Journal of Polymer and Biopolymer Physics Chemistry

ISSN (Print): 2373-3403

ISSN (Online): 2373-3411

Editor-in-Chief: Martin Alberto Masuelli

Website: http://www.sciepub.com/journal/JPBPC

   

Article

Selective Adsorption of 2-nitrophenol, Phenol, Hydroquinone on Poly (Vinyl Alcohol) Crosslinked Glutaraldehyde-β-cyclodextrin Polymer Membrane

1Laboratory of Polymers Treatment and Forming, F.S.I, M’Hamed Bougara University, Boumerdes, Algeria


Journal of Polymer and Biopolymer Physics Chemistry. 2016, 4(1), 7-15
doi: 10.12691/jpbpc-4-1-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
Ghemati Djamila, Aliouche Djamel, Amri Nedjla. Selective Adsorption of 2-nitrophenol, Phenol, Hydroquinone on Poly (Vinyl Alcohol) Crosslinked Glutaraldehyde-β-cyclodextrin Polymer Membrane. Journal of Polymer and Biopolymer Physics Chemistry. 2016; 4(1):7-15. doi: 10.12691/jpbpc-4-1-2.

Correspondence to: Ghemati  Djamila, Laboratory of Polymers Treatment and Forming, F.S.I, M’Hamed Bougara University, Boumerdes, Algeria. Email: ghemati_d@yahoo.fr

Abstract

The aim of this paper is to use poly (vinylalcohol) polymer membrane as an adsorbent for the removal of 2-nitrophenol, phenol, hydroquinone from aqueous solutions through the batch experiments. In order to obtain efficient adsorbent, cross-linked poly(vinyl alcohol)/glutaraldehyde-β-cyclodextrin membranes were prepared. Synthesized membranes were characterized by infrared spectroscopy and swelling measurements. Then, influence of pH, temperature on the adsorption process was investigated. As results, β-cyclodextrin is completely mixed into the PVA polymer without covalent bond formation. And absorption level of PVA/GA membranes is significantly improved by the presence of β-cyclodextrin. Adsorption capacity increases with increasing amount of cyclodextrin, and it reached the highest value at Ph < pKa; the change in adsorption capacities may be due to the structure effect, weight molecular of phenolic compounds. Therefore, results of adsorption isotherms indicated that the Freundlich isotherm model was more appropriate, the low temperature is favourable for adsorption and the negative value of free energy indicated the spontaneous nature process and easy regeneration of polymeric materials.

Keywords

References

[1]  S.Ilknur, B.Hanife, B. Ekologi., 22, 88 (2013).
 
[2]  N.S. Kumar, K. Min, Chem. Eng. J., 168, (2011).
 
[3]  R.Z. Chen, Y. Du, W.H. Xing, N.P. Xu, Chinese. J. Chem. Eng., 15, 6 (2007).
 
[4]  M.H. Priya, G. Madras, J. Photochem. Photobiol. A., 179, (2006).
 
[5]  R. Allabashi, M. Arkas, G. Hormann, Water. Res., 41, 2 (2007).
 
Show More References
[6]  F. Peng, Z. Jiang, C.Hu, Y.Wang, L. Lu, Desalination., 193, 2 (2006).
 
[7]  L. F .Gudeman, N. A. Peppas, J. Appl. Polym. Sci., 55, 3 (1995).
 
[8]  S. J.Kim, S. J.Park, T. D. Chung, S. I. Kim, J. Appl. Polym. Sci., 89, 2 (2003).
 
[9]  X.LI, B.Zhao, K.Zhu, X.Hao, Chinese. J. Chem. Eng., 19, 6 (2011).
 
[10]  W. Jongok, Y. Ji.Young, K.Moon-Sung, K. Yong Soo, Macromol. Res., 14, 4 (2006).
 
[11]  C. Kang, Y. Wang, R. Li, Microchem. J., 64, 2 (2000).
 
[12]  L.Wang, J.Zhang, R. Zhao, Bioresource. Technol., 101, 15 (2010).
 
