Journal of Polymer and Biopolymer Physics Chemistry

ISSN (Print): 2373-3403

ISSN (Online): 2373-3411

Editor-in-Chief: Martin Alberto Masuelli




Changes in Surface Properties and Dyeability of Polyethylene Terephthalate Fibre Pretreated with Selected Chlorinated Solvents

1Science Laboratory Technology Department, Osun State Polytechnic, P.M.B. 301, Iree, Nigeria

2Chemistry Department, Federal University of Technology, P.M.B 704, Akure, Nigeria

Journal of Polymer and Biopolymer Physics Chemistry. 2015, 3(1), 6-11
doi: 10.12691/jpbpc-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Oyeleke G.O., Popoola A.V., Adetuyi A.O.. Changes in Surface Properties and Dyeability of Polyethylene Terephthalate Fibre Pretreated with Selected Chlorinated Solvents. Journal of Polymer and Biopolymer Physics Chemistry. 2015; 3(1):6-11. doi: 10.12691/jpbpc-3-1-2.

Correspondence to: Oyeleke  G.O., Science Laboratory Technology Department, Osun State Polytechnic, P.M.B. 301, Iree, Nigeria. Email:


Scanning electron microscopy (SEM) and X- ray diffractometry (XRD) analyses has been used to investigate the structure of polyester fibre surface before and after treatment in some chlorinated solvents; perchloroethylene (PCE), trichloroethylene (TCE), 1,1- dichloroethylene (1,1-DCE) and tetrachloromethane (TCM) for different times in relaxed condition at room temperature. The results of the scanning electron micrographs did not show any observable internal damage in the fiber structure. On the surface however, several changes such as presence of micro voids, roughness and scissions of varying shapes, magnitudes and spacing density have been observed. The intensity of the diffracted peaks from the X- ray diffractographs of the treated fibre also showed a fall compared to the control one which may be accounted for in terms of the surface structural changes earlier on observed. The pretreatment of the polyester fibre with the chlorinated solvents was found to improve the dye uptake of all the treated fibres in the order of TCE > 1,1-DCE > PCE > TCM; this may be due to the large increase in the inter surface area swelling and greater segmental mobility of polymer molecules. TCE was found to be the best among the four solvents in terms of improvement in dye uptake. The improvement in the fastness properties (wash and light) of the pretreated fabrics was also observed. The chlorinated solvents used in this experiment caused structural differences on surface structures of the polyester fibres and these changes are very crucial to the behaviour of the polymer in fibre processing for other essential usage.



[1]  Bhat, N.V. and Naik SG. Textile Res. J. 1984, Vol. 54, pp. 868.
[2]  Bal, S. and Behera R.C. Structural Investigation of Chemical Treated Polyester Fibers Using SAXS and Other Techniques. Journal of Minerals & Materials Characteristics & Engineering. 2006, Vol. 5, No 2: 179-198.
[3]  Hsieh, Y.L. Miller A. Thompson J. Textile Res. J., 1996 Vol. 66, no.1, pp. 1.
[4]  Arun, N. Man made textiles in INDIA, 1999, June, pp. 263.
[5]  Gowarika, V.R., Viswanathan, N.V. and Jayadev, S. Polymer Science. New Dehli, New Age International Ltd, 1996, P. 15.
Show More References
[6]  Vicini, L., Seves, A., Canetti, M., Sadocco, P. and Galli R. Polymer, 1984, 25:1774
[7]  Jameel, H., Neother, H.D. and Rebenfeld L. J. Appl. Polym. Sci. 1982, 27: 780.
[8]  Ito, M., Itosal, H. and Kanomoto T. Polymer, 1992, 33(12): 2576.
[9]  Muralidharan, B. and Laya S. A New Approach to Dyeing of 80:20 Polyester/Cotton Blended Fabric using Disperse and Reactive Dyes. ISRN Materials Science, Vol. 2011, 12 pages.
[10]  Walters, J.P. and, Buchanan D.R. Glass Transition Temperature of Polyamide Textile Fibre Part 11: Relationship between Tg and Dyeability. Text. Res. Journal, 1977, 3(1): 451-456.
[11]  Johnson, A. and Popoola, A.V. Comparative Crystal Morphology Study Using WAXS and CDT Techniques. J. Appl. Polym. Sci., 1991, Vol. 42:2703-2711.
[12]  Popoola, A.V. Effects of Crystallinity on the Kinetics of Liquid Absorption into Poly (ethylene terephthalate). Jour. Appl. Polym Sci. 1993, Vol. 49: 2115-2120.
[13]  Jameel, H., Neothe,r H.D. and Rebenfeld, L. J. Appl. Polym. Sci. 1982, 27: 780.
[14]  Rajendran, S., Ramasamy, S.S. and Mishra, S.P. India J. Fib. Text. Res. 1996, 21(3): 179.
[15]  Wafaa, M.R., Ahmed, B., Eid, M.K. and Thanoa, F. Modification of Polyester Fabrics by Chemical / Thermal Treatment to improve Dyeing ability. Colouration Technology. 2010, 136 (4):231-236.
[16]  Chidambaram, D., Venkatraj, R. and Manisankan, P. Solvent Induced Modification in Polymer Yarn II. Structural and Thermal Behaviour. Journal of Applied Science. 2003, 89 (6): 1555-1566.
[17]  Muralidharan, B. and Mathanmohan, T. Ethiraj J. J. Appl. Polym. Sci. 2004, 91(6):3871.
Show Less References


