E.Osman, S. A-Assef, G.O. Phillips, P.A. Williams, Food Hydrocolloids, 2005, 19, 679.
 
[19]  JECFA-FAO, Specification for identity and purity of certain food additives. Food and Nutrition Paper No. 49, Rome, 1990.
 
[20]  E.I Nep, and B.R. Conway, Journal of Excipient and Food Chemistry, 2010, 1(1), 30.
 
[21]  S. D. Figueiro, J.C. Goes, R.A. Moreira, A.S.B. Sombra, Carbohydrate Polymers, 2004, 70(1), 15.
 
[22]  D.K Setua, R. Awasthi, S. Kumar, M. Prasad, K. Agarwal, Scanning electron microscopy of natural rubber surfaces: quantitative statistical and spectral texture analysis using digital image processing” Microscopy: Science, Technology, Applications and Education. A. Méndez-Vilas and J. Díaz (Eds.), 2010.
 
[23]  I. L. Acevedo, M. Katz, M..J. Solut. Chem. 1990, 19(10), 1041.
 
[24]  X. Ma, M. Pawlik, Carbohydrate Polymers, 2007, 70, 15
 
[25]  J. Higiro, T.J. Herald, S.Alavi, S. Bean. Food research international, 2006, 40, 435.
 
[26]  L.S Lai, J. Tung, P.S. Lin, Food Hydrocolloids, 2000, 14, 287.
 
[27]  R. Lapasin, S.Pricl, Rheology of Polysaccharide Systems. In: R Lapasin and S Pricl (eds.). Rheology of industrial polysaccharides: Theory and applications Blackie Academic and Professional, Glasgow, 1995.
 
[28]  E.R.Morris, A.N. Cutler, S.B. Ross-Murphy, D.A.Ress, J. Price, Carbohydrate Polymer, 2003, 1, 5.
 
[29]  S.V. Nair, Z. Oommen, S. Thomas. Materials Letters, 2002, 57, 475.
 
[30]  E.P. Varfolomeeva, V.Y. Grinberg, V.B. Toistogusov, Rheology of Polymer. Polymer Bulletins, 1980, 2, 613.
 
[31]  R.C.M. de Paula, J. F. Rodrigues, Carbohydrate Polymer, 1995, 26(3), 177.
 
[32]  A.G. Silva, J.F.Rodrigues, R.C.M. de Paula, PolimerosClencia e Technologia-ano VIII, 1998, 2, 34.
 
[33]  R.C.M. de Paula, S. A. Santana, J. F. Rodrigues, Food Res. Intern. 2006, 39, 165.
 
[34]  N.O Eddy, P.O. Ameh, C.E. Gimba, E.E. Ebenso, Journal of Chemistry, 2013.
 
[35]  N. Ahmad, A.Saeed, K.Ahad, M.S.Khan,. J. Chem. Soc. Pakistan, 1994, 16(2), 91.
 
[36]  F.D. Sanin, Water SA, 2002, 28(2), 207.
 
[37]  K. Khounvilay, W. Sittikijypthin, Food Hydrocolloids, 2012, 26(2), 334.
 
[38]  E.I.Yassen, T.J.. Herald, F.M.Aramouni, S. Alavi, Food Research International, 2005, 38, 111.
 
[39]  P. Ameh, N.O. Eddy, C.E.Gimba, Physiochemical and rheological studies on some natural polymers and their potentials as corrosion inhibitors. Lambert Academic Publishing. UK, 2012.
 
[40]  N. Triantafillopoulos, Measurement of Fluid Rheology and Interpretation of Rheograms” 2nd edition.Kaltec Scientific, Inc. USA, 1998.
 
[41]  J.S. Alakall, S,V.Irtwange, M. Mkavga, Afri. J. Food Sci., 2009, 3(9), 237.
 
[42]  F.F. Simas-Tosin, R.R.Barraza, C.L.O. Petkowicz, J.L.M. Silveira, G.L.Sassaki, E.M.R. Santos, P.A.J. Gorin, M.Iacomini, Food Hydrocolloids, 2010, 24, 486.
 
[43]  AOAC, Association of Official Agricultural Chemists. “Official Methods of Analysis”14th Edition. Washington, D.C., 1986.
 