[13]  P. SenthilKmar, K. Ramakrishnan, S. Dinesh Kirupha, S. Sivanesan, Can. J. Chem Eng., 89, 2 (2011).
 
[14]  R. Chlinga, J. L.Rao, B.C.Vreddy, K. Veera brahmam, Bull. Mater. Sci., 30, 3 (2007).
 
[15]  B.George, M. Govindaraj, H.Ujie, H. Freeman, S. Hudson, Processes, National Textile Center Research Briefs., 2004, Chemistry Competency, USA.
 
[16]  J.T. Zhang, S.W.Huang, R .Xizhuo, Macromol. Chem. Phys., 205, (2004).
 
[17]  F. Peng, Z.Jiang, C.Hu, Y.Wang, L.Lu, H. Wu, Desalination., 193, (2006).
 
[18]  K.A.Connors, Chem. Rev., 97 (1997).
 
[19]  D.Y. Tang, Z. Zheng, K. Lin, J.F. Luan, J. Hazard. Mater., 143, (2007).
 
[20]  A. Gholizadeh, M. Kermani, M. Gholami, M. Farzadkia, J. Environ. Health .Sci. Eng., 11, 1 (2013).
 
[21]  B. Hameed, A. Ahmad, J. Hazard. Mater., 164, (2009).
 
[22]  E. Schneiderman, A.M. Stalcup, J. Chromatographia. B., 745, (2000).
 
[23]  Li. Jian-Mei, G. M. Xiang, Bioresource. Technol., 100, (2009).
 
[24]  Z. Aksu, E. Kabasakal, Sep. Purif. Technol., 35, (2003).
 
[25]  N.S. Kumar, M. Venkata Subbaiah, A. Subba Reddy, A.Krishnaiah, J. Chem. Tech. Biotech., 84, (2009).
 
[26]  O.A. Ekpete, A.I. Spiff, M. HorsfallJnr, P. Adowei, Innov. Sci. Eng., 2 (2012).
 
[27]  G. Crini, Y.Lekchiri, M.Morcellet, Chromatographia., 40 (1995).
 
Show Less References

Article

Synthesis and Characterization of Branched Polyester: Thermal and Microbial Degradation Studies

1Laboratory Chemistry of Applied and Environmental, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

2Laboratory of Biochemistry and Biotechnology, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco

3Faculty of Sciences and Techniques of Al Hoceima, BP 34, 32003 Ajdir, Mohammed Premier University, Morocco

4Laboratory of Physical Chemistry of Natural Resources and Environment - Department of Chemistry, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco


Journal of Polymer and Biopolymer Physics Chemistry. 2016, 4(1), 16-27
doi: 10.12691/jpbpc-4-1-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Benarbia Abderrahim, Elidrissi Abderrahman, Aqil Mohamed, Amyay Aicha, Bellaouchi Reda, Asehraou Abdeslam, Jalal Isaad, Tahani abdesselam. Synthesis and Characterization of Branched Polyester: Thermal and Microbial Degradation Studies. Journal of Polymer and Biopolymer Physics Chemistry. 2016; 4(1):16-27. doi: 10.12691/jpbpc-4-1-3.

Correspondence to: Benarbia  Abderrahim, Laboratory Chemistry of Applied and Environmental, Faculty of Sciences, Mohammed Premier University, Oujda, Morocco. Email: benarbia111@hotmail.com

Abstract

A branched polyesters was synthesized using ethylene glycol, adipic acid and glycerol. It was characterized by FTIR, 1H and 13C-NMR, GPC, TGA/DTA. According to TGA analysis it was found that the mass loss is accomplished in two stages, the lower one was slightly distinguished in TGA. The Flynn-Ozawa-Wall method was applied for the principal reaction and the activation energies for all values of α were determined. The biodegradation process was also investigated in liquid culture media using two strains of Penicillium sp S1 and Aspergillus sp S2 which were isolated from the discharge of Oujda city (Morocco). According to the growth curves, it was found that the Penicillium sp S1 and Aspergillus sp S2 used the polyester as source of carbon. We have noted using FTIR spectra a decrease of the band intensity at δ =1170 cm-1 characteristic of the stretching vibration of C–O–C and also a decrease of the ester band group. The results obtained were compared with those of polyesters biodegradation reported in our previous work [27,28,29]. We have also proposed an enzyme degradation mechanism and hypothesis for an empirical mathematical formula giving the relationship between the thermal degradation and the biodegradation rate constant of the polyester.