Influence of the Ionic Strength in the Intrinsic Viscosity of Xanthan Gum. An Experimental Review

1Universidad Nacional de San Luis. PROICO 2-1612. INTEQUI-CONICET, San Luis, Argentina

2Universidad Nacional de San Luis. PROIPRO 2-2414. INFAP-CONICET, San Luis, Argentina

Journal of Polymer and Biopolymer Physics Chemistry. 2015, 3(1), 12-18
doi: 10.12691/jpbpc-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Enrique D. Vega, Elena Vásquez, Jorge R. A. Diaz, Martín A. Masuelli. Influence of the Ionic Strength in the Intrinsic Viscosity of Xanthan Gum. An Experimental Review. Journal of Polymer and Biopolymer Physics Chemistry. 2015; 3(1):12-18. doi: 10.12691/jpbpc-3-1-3.

Correspondence to: Martín  A. Masuelli, Universidad Nacional de San Luis. PROIPRO 2-2414. INFAP-CONICET, San Luis, Argentina. Email:;


This study involves the influence of ionic strength in intrinsic viscosity of xanthan gum. The best concentration of monovalent and bivalent cations chloride salts is evaluated. The salt concentration is 0.001 M for monovalent cations and 3 x 10-5 M for bivalent cations and the hydrodynamic radius is maximum for these concentrations. The minimal concentration is in the range of 0.01 to 0.1 M for different cations.