Show Less References

Article

Variations in Specific Heat and Microstructure in Natural Rubber Filled with Different Fillers as Studied by Differential Scanning Calorimetry

1Physics Department, Visva-Bharati Central University, P.O.- Santiniketan, West Bengal, India

2Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala, India


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(1), 25-28
DOI: 10.12691/jpbpc-2-1-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Arunava Mandal, Sandip Pan, Subrata Mukherjee, Achintya K. Saha, Sabu Thomas, Asmita Sengupta. Variations in Specific Heat and Microstructure in Natural Rubber Filled with Different Fillers as Studied by Differential Scanning Calorimetry. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(1):25-28. doi: 10.12691/jpbpc-2-1-4.

Correspondence to: Asmita  Sengupta, Physics Department, Visva-Bharati Central University, P.O.- Santiniketan, West Bengal, India. Email: asmita_sengupta@hotmail.com

Abstract

The variation of specific heat (Cp) of natural rubber (NR) is studied by Differential Scanning Calorimetry (DSC). The NR samples are filled with different fillers (nanoclay, TiO2, and nanosilica) at different concentrations. The DSC measurements are done in N2 atmosphere with constant pressure of 0.3 bar to prevent any oxidation of the samples. The temperature has been varied up to 210°C from -40°C at a constant heating rate of 10°C \min throughout the experiment and Proteus analysis software is used to study the variation of specific heat (Cp) as function of both temperature and filler concentrations. The investigation shows that the Cp values increase with the increase of filler concentrations. Due to nanometer range diameter, these fillers fill up some of the free volume holes of NR sample. The fillers also make cross-link with NR chains causing an increase the molecular weight of NR as well as the Cp values. Thus the fillers act as active fillers for NR sample.

Keywords

References

[1]  Dlubek, G., Sengupta, A., Pionteck, J., Krause-Rehberg, R., Kaspar Harald and Helmut Lochhaas, K., “Temperature Dependence of the Free Volume in Fluoroelastomers from Positron Lifetime and PVT Experiments”, Macromolecules, 37. 6606-6618. 2004
 
[2]  Vleeshouwers, S., Kluin, J. E., McGervey, J. D., Jamieson, A. M., and Simha, R., “Monte Carlo calculations of hole size distribution: simulation of positron annihilation spectroscopy” J. Polym. Sci., Part B. Polym. Phys., 30. 1429. 1992.
 
[3]  Schmitz, H. and Muller- Plathe, F., “Calculation of the lifetime of positronium in polymers via molecular dynamics simulations”, J. Chem. Phys., 11. 1040. 2000.
 
[4]  Wang, J., Vincent, J. and Quarles, C. A., “Review of positron annihilation spectroscopy studies of rubber with carbon black filler”, Nuclear Instruments and Methods in Physics Research B, 241. 271-275. 2005.
 
[5]  Mandal, A., Mukherjee, S., Pan, S. and Sengupta, A., “positron lifetime measurements in natural rubber with different fillers” Int. Journal of Modern Physics, 22. 112-117. 2013.
 
Show More References
[6]  Mandal, A., Mukherjee, S., Pan, S., Saha, A. K. and Sengupta, A., “PALS and DSC studies in high energy electron irradiated semicrystalline polypropylene” Int. Conf. on Recent Trends in Applied Physics and Ma terial Science. AIP Conf. Proc. 1536. 839. 2013.
 
[7]  Mandal, A., Pan, S., Mukherjee, S., Saha, A. K. Ranganathaiah, C. and Sengupta, A. “High energy electron irradiated polystyrene: free volume and thermal properties studied by PALS and DSC”, Journal of Polymer and Biopolymer Physics Chemistry, 1. No. 1, 26-30. 2013.
 
[8]  Mogensen, O. E, Positron Annihilation in Chemistry, Springer-Verlag, Barlin, vol. 58, 1995.
 
[9]  Dallas D. Parker , J. L. Koenig , Makio Mori, “Correlation of 13 C NMR Analysis and Physical Testing Results of Natural Rubber” Rubber Chem. Technol. 68. 551. 1995.
 
[10]  Nesterov, A. E. and Lipatov, Y. S., “Compatibilizing effect of filler in binary polymer mixtures” Polymer, 40. 1347-1349. 1999.
 
[11]  Saad A. L. G., El-Sabbagh S.: Compatibility studieson some polymer blend systems by electrical and mechanical techniques. Journal of Applied Polymer Science, 79, 60- 71 2001.
 
[12]  Sae-oui1, P., Sirisinha, C. and Hatthapanit, K., “Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends” Express Polymer Letters 1, No. 1. 8-14. 2007.
 
[13]  Ramesan M. T., Alex R., Khanh N. V., “Studies on the cure and mechanical properties of blends of natural rubber with dichlorocarbene modified styrene-butadi-ene rubber and chloroprene rubber”. Reactive & Functional Polymers, 62, 41-50 2005.
 