Keywords

References

[1]  Ankur, S., Kulshrestha, Gao,W., Fu, H. and Richard, A.G, “Synthesis and characterization of branched polymers from lipase-catalyzed trimethylolpropane copolymerizations”, Biomacromolecules, 8(6). 1794-1801. May 2007.
 
[2]  Mickaël, A., Stéphanie, D., Sinisa, M., Boris, E. and Véronique, N.R,“Characterization, stability and ecotoxic properties of readily biodegradable branched oligoesters based on bio-sourced succinic acid and glycerol”, Polymer Degradation and Stability. 97(10). 1956-1963. March 2012.
 
[3]  Bruggeman, J.P., Bettinger, C.J., Nijst, C.L.E., Kohane, D.S. and Langer, R,“Biodegradable Xylitol Based Polymers”, Advanced Materials. 20(7). 1922-1927. 2008.
 
[4]  Barret, D.G., Luo, W. and Yousaf, M.N, “Aliphatic polyester elastomers derived from erythritol and alpha, omega-diacids”, Polymer Chemistry. 1(3).296-302.January 2010.
 
[5]  Cao, H., Zheng, Y., Zhou, J., Wang, W. and Pandit, A, “A novel hyperbranched polyester made from aconitic acid (B3) and di(ethylene glycol) (A2)”. Polymer International. 60(4). 630-634. April 2011.
 
Show More References
[6]  Yang, Y., Lu, W., Cai, J., Hou, Y., Ouyang, S., Xie, W. and Gross, R, “Poly(oleic diacid-co-glycerol): Comparison of Polymer Structure Resulting from Chemical and Lipase Catalysis”. Macromolecules. 44(7).1977-1985. March 2011.
 
[7]  Kulshrestha , S., Bishwabhusan , S., Wei , G., Hongyong , F. and Gross, A, “Lipase Catalysis. A Direct Route to Linear Aliphatic Copolyesters of Bis(hydroxymethyl)butyric Acid with Pendant Carboxylic Acid Groups”. Macromolecules.38(8). 3205-3213. March 2005.
 
[8]  Carnahan, M.A. and Grinstaff, M.W, “Synthesis and characterization of poly(glycerol-succinic acid) dendrimers”. Macromolecules .34(22). 7648-7655. September 2001.
 
[9]  Stumbe, J.F. and Bruchmann, B, “Hyperbranched Polyesters Based on Adipic Acid and Glycerol”. Macromolar Rapid Communications .25(9).921-924 .March2004.
 
[10]  Wyatt, VT. and Strahan GD, “Degree of Branching in Hyperbranched Poly(glycerol-co-diacid)s Synthesized in Toluene”. Polymers . 4(1). 396-407.February 2012.
 
[11]  Carnahan, MA. and Grinstaff, M.W, “Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic acid”. Journal of American Chemical Society. 123 (12). 2905-2906. March 2001.
 
[12]  Li, Y., Cook, WD., Moorhoff, C., Huang, W.C. and Chen, Q.Z, “Synthesis, characterization and proprieties of biocompatible poly(glycerol sebacate)”. Polymer International.62(4).534-547. April 2013.
 
[13]  Jena, K.K., Raju, K.V.S.M., Prathab, B. and Aminabhavi, T.M, “Hyperbranched Polyesters:  Synthesis, Characterization, and Molecular Simulations”.J.Phys. Chem B. 111 (30). 8801-8811. June 2007.
 
[14]  Kiyotsukuri, T., Kanaboshi, M. and Tsutsumi, N, “Network polyester films from glycerol and dicarboxylic acids”. Polymer International. 33(1).1-8. January 1994.
 