[1]  García-Ochoa, F., Santos V.E. and Alcón, A. “Xanthan gum production: An unstructured kinetic model,” Enzyme and Microbial Technology, 17. 206-217. 1995.
[2]  Rosalam, S. and England, R, “Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp.” Enzyme and Microbial Technology, 39. 197-207. 2006.
[3]  Palaniraj, A. and Jayaraman, V., Production, recovery and applications of xanthan gum by Xanthomonas campestris,” Journal of Food Engineering, 106.1-12. 2011.
[4]  Borges, C.D., de Paula, R.C.M, Feitosa, J.P. and Vendruscolo, C.T, “The influence of thermal treatment and operational conditions on xanthan produced by X. arboricola pv pruni strain”. Carbohydrate Polymers, 75. 262-268. 2009.
[5]  Launay, B., Doublier, J.R. and Cuvelier, G., Flow properties of aqueous solutions and dispersions of polysaccharides, Functional properties of food macromolecules, (2) J. R. Mitchell and D. A. Ledward, Eds., 1986, 1-78.
Show More References
[6]  Tako, M. and Nakamura, S., “Rheological Properties of Deacetylated Xanthan in Aqueous Media”, Agric. Biol. Chem, 48 (12). 2987-2993. 1984.
[7]  Lapasin, R. and Pricl, S, Rheology of Industrial Polysaccharides: Theory and Applications. Springer, 1995, 250-494.
[8]  Wrolstad, R.E, Food Carbohydrate Chemistry, 48, John Wiley & Sons, 2012, 91-106.
[9]  Yanniotis, S., Taoukis, P., Stoforos G. and Karathanos, V.T, Food Engineering Series. Editors: Gustavo V. Barbosa-Cánovas. Advances in Food Process Engineering Research and Applications, Springer, 2013, 277-279.
[10]  Dea, I.C.M and Morrison, A, “Chemistry and Interactions of Seed Galactomannans”, Advances in Carbohydrate Chemistry and Biochemistry, 31. 241-312. 1975.
[11]  Whistler, R.L. and BeMiller, J.N, Carbohydrate Chemistry for Food Scientists, Eagan Press, St. Paul, Minnesota, 1997, 117-128.
[12]  Higiro, J., Herald, T.J. and Alavi, S, “Rheological study of xanthan and locust bean gum interaction in dilute solution”, Food Research International, 39. 165-175. 2006.
[13]  Higiro, J., Herald T.J., Alavi, S. and Bean, S, “Rheological study of xanthan and locust bean gum interaction in dilute solution: Effect of salt”, Food Research International, 40. 435-447. 2007.
[14]  Casas, J.A. and García-Ochoa, F, “Viscosity of solutions of xanthan/locust bean gum mixtures”, J. Sci. Food Agric., 79. 25-31. 1999.
[15]  García-Ochoa, F., Santos V.E., Casas, J.A. and Gómez, E, “Xanthan Gum Production, Recovery and Properties”, Biotechnology Advances, 18. 549-579. 2000.
[16]  Moorhouse, R., Walkinshaw, M.D. and Arnott, S, Xanthan Gum-Molecular Conformation and Interactions, Extracellular Microbial Polysaccharides, ACS Symposium Series 7, 1977, 90-102.
[17]  Meyer, E.L., Fuller, G.G., Clark, R.C. and Kulicke, W.M, “Investigation of Xanthan Gum Solution Behavior under Shear Flow Using Rheooptical Techniques,” Macromolecules, 26. 504-611. 1993.
[18]  S. Carrington, J. Odell, L. Fisher, J. Mitchell and L. Hartley, “Polyelectrolyte behaviour of dilute xanthan solutions: salt effects on extensional rheology,” Polymer, vol. 37, pp. 2871-2875, 1996.
[19]  Rinaudo, M. and Milas, M, “Xanthan Properties in Aqueous Solution,” Carbohydrate Polymers, 2. 264-269. 1982.
[20]  Mcikkis, V.J., Franklin, D. and K. I’anson, “Rheology and Microstructure of Dispersions and Solutions of the Microbial Polysaccharide from Xanthomonas Campestris (Xanthan Gum),” Carbohydrate Research, 121. 13-30. 1983.
[21]  Whitcomb, P.J., Ek, B.J. and Macosko, C.W, Rheology of Xanthan Gum Solutions, Extracellular Microbial Polysaccharides, ACS Symposium Series 45 (12), 1977, 160-173.
[22]  Morris, E.R, Molecular Origin of Xanthan Solution Properties, Extracellular Microbial Polysaccharides, ACS Symposium Series 45 (6), 1977, 81-87.
[23]  Holzwarth, G.M, Is Xanthan a Wormlike Chain or a Rigid Rod?, Solution Properties of Polysaccharides, 2, Brant, D., ACS Symposium Series, American Chemical Society: Washington, DC, 1981, 15-23.
[24]  Viswanath, D.S., Ghosh, T.K., D.H. Prasad, L.N., Dutt, K. and Rani, K.Y, Viscosity of Liquids Theory, Estimation, Experiment and Data, Springer, 2007, 29-31.
[25]  Sun, S.F, Physical chemistry of Macromolecules, John Wiley & Sons, 2004, 165-190.
[26]  Tanford, Charles, “The electrostatic free energy of globular protein ions in aqueous salt solution,” Journal of Physical Chemistry, 59. 788-793. 1955.