[14]  Ismail H., Leong H. C., “Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rub-ber blends”, Polymer Testing, 20, 509- 516, 2001.
 
[15]  Kueseng, P.; Sae-oui, P. and Rattanasom, N., “Mechanical and electrical properties of natural rubber and nitrile rubber blends filled with multi-wall carbon nanotube,” Polymer Testing. 32, 731- 738, 2013.
 
[16]  Zhang, P., Shi, X., Yu, G. and Zhao, S., “The structure change of dynamically fatigued unfilled natural rubber vulcanizates,” Journal of Applied Polymer Science, 115. No. 6. 3535- 3541, 2010.
 
[17]  Yehia, A. A.; Mansour, A. A. and Stoll, B. J. “Detection of compatibility of some rubber blends by DSC.” J Thermal Analysis. 48. 1299. 1997.
 
[18]  Pyda, M., “Conformational Heat Capacity of Interacting Systems of Polymer and Water”, Macromolecules, 35. 4009-4016. 2002.
 
[19]  Reading, M. and Hourston, D. J., “Modulated Temperature Differential Scanning Calorimetry: Theoretical and Practical Application in Polymer characterization”, Springer, 2006.
 
[20]  O’Neill, M. J., “Measurement of Specific Heat Functions by Differential Scanning Calorimetry”, Analytical Chemistry, 38 (10). 1331. 1966.
 
Show Less References

Article

Nuclear Waste Reduction Using Molecularly Imprinted Polymers

1University of Pittsburgh, USA


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(2), 29-36
DOI: 10.12691/jpbpc-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Joe Nero, Jon Bartczak. Nuclear Waste Reduction Using Molecularly Imprinted Polymers. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(2):29-36. doi: 10.12691/jpbpc-2-2-1.

Correspondence to: Jon  Bartczak, University of Pittsburgh, USA. Email: jab331@pitt.edu

Abstract

Nuclear power accounts for just over twenty percent of America’s electrical output and does not contribute to greenhouse gas emissions. Unfortunately, nuclear power does produce a deleterious by-product known as radioactive waste. One of the primary goals of nuclear power proponents is the development of methods that reduce the volume of radioactive waste, such as cobalt. Radioactive cobalt is usually accompanied by non-radioactive iron, making it more difficult to solely extract the harmful cobalt atoms. The application of molecularly imprinted polymers and chitosans increase the effectiveness of the removal of radioactive cobalt from cooling medium in order to reduce the overall volume of nuclear waste by having a high selectivity for the radioactive cobalt ions even in the presence of similar particles. This method’s efficacy will be analyzed and compared to the current procedures for removing radioactive cobalt from cooling medium. A relevant explanation of a nuclear reactor’s inner workings, radioactive waste formation, along with societal implications of cleaner nuclear power, and the benefits of its successful implementation, will also be discussed.

Keywords

References

[1]  P. Hodgeson. (2008, October). “Nuclear Power and the Energy Crisis.” First Principles. [Online.] Available: http://www.firstprinciplesjournal.com/articles.aspx?article=1110&loc=qs.
 
[2]  P. Hodgeson. (2008, October). “The Energy Crisis” First Principles. [Online.] Available: http://www.firstprinciplesjournal.com/articles.aspx?article=1080&loc=fs.
 
[3]  M. Jason. (2012, Feb 10). “Energy Density and Waste Comparison of Energy Production.” Nuclear Fissionary. [Online Article]. Available: http://nuclearfissionary.com/2010/06/09/energy-density-and-waste-comparison-of-energy-production/
 
[4]  J. Wiley. “Nuclear Fission Basics” [Online]. http://www.dummies.com/how-to/content/nuclear-fission-basics.html.
 
[5]  B. Cohen. (2012, March). “Risks of Nuclear Power.”
 
Show More References
[6]  A. Bhaskarapillai, S. Narashima, B. Sellergren. (2009, April). “Synthesis and Characterization of Imprinted Polymers for Radioactive Waste Reduction.” Industrial and Engineering Chemistry Research. [Online]. Available: http://web.ebscohost.com/ehost/detail?vid=4&hid=17&sid=cee5d4a5-7e9c-451f-aa38-0a613f704e9c%40sessionmgr12&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=aph&AN=37374694
 
[7]  D. D. Ebbing, S. D. Gammon. (2009). General Chemistry: Ninth edition. Belmont, Ca: Brooks/Cole. Page 821-857.
 
[8]  (2011, August). “Radiation Basics.” Health Physics Society. [Online]. Available: http://hps.org/publicinformation/ate/faqs/radiation.html.
 