[15]  Tracy, Z., Bob, A., Adina, D., Steven, J. and Patrick, B, “Synthesis and Characterization of Glycerol-Adipic Acid Hyperbranched Polyesters”. Polymer. 55(20). 5065-5072. September 2014.
 
[16]  Tang, J., Zhang, Z., Song, Z., Chen, L., Hou, X. and Yao, K, “Synthesis and characterization of elastic aliphatic polyesters from sebacic acid, glycol and glycerol”. European polymer journal. 42(12). 3360-3366. December 2006.
 
[17]  Coneski, PN., Rao, KS. and Schoenfisch, M.H, “Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters”. Biomacromolecules. 11 (11). 3208-3215. October 2010.
 
[18]  Cao, W., Zhou, J., Mann, A., Wang, Y., Zhu, L,“Folate-functionalized unimolecular micelles based on a degradable amphiphilic dendrimer-like star polymer for cancer cell-targeted drug delivery”. Biomacromolecules. 12(7).2697-26707. Jun 2011.
 
[19]  Ifran, M. and Seiler, M, “Encapsulation using hyperbranched polymers: from research and technologies to emerging applications”. Ind.Eng.Chem.Res. 49(3).1169-1196. January 2010.
 
[20]  Lin, C. and Gitsov I “Synthesis and Physical Properties of Reactive Amphiphilic Hydrogels Based on Poly(pchloromethylstyrene) and Poly(ethylene glycol): Effects of Composition and Molecular”. Macromolecules . 43 (7). 3256-3267. March 2010.
 
[21]  Shi, X., Wang, SH., Lee, I., Shen, M. and Baker, J.R, “Comparison of the internalization of targeted dendrimers and dendrimer-entrapped gold nanoparticles into cancer cells”. Biopolymers . 91(11).936-942. November 2009.
 
[22]  Ye, L., Letchford, K., Heller, M., Liggins, R., Guan, D. and Kizhakkedathu, J.N, “Synthesis and characterization of carboxylic acid conjugated, hydrophobically derivatized, hyperbranched polyglycerols as nanoparticulate drug carriers for cisplatin”. Biomacromolecules. 12(1).145-55. January (2011).
 
[23]  Chatterjee, S. and Ramakrishnan, S, “Understanding Self-Segregation of Immiscible Peripheral Segments in Pseudodendritic Hyperbranched Polydithioacetals: Formation of Improved Janus Structures”. Macro Letter. 3(9).953-957. September 2014.
 
[24]  Gao, C. and Yan, D, “Hyperbranched polymers: from synthesis to applications”. Progress in Polymer Science .29(3).183-275. March 2004.
 
[25]  Lea, A., Matthias, W. and Thomas, K,“The role of branched polyesters and their modifications in the development of modern drug delivery vehicles. role of branched polyesters and their modifications in the development of modern drug delivery vehicles”. Journal controlled release. 101(1-3).137-149. January 2005.
 
[26]  Coullerez, G., Lundmark, S., Malmstrom, E., Hult, A. and Mathieu, H.J, “ToF-SIMS for the characterization of hyperbranched aliphatic polyesters: probing their molecular weight on surfaces based on principal component analysis (PCA)”. Surface and Interface Analysis. 35(8). 693–708.August 2003.
 
[27]  Benarbia, A., Elidrissi A., Bellaouchi, R. and Asehraou, A, “Polybutylene succinate preparation and Biodegradation study of cellulose and cellulose blends”. International Journal Engineering Technical Research. 3(3),348-354. March (2015).
 
[28]  Benarbia, A., Elidrissi, A., Aqil, M., Tabaght, F., Tahani, A. and Ouassini, K, “Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study”. World Journal of Environmental Engineering.3(4). 95-110.September 2015.
 
[29]  Benarbia, A., Elidrissi, A., Ganetri, I., Touzani, R,“Synthesis, characterization and thermal degradation kinetics of Copolyesters. J. Mater. Environ. Sci. 5(4).1262-1279. March 2014.
 
[30]  Ozawa, T., “A new method of analyzing thermogravimetric data”.Chem. Soc. Jpn. 38(11).1881-1886. 1965.
 