[27]  van Holde, K.E, Physical Biochemistry, Foundations of Modern Biochemistry Series, Prentice-Hall, 1971, 141-154.
[28]  Teraoka, I, Polymer Solutions: An Introduction to Physical Properties, John Wiley & Sons, 2002, 209-215.
[29]  Masuelli, M.A. “Viscometric Study of Pectin. Effect of Temperature on the Hydrodynamic properties,” International Journal of Biological Macromolecules, 48. 286-291. 2011.
[30]  Masuelli, M.A, “Dextrans in Aqueous Solution. Experimental Review on Intrinsic Viscosity Measurements and Temperature Effect,” Journal of Polymer and Biopolymer Physics Chemistry, 1, 1. 13-21. 2013.
[31]  Masuelli, M.A., Sansone, M.G, Hydrodynamic properties of Gelatin. Studies from intrinsic viscosity measurements, Products and Applications of Biopolymers. Chapter 5 Editor C. J. R. Verbeek, INTECH, 2012, 85-116.
[32]  Haurowitz, F, The Chemistry and Functions of Proteins, Academic Press, 1963, 76-79.
[33]  Lyklema, J, Fundamentals of interface and colloid science, 1st ed., vol II. Academic Press 1995, 4122-4133.
[34]  Hunter, R, Zeta potential in colloid science, Academic Press, 1981, 179-204.
[35]  Ohshima, H, “Primary Electroviscous Effect in a Dilute Suspension of Soft Particles,” Langmuir, 24. 6453-6461. 2008.
[36]  Overbeek, J.Th.G, “Polyelectrolytes, Past, Present and Future,” Pure & Applied Chem., 46. 91-101. 1976.
[37]  Jiang, L., Yang, D. and Bor Chen, S, “Electroviscous Effects of Dilute Sodium Poly(styrenesulfonate) Solutions in Simple Shear Flow,” Macromolecules, 34. 3730-3735. 2001.
[38]  Antonietti, M., Briel, A. and Fosrster, S, “Quantitative Description of the Intrinsic Viscosity of Branched Polyelectrolytes,” Macromolecules, 30. 2700-2704. 1997.
[39]  Faria, S., de Oliveira Peckowicz, C.L., Lemos de Morais, S.A., Hernandez Terrones, M.G., de Resende, M.M., Pessoa de Franca, F. and Cardoso, V.L, “Characterization of xanthan gum produced from sugar cane broth,” Carbohydrate Polymers, 86. 469-476. 2011.
[40]  Eckelt, J., Knopf, A. and Wolf, B.A, “Polyelectrolytes: Intrinsic Viscosities in the Absence and in the Presence of Salt,” Macromolecules, 41. 912-918. 2008.
[41]  Masuelli, M.A, “Mark-Houwink Parameters for Aqueous-Soluble Polymers and Biopolymers at Various Temperatures,” Journal of Polymer and Biopolymer Physics Chemistry, 2, 2. 37-43. 2014.
[42]  Pavlov, G.M., Gubarev, A.S., Zaitseva I.I. and Sibileva, M.A, “Determination of Intrinsic Viscosity of Polyelectrolytes in Salt-Free Solutions,” Russian Journal of Applied Chemistry, 79, 9. 1407-1412. 2006.
[43]  Pavlov, G.M, “Size and average density spectra of macromolecules obtained from hydrodynamic data,” Eur. Phys., 22. 171-180. 2007.
[44]  Muller, G., Anrhourrache, M., Lecourtier, J. and Chauveteau, G, “Salt dependence of the conformation of a single-stranded xanthan,” Int. J. Biol. Macromol., 8. 167-172. 1986.
[45]  Holzwarth, G., “Molecular Weight of Xanthan Polysaccharide,” Carbohydrate Research, 66. 173-186. 1978.
[46]  Whitcomb, P. J. and Macosko, C.W., “Rheology of Xanthan Gum,” Journal of Rheology, 22 (5). 493-505. 1978.
[47]  Sato, T., Norisuye, T. and Fujita, H, “Double-Stranded Helix of Xanthan: Dimensional and Hydrodynamic Properties in 0.1 M Aqueous Sodium Chloride,” Macromolecules, 17, 2696-2700. 1984.
[48]  Cuvelier, G. and Launay, B, “Concentration Regimes in Xanthan Gum Solutions Deduced from Flow and Viscoelastic Properties,” Carbohydrate Polymers, 6. 321-333. 1986.
[49]  Chauveteau, G, “Rodlike polymer solution flow through fine pores: Influence of pore size on rheological behavior,” Journal of Rheology, 26. 111-142. 1982.
[50]  Berry, D.H. and Russel, W.B, “The rheology of dilute suspensions of slender rods in weak flows,” J. Fluid Mech., 180, 475-494. 1987.
[51]  Tinland, B. and Rinaudo, M, “Dependence of the Stiffness of the Xanthan Chain on the External Salt Concentration,” Macromolecules, 22. 1863-1865. 1989.
[52]  Milas, M., Rinaudo, M., Knipper, M. and Schuppiser, J.L, “Flow and Viscoelastic Properties of Xanthan Gum Solutions,” Macromolecules, 23. 2506-2511. 1990.
[53]  Milas, M. Reed, W.F. and Printz, S, “Conformations and flexibility of native and re-natured xanthan in aqueous solutions,” International Journal of Biological Macromolecules, 18. 211-221. 1996.
[54]  Ross-Murphy, S.B., Shatwell, K.P.I., Sutherland, W. and Dea, I.C.M, “Influence of acyl substituents on the interaction of xanthans with plant polysaccharides,” Food Hydrocolloids, 10, 1. 117-122. 1996.