[9]  (2012, January 22). “Nuclear Dawn.” The Economist [Online]. Available: http://www.economist.com/node/9719029.
 
[10]  A. Martin-Esteban. (2010, September). “Molecular Imprinting.” Sciverse. [Online]. http://www.scitopics.com/Molecular_Imprinting.html
 
[11]  “Polymer Structure” Case Western Reserve University. [Online]. Available: http://plc.cwru.edu/tutorial/enhanced/files/polymers/struct/struct.htm.
 
[12]  N. Lemcoff, S. Zimmerman. (2004, May). “Synthetic Hosts Via Molecular Imprinting—are Universal Synthetic Antibodies Realistically Possible?” Chem. Comm. [Online]. Available: http://www.rsc.org/Publishing/Journals/cc/article.asp?Type=Issue&Journalcode=CC&Issue=1&SubYear=2004&Volume=0&Page=0&GA=on.
 
[13]  D. Blauch. (2009). “Elemental Analysis: Carbon and Hydrogen.” Davidson College. [Online]. Available: http://www.chm.davidson.edu/vce/stoichiometry/ch.html.
 
[14]  B. Tissue. (2012, March). “Atomic Absorption Spectroscopy.” Virginia Technical Institute. [Online]. Available: http://www.files.chem.vt.edu/chem-ed/spec/atomic/aa.html
 
[15]  S. Luca. “Flame Photometry.” Standard Base. [Online]. Available: http://www.standardbase.com/tech/FinalHUTechFlame.pdf.
 
[16]  (2008) “Chain-Growth Polymerization.” Steinwall Inc. [Online]. Available: http://www.steinwall.com/ART-chain-growth-polymerization.html.
 
[17]  N. Abdul, B. Anupkumar, V. Sankaralingam, N. Sevilimedu. (2012, March). “Cobalt Imprinted Chitosan for Selective Removal of Cobalt During Nuclear Reactor Decontamination.” Carbohydrate Polymers. [Online]. Available: http://web.ebscohost.com/ehost/detail?vid=6&hid=107&sid=a55a330c-edfa-4024-a955-9e59f81bc796%40sessionmgr14&bdata=JnNpdGU9ZWhvc3QtbGl2ZQ%3d%3d#db=aph&AN=70039845.
 
[18]  A.Azapagic, C. Greenhalgh. (2009, December). “Review of Drivers and Barriers for Nuclear Power in the UK.” Environmental Science and Policy. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1462901109000987.
 
[19]  L. Warren. (1998, September). “Public Perception of Radioactive Wastes.” Interdisciplinary Science Revies. [Online]. Available: https://sremote.pitt.edu/content/maney/isr/1998/00000023/00000003/,DanaInfo=www.ingentaconnect.com+art00004?token=003f13882d47b76504c48663b252c232b6c533142595e6a333f257666954838.
 
Show Less References

Article

Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures

1Laboratorio de Membranas, Instituto de Física Aplicada, CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, San Luis, Argentina


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(2), 37-43
DOI: 10.12691/jpbpc-2-2-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Martin Alberto Masuelli. Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(2):37-43. doi: 10.12691/jpbpc-2-2-2.

Correspondence to: Martin  Alberto Masuelli, Laboratorio de Membranas, Instituto de Física Aplicada, CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco, San Luis, Argentina. Email: masuelli@unsl.edu.ar

Abstract

The intrinsic viscosity measurements used to calculate the Mark-Houwink (M-H) parameters are generally performed for different molecular weights at a constant temperature, with the standard value of this temperature being 25°C, or else 37°C in the case of mammalian proteins, or else under theta conditions for polymers and biopolymers. In the polymer industry, polysaccharides and proteins must circulate through pipes during transport processes where pumps have a very high-energy expenditure and where temperatures must be greatly increased, and at this point calculation of the Mark-Houwink parameters becomes important. The M-H parameters are calculated at standardized temperatures and in many cases, these are not useful because of the errors they carry, and it then becomes very difficult to calculate the molecular weight. It is therefore necessary to know the change in molecular weight as evidence of a change in the product obtained, as this may create a need to halt the production process, transport, or extrusion. The basic criterion is that the molecular weight does not change with temperature, or at least within one discrete range of temperatures, but that there is hydrodynamic change (intrinsic viscosity). The method is simple and requires iterative mathematical processing and measurement of intrinsic viscosity at different temperatures.

Keywords

References

[1]  Haurowitz, F. The Chemistry and Functions of Proteins, Academic Press, 1963.
 