[31]  Flynn, J.H. and Wall, L.A, “Thermal Methods in Polymer Analysis”.Phys. Chem. 70A(6) 487-523.December 1966.
 
[32]  Zoubida SAADI. Université du Maine - U.F.R. Sciences et Techniques. 154.2008.
 
[33]  Trinh, T., Cooper, D., Marié, M. and Nicell, A, “Biodegradation of a Synthetic Co-Polyester by Aerobic Mesophilic Microorganisms”. Polymer Degradation Stability. 93(8). 1479-1485. August 2008.
 
[34]  Warscheid, T. and Braams, J, “Biodeterioration of stone: a review.International Biodeterioration”. Biodegradation. 46(4).343-368. December 2000.
 
[35]  Hakkarainen, M., Karlsson, S. and Albertsson, A, “Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes”. Polymer. 41(7). 2331-2338.March 2000.
 
[36]  Pepic, D., Zagar, E., Zigon, M., Krzan, A., Kunaver, M. and Djonlagic, J, “Synthesis and characterization of biodegradable aliphatic copolyesters with poly(ethylene oxide) soft segments”. European Polymer Journal. 44(3). 904-917. March 2008.
 
[37]  Soni, R., Soam, S. and Dutt, K, “Studies on biodegradability of copolymers of lactic acid, terephthalic acid and ethylene glycol”. Polymer Degradation Stability. 94(3). 432-437. March 2009.
 
[38]  Wing-Hung LO,B.eng,“biodegradation of PHA and blends with synthetic polymer by soil microorganisms” thesis, Hong Kong university of science and technology.2000.
 
[39]  Marten, E., Joachim, R., Dieter, W, “Studies on the enzymatic hydrolysis of polyesters. II. Aliphaticearomatic copolyesters”. Polymer Degradation and Stability. 88(3). 371-381. June 2005.
 
Show Less References

Article

A Peptidase Enzyme from Bacillus cereus with Antimicrobial Properties: Optimizing the Immobilization in Chitosan Beads Using Box-Behnken Design

1Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata, Argentina

2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina


Journal of Polymer and Biopolymer Physics Chemistry. 2016, 4(1), 28-39
doi: 10.12691/jpbpc-4-1-4
Copyright © 2017 Science and Education Publishing

Cite this paper:
Catalina Kotlar, Sara Inés Roura, Alejandra Graciela Ponce. A Peptidase Enzyme from Bacillus cereus with Antimicrobial Properties: Optimizing the Immobilization in Chitosan Beads Using Box-Behnken Design. Journal of Polymer and Biopolymer Physics Chemistry. 2016; 4(1):28-39. doi: 10.12691/jpbpc-4-1-4.

Correspondence to: Alejandra  Graciela Ponce, Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, 7600 Mar del Plata, Argentina. Email: agponce@mdp.edu.ar

Abstract

Enzymes are exploited as catalysts in many industrial, biomedical, and analytical processes. There has been considerable interest in the development of carrier systems for enzyme immobilization because immobilized enzymes have enhanced stability compared to soluble enzymes, and can easily be separated from the reaction. In the current study, microbial peptidases liberated by B. cereus were immobilized in cross-linked chitosan beads and characterized using azocasein as a substrate. The Box-Behnken design was applied to determine the optimal conditions to maximize proteolytic activity. An empirical second-order model was determined by multiple regression analysis of the experimental data to describe the relationship between tested variables and the response. The determination coefficients (R2) were above 90%. Under optimal conditions (2.2 mm bead diameter, 1.06 enzyme/ bead ratio, 5.82% v/v glutaraldehyde and 18°C) the proteolytic activity was 0.938 U/ml. The retained immobilized enzyme can be reused up to five times. The storage stability of immobilized peptidases at 4°C was up to 10 days, while at 32°C the enzyme lost its activity within three days. Finally, novel antimicrobial properties of the immobilized peptidases were found. These results could have important benefit for the food industry.

Keywords

References

[1]  Wellington, S.A., Edilson, H.F., James, A.S., Gonçalves, L.R. (2005). Appl. Biochem. Biotech. 41, 201-207.
 