[55]  Capron, I., Brigandt, G. and Muller, G, “About the native and renatured conformation of xanthan exopolysaccharide,” Polymer, 38(21). 5289-5295. 1997.
[56]  Launay, B., Cuvelier G. and Martinez-Reyes, S, “Viscosity of locust bean, guar and xanthan gum solutions in the Newtonian domain: a critical examination of the log(ɳsp)0-logC[ɳ]0 master curves,” Carbohydrate Polymers, 34. 385-395. 1997.
[57]  Schorsch, C., Gamier, C. and Doublier, J.L, “Viscoelastic properties of xanthan/galactomannan mixtures: comparison of guar gum with locust bean gum,” Carbohydrate Polymers, 34. 165-175. 1997.
[58]  Casas, J.A., Santos, V.E. and Garcia-Ochoa, F, “Xanthan gum production under several operational conditions: molecular structure and rheological properties,” Enzyme and Microbial Technology, 26. 282-291. 2000.
[59]  Wang, F., Wang Y.J. and Sun, Z, “Conformational Role of Xanthan Gum in its Interaction with Guar Gum,” Journal of Food Science, 67 (9). 3289-3294. 2002.
[60]  Achayuthakan, P., Suphantharika, M. and Rao, M.A, “Yield stress components of waxy corn starch–xanthan mixtures: Effect of xanthan concentration and different starches,” Carbohydrate Polymers, 65. 469-478. 2006.
[61]  Khouryieh, H.A., Herald, T.J., Aramouni, F. and Alavi, S, “Influence of mixing temperature on xanthan conformation and interaction of xanthan–guar gum in dilute aqueous solutions,” Food Research International, 39. 964-973. 2006.
[62]  Khouryieh, H.A., Herald, T.J., Aramouni, F. and Alavi, S, “Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions: Effect of salt concentration on the polymer interactions,” Food Research International, 40. 883-893. 2007.
[63]  Achayuthakan, P. and Suphantharika, M, “Pasting and rheological properties of waxy corn starch as affected by guar gum and xanthan gum,” Carbohydrate Polymers, 71. 9-17. 2008.
[64]  Heinzmann, G. and Tartsch, B, “Alginates, chitosans and xanthans. Characterization of food ingredients by GPC/SEC with triple detection,” AgroFood, 20 (4). 56-59. 2009.
[65]  Choppe, E., Puaud, F., T. Nicolai and Benyahia, L, “Rheology of xanthan solutions as a function of temperature, concentration and ionic strength,” Carbohydrate Polymers, 82. 1228-1235. 2010.
[66]  Desplanques, S., Renou, F., Grisel. M. and Malhiac, C, “Impact of chemical composition of xanthan and acacia gums on the emulsification and stability of oil-in-water emulsions,” Food Hydrocolloids, 27. 401-410. 2012.
[67]  Laneuville, S.I., Turgeon, S.L. and Paquin, P, “Changes in the physical properties of xanthan gum induced by a dynamic high-pressure treatment,” Carbohydrate Polymers, 92. 2327-2336. 2013.
[68]  Gunasekar, V., Reshma, K.R., Treesa, G., Gowdhaman, D. and Ponnusami, V, “Xanthan from sulphuric acid treated tapioca pulp: Influence of acid concentration on xanthan fermentation,” Carbohydrate Polymers, 102. 669-673. 2014.
[69]  Pavlov, G.M., Okatova, O.V., Gubarev, A.S., Gavrilova, I. I. and Panarin, E.F, “Strong Linear Polyelectrolytes in Solutions of Extreme Concentrations of One−One Valent Salt. Hydrodynamic Study,” Macromolecules, 47. 2748-2758. 2014.
[70]  Nishida, K., Kagi, K., Kanaya, T. and Fanjat, N, “Determination of intrinsic viscosity of polyelctrolyte solutions,” Polymer, 43. 1295-1300. 2002.
[71]  Takahashi, A., Kato, T. and Nagasawa, M, “The Second Virial Coefficient of Polyelectrolytes,” Journal of Physical Chemistry, 71. 2001-2010. 1967.
[72]  Lecourtier, J. and Chauveteau, G, “Xanthan fractionation by surface exclusion chromatography,” Macromolecules, 17 (7). 1340-1343. 1984.
[73]  Ström, A., Schuster, E. and Goh, S.M, “Rheological characterization of acid pectin samples in the absence and presence of monovalent ions,” Carbohydrate Polymers, 113. 336-343. 2014.
[74]  Oviatt, H.W. and Brant, D.A, “Viscoelastic Behavior of Thermally Treated Aqueous Xanthan Solutions in the Semidilute Concentration Regime,” Macromolecules, 27. 2402-2408. 1994.
[75]  Camesano, T.A. and Wilkinson, K.J, “Single Molecule Study of Xanthan Conformation Using Atomic Force Microscopy,” Biomacromolecules, 2. 1184-1191. 2001.
[76]  Petri, D.F.S, “Xanthan gum: A versatile biopolymer for biomedical and technological applications,” J. Appl. Polym. Sci. 2015, 42035.
Show Less References