[2]  Matsuoka, S.; Cowman, M.K. 2002. Equation of state for polymer solution. Polymer 43, 3447-3453.
 
[3]  van Holde, K.E. Physical Biochemistry, Foundations of Modern Biochemistry Series, Prentice-Hall, 1971.
 
[4]  Sun, S.F. Physical chemistry of Macromolecules. John Wiley & Sons, 2004.
 
[5]  Teraoka, Iwao. Polymer Solutions: An Introduction to Physical Properties. John Wiley & Sons, 2002.
 
Show More References
[6]  Utracki, L.; Simha, Robert. Molecular Weight and Temperature Dependence of Intrinsic Viscosities in very Poor Solvents. J. Phys. Chem. 1963; 67: 1056-1061.
 
[7]  Dohmen, Monique P. J.; Pereira, Ana M.; Timmer, J. Martin K.; Benes, Nieck E.; Keurentjes, Jos T. F. Hydrodynamic Radii of Polyethylene Glycols in Different Solvents Determined from Viscosity Measurements. J. Chem. Eng. Data 2008; 53: 63-65.
 
[8]  Rahmat Sadeghi, Mohammed Taghi Zafarani-Moattar. Thermodynamics of aqueous solutions of polyvinylpyrrolidone. J. Chem. Thermodynamics 2004; 36: 665-670.
 
[9]  Guner A. Unperturbed dimensions and theta temperature of dextran in aqueous solutions. Journal of Applied Polymer Science 1999; 72: 871-876.
 
[10]  Catiker Efkan, Guner Ali. Unperturbed dimensions and the theta temperature of dextran in ethylene glycol solutions. European Polymer Journal 2000; 36: 2143-2146.
 
[11]  Kasaai, Mohammad R. Calculation of Mark-Houwink-Sakurada (MHS) equation viscometric constants for chitosan in any solvent-temperature system using experimental reported viscometric constants data. Carbohydrate Polymers 2007; 68: 477-488.
 
[12]  Rong Huei Chen, Wei Yu Chen, Shang Ta Wang, Chu Hsi Hsu, Min Lang Tsai. Changes in the Mark-Houwink hydrodynamic volume of chitosan molecules in solutions of different organic acids, at different temperatures and ionic strengths. Carbohydrate Polymers 2009; 78: 902-907.
 
[13]  Rong Huei Chen, Min Larng Tsai. Effect of temperature on the intrinsic viscosity and conformation of chitosans in dilute HCl solution. International Journal of Biological Macromolecules 1998; 23: 135-141.
 
[14]  Masuelli, Martin Alberto. Viscometric study of pectin. Effect of temperature on the hydrodynamic properties. International Journal of Biological Macromolecules 2011; 48: 286-291.
 
[15]  Huggins M.L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. J. Am. Chem. Soc. 1942; 64, 11: 2716-2718.
 
[16]  Staudinger, H. Die hochmolekularen organischen Verbindungen. Berlin: Julius Springer, 1932.
 
[17]  Mark, H. in Der feste Körper (ed. Sänger, R.), 65-104 (Hirzel, Leipzig, 1938).
 
[18]  Houwink, R. Zusammenhang zwischen viscosimetrisch und osmotisch bestimm-ten polymerisationsgraden bei hochpolymeren. J. Prakt. Chem. 1940; 157: 15.
 
[19]  García de la Torre, J.; Carrasco, B. Universal size-independent quantities for the conformational characterization of rigid and flexible macromolecules. Progress in Colloid Polymers Science 1999; 113: 81-86.
 
[20]  Harding, Stephen E. The Viscosity Intrinsic of Biological Macromolecules. Progress in Measurement, Interpretation and Application to Structure in Dilute Solution. Progress in Biophysical Molecules Biological 1997; 68: 207-262.
 
[21]  Flory, P.J; Leutner, F.S. “Occurrence of Head-to-Head Arrangements of Structural Units in Polyvinyl Alcohol”, J. Polym. Sci. 1948; 3: 880.
 
[22]  Carather Jr., C.E. Generation of Poly (vinyl alcohol) and Arrangement of Structural Units, J. Chem. Edu. 1978; 55: 473-475.
 
[23]  Rehana Saeed, Fahim Uddin, Arshad Fazal. Effect of Electrolyte Concentration on Viscous Flow of Polymer Solutions. J. Chem. Eng. Data 2002; 47: 1359-1362.
 
[24]  Misra, G. S., Mukherjee, P. K. The relation between the molecular weight and intrinsic viscosity of polyvinyl alcohol. Colloid & Polymer Sci. 1980; 258: 152-155.
 