[2]  Kalisz, H.M., Ed. (1988). Advances in Biochemical Engineering/ Biotechnology, Springer-Verlag, Berlin Heidelberg, pp: 1-65.
 
[3]  Potumarthi, R., Subhaker, C., Pavani, A. (2008). Bioresour Technol. 99, 1776-1786.
 
[4]  Dutta, P.K., Dutta. J., Tripathi. V.S. (2004). J. Sci. Ind. Res. 63, 20-31.
 
[5]  Ward, O.P. (1983). Proteinases. In Microbia1 Enzymes and Biotechnology, Applied Science Publishers, London, 251-317.
 
Show More References
[6]  de Azeredo, H.M.C. (2009). Food Research International 42, 1240-1253.
 
[7]  Sotitopoulou, G., Chaimotakis, N. A. (2005). Biomat. 26, 6771-6779.
 
[8]  Chatterjee, S., Lee, D.S., Lee, M.W., Woo, S.H. (2009). J. Hazard Mater. 166, 508-513.
 
[9]  Gupta, R., Chaudhury, N.K. (2007). Biosens. Bioelectron 22, 2387-2399
 
[10]  Myres, R.H., Montgomery, D.C. (2008). Response surface methodology: process and product optimization using designed experiments, Hoboken, pp. 290-296.
 
[11]  Kotlar, C.E., Ponce, A.G., Sansevero, R., Roura, S.I. (2009). Internet J. Microbiol. 8 (1), 1937-8289.
 
[12]  Mundra, P., Desai, K., Lele, S.S. (2007). Bioresour Technol. 98, 2892-2896.
 
[13]  Pérez Borla, O., Davidovich, L., Roura, S.I. (2010). LWT - Food Sci. and Technol. 3(2), 298-301.
 
[14]  Khuri, A., Cornell, J.A., Eds. (1987). Response Surface Design and Analysis of Experiment, AQSA Quality Press, New York, pp. 177-186.
 
[15]  Masson, R.L., Gunst, R.F., Hess, J.L., Eds. (1989). Statistical Design and Analysis of Experiments, New York, pp.518-526.
 
[16]  Kotlar, C.E., Ponce, A.G., Roura, S.I. (2013). LWT - Food Sci. and Technol. 50, 378-385.
 
[17]  Kotlar, C.E., Agüero, M.V., Roura, S.I. (2010). Ind. Biotechnol. 6(6), 364-374.
 
[18]  Box, G.E.P., Hunter, J.S. (1957). Ann. Stat. 28, 195-241.
 
[19]  Huiping, L., Guoqun, Z., Shanting, N., Yiguo, L. (2007). Comp. Mater. Sci. 38, 561-570.
 
[20]  Nahit, A. (2005). Enzyme Micro. Tech. 37, 441-447.
 
[21]  Chiou, M.S., Li, H.Y. (2002). J. Hazard Mater. B93, 233-248.
 
[22]  Blanco, R.M., Guisán, J.M. (1988). Enzyme Microb. Tech. 10, 227-232.
 
[23]  Blanco, R.M., Calvete, J.J., Guisán, J.M. (1989). Enzyme Microb. Tech. 11, 353-359.
 
[24]  Bryjac, J. (2003). Biochem. Eng. J. 16, 347-355.
 
[25]  Vidinha, P., Augusto, V., Almeida, M. (2006). J. Biotechnol. 121, 23-33.
 
[26]  Wang, Q., Zhang, J.,Wang, A. (2009). Carbohyd. Polym. 78, 731-737.
 
[27]  Mansfield, S.H., Mooney, C., John, N., Saddler, J.N. (1999). Biotechnol. Prog. 15, 804-816.
 
[28]  Durango, A.M., Soares, N.F.F., Andrade, N.J. (2006). Food Cont. 17, 336-341.
 
[29]  Anwar, A., Qader, S.A., Raiz, A., Iqbal, S., Azhar, A. (2009). J. Appl. Behav. Sci. 7, 1281-1286.
 
Show Less References