Uptake of Automobile Fluids by Dynamically Vulcanized Recycled Polyethylene/natural Rubber (rPE/NR) Biocomposites

1Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, P. M. B. 5025, Awka, Nigeria

Journal of Polymer and Biopolymer Physics Chemistry. 2015, 3(1), 19-27
doi: 10.12691/jpbpc-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
C. M. Ewulonu, I. C. Chukwujike, U. J. Timothy. Uptake of Automobile Fluids by Dynamically Vulcanized Recycled Polyethylene/natural Rubber (rPE/NR) Biocomposites. Journal of Polymer and Biopolymer Physics Chemistry. 2015; 3(1):19-27. doi: 10.12691/jpbpc-3-1-4.

Correspondence to: C.  M. Ewulonu, Department of Polymer and Textile Engineering, Nnamdi Azikiwe University, Awka, P. M. B. 5025, Awka, Nigeria. Email:


This study presents long term sorption properties of automobile fluids – premium motor spirit (PMS) and automotive gas oil (AGO) in dynamically vulcanized recycled polyethylene/natural rubber (rPE/NR) thermoplastic elastomer biocomposites. The effect of oil palm empty fruit bunch (OPEFB) filler and maleic anhydride graft polyethylene (MAPE) as compartibilizer on the rPE/NR blends were also studied. The automobile fluids uptake trend was observed to reducewith OPEFB incorporation. Uptake of the automobile fluids by the biocompositesincreased rapidlywithin the first 24 hours and subsequently increased gradually within the 7 days period studied.The analysed results also showed that both the uncompartibilized and compartibilized thermoplastic elastomer biocomposites absorbed more PMS than AGO at same OPEFB loading and immersion time. Diffusion, sorption, and permeation coefficients of both PMS and AGO for the compatibilizedbiocompositesdecreased with increasing OPEFB content. The mode of transport of the automobile fluids into the filled rPE/NR blends has been found to be Fickianwhere the n values ranges from 0.1 to 0.4 for the various systems. This study also revealed greater degree of interaction between the PMS and the biocomposites than the AGO and the biocomposites.