[25]  Tinland, B.; Rinaudo, M. Dependence of the Stiffness of the Xanthan Chain on the External Salt Concentration. Macromolecules 1989; 22: 1863-1865.
 
[26]  Masuelli, Martin Alberto & Sansone, Maria Gabriela. Hydrodynamic properties of Gelatin. Studies from intrinsic viscosity measurements. Chapter 5 of book: Biopolymers, INTECH, 2012, ISBN 979-953-307-229-5, Croatia.
 
[27]  Pouradier, J. & Venet, M. Contribution a l'etude de la structure des gélatines V.-Dégradation de la gélatine en solution isoélectrique, Journal de Chimie Physique et de Physico-Chimie Biologique 1952; 49: 85-91.
 
[28]  Bohidar, H.B. Hydrodynamic properties of gelatin in dilute solutions. International Journal of Biological Macromolecules 1998; 23: 1-6.
 
[29]  Gomez-Estaca, J., Montero, P., Fernandez-Martin, F., & Gomez-Guillen, M. C. (2009). Physico-chemical and film forming properties of bovine-hide and tuna-skin gelatin: a comparative study. Journal of Food Engineering, 2009, 90, 4: 480-486.
 
[30]  Zhao, W. B. Gelatin. Polymer Data Handbook. Oxford University Press, 1999.
 
[31]  Qing Shen, Di Mu, Li-Wei Yu, Liang Chen. A simplified approach for evaluation of the polarity parameters for polymer using the K coefficient of the Mark-Houwink-Sakurada equation. Journal of Colloid and Interface Science 2004; 275: 30-34.
 
[32]  Masuelli, Martin Alberto. Study of Bovine Serum Albumin Solubility in Aqueous Solutions by Intrinsic Viscosity Measurements. Advances in Physical Chemistry, Volume 2013, Article ID 360239, 8 p.
 
[33]  Masuelli, Martin A.; Takara, Andres; Acosta, Adolfo. Hydrodynamic properties of tragacanthin. Study of temperature influence. The Journal of the Argentine Chemical Society, 2013, 100: 25-34.
 
[34]  Masuelli, Martin A. Hydrodynamic properties of whole arabic gum. American Journal of Food Science and Technology, 2013, 1, 3: 60-66.
 
[35]  Masuelli, Martin Alberto. Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect. Journal of Polymer and Biopolymer Physics Chemistry, 2013, 1, 1: 13-21.
 
[36]  Masuelli, Martin Alberto & Illanes, Cristian Omar. Review of the characterization of sodium alginate by intrinsic viscosity measurements. Comparative analysis between conventional and single point methods. International Journal of BioMaterials Science and Engineering, 2014, 1, 1: 1-11.
 
Show Less References

Article

Comparatively Study of Natural and Polymeric Cotton

1Department of Textile Engineering, KIOT, Wollo University, South Wollo, Ethiopia

2Department of Chemical Engineering, KIOT, Wollo University, Kombolcha, Ethiopia


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(3), 44-49
DOI: 10.12691/jpbpc-2-3-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Karthikeyan M. R, Omprakash Sahu. Comparatively Study of Natural and Polymeric Cotton. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(3):44-49. doi: 10.12691/jpbpc-2-3-1.

Correspondence to: Omprakash  Sahu, Department of Chemical Engineering, KIOT, Wollo University, Kombolcha, Ethiopia. Email: ops0121@gmail.com

Abstract

An Investigation of the properties of weft knitted fabrics produced from organically made cotton vis-à-vis regular cotton knitted fabric is reported. The yarn is made with organically produced cotton and regular cotton and the fabric was knitted using single jersey machines. The fabrics were subsequently dyed using natural dyes. The naturally dyed knitted fabrics were examined for shrinkage, bursting strength, abrasion resistance, colour fastness properties. The result show that the knitted fabrics produced from organically grown cotton is superior in performance in comparing with fabrics produced from regular cotton.

Keywords

References

[1]  AATCC, (1995), ‘Technical manual of the American Association of Textile Chemist and Colorist’, Col 70, American associations of Textile Chemists and Colorists, Canada. P. 23.
 
[2]  Bhavasar. A.M, (2004),’Dyeing and Finishing of Cotton’, Man Made Textile in India Journal, L. Simson publications, pp. 580.
 
[3]  Chemical finishing of textiles (2004), edited by S.D. Wolfgang, Wood Head Publishing.
 
[4]  Wickens hetty, ‘Natural Dye for Spinners and Weavers’, BT Batsford Limited, London.
 