[1]  S. Rajalekshmia and R. Josepha. Studies on thermoplastic elastomer based on linear low-density polyethylene and latex product waste modified with thiocarbanilide. International journal of polymeric materials and polymeric biomaterials. 54(10), (2005).
[2]  S. H. Zhu, C. M. Chan and Y. X. Zhang. Nitrile rubber/natural rubber thermoplastic composites. Journal of applied polymer science, 58, (2005).
[3]  F. Cai and N. Isayev. Studies on the mechanical and morphological properties of nitrile rubber/polystyrene blend. Journal of elastomer and plastics, 25, 249-260(2003).
[4]  H. C. Obasi, O. Ogbobe and I. O. Igwe. Diffusion characteristics of toluene into natural rubber/linear low density polyethylene blends. International journal of polymer science, 54(4), 765-771(2009).
[5]  R. F. Jeol, Polymer science and technology, second edition, New Delhi: Prentice-Hall, 2005.
Show More References
[6]  I. O. Igwe, C. M. Ewulonu and I. Igboanugo. Studies on the diffusion characteristics of some aromatic solvent into polypropylene films. Journal of applied polymer science, 102(2), 1985-1989, (2006).
[7]  F. Candia, L. Gargani, and A. Renzulli. Transport properties of filled elastomeric networks. Journal of applied polymer science, 41(5-6), 955-964, (1990).
[8]  S. N. Lawandy and S. H. Botros. Effect of type and amount of carbon black on the interaction between polychloroprene rubber and motor oil. Journal of applied polymer science, 42 (1), 137–141, (2001).
[9]  G. N. Onyeagoro and M. E. Enyiegbulam. Sorption characteristics of dynamically vulcanized PP/epoxidized NR blends filled with carbonized dika nutshell. Academic research intimation, 3 (2), (2012).
[10]  A. Ahmed, D. H. Mohd and I. Abdullah. Mechanical properties of filled natural rubber/linear low density polyethylene blends. Iranian polymer journal, 13 (3), 73-178, (2004).
[11]  C. M. Ewulonu, G. N. Onyeagoro and I. C. Chukwujike. Transport of n-hexane through carbonized oil palm empty fruit bunch powder filled polypropylene/natural rubber biocomposites. International journal of composite materials, 4(1), 4-13, (2014).
[12]  D. Danwanichakul, S. Jaroenkarn, P. Jumpathi and D. Decho-jarassri. Sorption and desorption of toluene, m-xylene, p-cresol and water by natural rubber chips. Songklanakarin journal of science and technology, 28(5), 1071-1082, (2006).
[13]  F. W. Billmeyer. Text book of polymer science. WileyInterscience, Singapore (1994).
[14]  H. Varghese, S. S. Bhagawan and S. Thomas. Transport properties of crosslinked acrylonitrile butadiene rubber/poly (ethylene-co-vinyl acetate) blends. Journal of polymer science part B: polymer physics, 37(15), 1815-1831, (2009).
[15]  C. M. Ewulonu and I. O. Igwe. Properties of oil palm empty fruit bunch fibre filled high density polyethylene. International journal of engineering and technology, 3(6), 458-471, (2012).
[16]  A. P. Mathew, S. Packirisamy, R. Stephen and S. Thomas. Transport of aromatic solvents through natural rubber/ polystyrene (NR/PS) interpenetrating polymer network membranes. Journal of membrane science, 201(1-2), 213-227, (2002).
[17]  I. C. Chukwujike, C. M. Ewulonu and M. Chukwu. Sorption properties of carbonized/uncarbonizedcornhub powder filled natural rubber/acrylonitrilebutadiene rubber biocomposite. International journal of multidisciplinary research and development, 2 (8), 154-160, (2015).
[18]  J. W. M. Noordermeer, R. N. Datta, W. K. Dierkes, R. Guo, T. Mathew, A. G. Talma, M. Tiwari and W. van Ooij. Surface modification of fillers and curatives by plasma polymerization for enhanced performance of single rubbers and dissimilar rubber/rubber blends. Advanced polymer science 239, 167-218, (2011).
[19]  J. Crank. The mathematics of diffusion. Clarendon – Oxford university press, Oxford, UK (1975).
[20]  H. Odani, M. Uchikura, Y. Ogino, M. Kurata. Diffusion and solution of methanol vapor in poly (2-vinylpyridine)- block- polyisoprene and poly(2-vinylpyridine)-block-polystyrene. Journal of membrane science, 15(2), 193-208, (1983).
[21]  K. P. Dasan, G. Unnikrishnan and E. Purushothaman. Solvent transport through carbon black filledpoly (ethylene-co-vinyl acetate) composites. eXPRESS polymer letters, 2(5),382-390,(2008).
[22]  I. O. Igwe, and O. E. Ezeani, Studies on the transport of aromatic solvents through filled natural rubber. International journal of polymer science, vol. 2012, 1-11, (2012).
[23]  C. Kumnuantip and N. Sombatsompop. Dynamic mechanicalproperties and swelling behaviour of NR/reclaimed rubberblends. Materials letters, 57(21), 3167-3174, (2003).
[24]  G. Unnikrishnan, and S. Thomas. Diffusion and transport of aromatic hydrocarbons through natural rubber.Polymer, 35(25), 5504-5510 (2004).
[25]  T. M. Aminabhavi and H. T. S. Phayde. Molecular transportof alkanes through thermoplastic miscible blends of ethylenepropylenerandom copolymer and isostatic polypropylene. Journal of applied polymer science, 55, 1335-1352, (1995).
Show Less References