[5]  Priyank Dasgupta Brahma, ‘Cotton Organic Orientations’, Modern Textile Journal, Oct-Nov. 2007, pp. 19-23.
 
Show More References
[6]  Natural dyes February 2008, ‘Colourage’ – Gahlot, Mumbai-79.
 
[7]  Environment production –April 2006, ‘Colourage’, pp. 52-54.
 
[8]  Organic cotton – July 2006, ‘Asian Textile Journal’, pp. 75-79.
 
[9]  Ravichandran. P, (2002), Colourage, Vol – XLIX. No. 11, The Future of Cotton, p. 1.
 
[10]  Kaplan. N. S (2001), Textile Fibers, Abshishek Publication, Chandigar, pp. 203.
 
[11]  Mary D. Boundrea and Frenderick A. Beleand (2006), the Journal of Environmental Science and Health, Part C, pp. 103-154.
 
[12]  Mishra. S. P (2000), A Text Book of Fiber Science and Technology, New Age International Publishers, pp. 2.
 
[13]  Natural Colored Cotton – July 2006, ‘Colourage’, pp. 57.
 
[14]  Globalize Organic Cotton – November 2006, ‘Apparel Online’, pp. 16-30.
 
[15]  Environment production – November 2006, ‘Colourage’, pp. 38-42.
 
[16]  Iyer. N. D, (2001), ‘Cotton the King of Fibers’, Colourage, May, Colourage publications, pp. 75-76.
 
[17]  Teli. M. D, Paul Roshan, Pardeshi. P.P, (2001) Natural Dyes, Classification Chemistry and Extraction Methods, Colourage, April 2001, 51.
 
Show Less References

Article

Rheological Behaviour of Eco-friendly Drilling Fluids from Biopolymers

1Department of Environmental Engineering/Industrial Safety, Imo State Polytechnic, Umuagwo, Nigeria

2Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria


Journal of Polymer and Biopolymer Physics Chemistry. 2014, 2(3), 50-54
DOI: 10.12691/jpbpc-2-3-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
O.U. Nwosu, C. M. Ewulonu. Rheological Behaviour of Eco-friendly Drilling Fluids from Biopolymers. Journal of Polymer and Biopolymer Physics Chemistry. 2014; 2(3):50-54. doi: 10.12691/jpbpc-2-3-2.

Correspondence to: C.  M. Ewulonu, Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, Nigeria. Email: cm.ewulonu@unizik.edu.ng

Abstract

The rheological properties of drilling fluids modified with three biopolymers – carboxylmethyl cellulose (CMC), xanthan gum polysaccharide (xanplex D), and polyanionic cellulose (PAC-R) have been studied. The effect of concentration of the biopolymers on the drilling fluid was also reported. The modified drilling fluids were found to obey Herschel-Bulkley rheological model. The fluids were also found to be pseudo-plastic with shear thinning behaviour. Polyanionic cellulose showed the highest shear rate and shear stress than carboxylmethyl cellulose and xanplex D. This can be attributed to the straight open long chain structure of PAC-R and its ability to interact with water, solids and with itself. It also acted as a better viscosifier because of the more negative charge it carries. Also, the formulation of biopolymer drilling fluid with bentonite has proven to improve the viscosity than that encountered in normal conventional drilling fluids.

Keywords

References

[1]  R. B. Watson, P. Viste, and J. R. Lauritzen, “The influence of fluid loss additives in high temperature reservoirs”, Society of Petroleum Engineers Conference Paper, 2012.
 
[2]  B. K. Warren, T. R. Smith, K. M. Ravi, “Static and dynamic fluid-loss characteristics of drilling fluids in a full-scale wellbore”, Society of Petroleum Engineers Conference Paper, 1993.
 
[3]  National Iranian Oil Company (NIOC) manual, “Drilling formation”, Department of Drilling Chemistry, Ahwaz, Iran, 2002.
 
[4]  S. Z. Kassab, A. S. Ismail, and M. M. Elessawi, “Drilling fluid rheology and hydraulics for oil fields”, European Journal of Scientific Research, Vol. 57, Issue 1, p68, 2011.
 
[5]  Deily et al., “New biopolymer low-solids mud speeds drilling operation”, The Oil and Gas Journal, vol. 65, No. 26, pp. 62-70, 1967.
 
Show More References
[6]  H. C. H. Darley, and G. R. Gray, “Composition and properties of drilling and completion fluids”, 5th ed. Gulf Professional Publishing, Houston, USA, pp. 66-67, 561-562, 1988.
 
[7]  J. L. Lummus, and J. J. Azar, “Drilling fluids optimization: A practical field approach”, PennWell Books, Tulsa-Oklahoma, USA, pp. 3-5, 1986.
 
[8]  J. F. Douglas, J. M. Gas-lorek, and J. A. Swaffield, “Fluid mechanics”, 3rd ed. ELBS with Longman, 1995.
 
[9]  American Petroleum Institute, “Drilling fluid testing procedure manual”, USA, 2000.
 
[10]  TEAP-ENIAgip Division, “Drilling fluid and waste disposal manual”, Nigeria, 2000.
 
[11]  T. Hamida, E. Kuru, and M. Pickard, “Rheological characteristics of aqueous waxy hull-less barley (WHB) solutions”, Journal of Petroleum Science and Technology, 69, pp 163-173, 2009.
 
[12]  T. Adam, Jr. Bourgoyne, E. C. Martin, F. S. Keithk, and Jr. Young, “Applied drilling engineering”, Society of Petroleum Engineers Text Book Series, Vol. 2, pp. 4082, 1991.
 
[13]  L. M. Zhang, Y. B. Tan, and Z. M. Li, “New water-soluble ampholytic polysaccharides for oilfield drilling treatment: A preliminary study” Carbohydr. Polym.44, pp. 255-260, 2001.
 
[14]  E. Lucas, C. Mansur, and L. Spinelli, Pure and Applied Chemistry, 81, pp. 473, 2009,
 
[15]  A. Przepasniak and P. Clark, Society of Petroleum Engineers, Conference paper SPE-39461, Lafayette, EUA, 1998.
 
[16]  A. Martins, A. Waldman, and D. Ribeiro, Society of Petroleum Engineers, Conference paper SPE-94287, Madrid, Spain, 2005.
 
[17]  N. J. Alderman, D. R. Babu, T. L. Hughes, and G. C. Maitland, “Rheological properties of water-based drilling muds”, in 4th International Congress on Rheology, Sydney, 1988.
 
[18]  M. V. Kok, T. Alikaya, “Rheological evaluation of polymers as drilling fluids”, Petroleum Science Technology, Vol. 21, Nos. 1-2, pp. 133, 2003.
 
[19]  M. V. Kok, T. Alikaya, “Effect of polymers on the rheological properties of KCl/polymer type drilling fluid”, Energy Sources, 27: 405, 2005.
 
[20]  F. H. D Outmans, “Mechanics of static and dynamic filtration”, Society of Petroleum Engineer Journal, 63: 210, 1963.
 
[21]  J. Mewis, J. F. Willaim, A. S. Trevor, and W. B. Russel, “Rheology of suspensions containing polymerically stabilized particles”, Journal of Chemical Engineering Research Development, 19: 415, 1989.
 
[22]  G. V. Chilingarian, and P. Varabutre, “Drilling and drilling muds” Development in Petroleum Science, 44, Elsevier, Amsterdam, 2000.
 
[23]  M. N. Okafor, and J. F. Evers, “Experimental comparison of rheology models for drilling fluids”, SPE Western Regional Meeting, California, Paper ID. SPE-24086-MS, 1992.
 
[24]  T. Hemphill, W. Campos and A. Pilehvari, "Yield-power law model more accurately predicts mud rheology”, Oil & Gas Journal, Vol. 91, No. 34, pp. 45-50, 1993.
 
[25]  M. Khalil, and B. M. Jan, “Herschel-Bulkley rheological parameters of a novel environmentally friendly lightweight biopolymer drilling fluid from xanthan gum and starch”, Journal of Applied Polymer Science, Vol. 124, Issue 1, pp. 595-606, 2012.
 
[26]  C. O. Chike–Onyegbula, O. Ogbobe, and S. C. Nwanonenyi, “Biodegradable polymer drilling mud prepared from guinea corn”, Journal of Brewing and Distilling Vol. 3, No. 1, pp. 6-14, 2012.
 
[27]  C. W. Hoogendam, A. de Keizer, M. A. Cohen Stuart, B. H. Bijsterbosch, J. A. M. Smit, J. A. P. P. Van Dijk, P. M. Vander Horst and J. G. Batelann (1998). “Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations.” Macromolecules 31, 6297-6309.
 
[28]  J. Kelly and J. John (1983). “Drilling fluid selection, performance and quality control.”Petroleum Technology, p889.
 
[29]  B. L. Browning (1967). “Viscosity and molecular weight.”In Methods of wood chemistry, Vol. 2. B. L. Browning ed., Interscience Publishers, New York, Ch. 25, 519-557.
 
Show Less References