Journal of Optoelectronics Engineering

Current Issue» Volume 2, Number 1 (2014)

Article

Diffraction Efficiency Enhancement of PFG 01 Holographic Emulsion by New Chemical Processing Technique

1Reseaerch and Development centre, Bharathiar University, Coimbatore, India

2Department of Physics, Kongunadu Arts & Science College, Coimbatore, India


Journal of Optoelectronics Engineering. 2014, 2(1), 21-23
DOI: 10.12691/joe-2-1-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Vadivelan V, Chandar Shekar B. Diffraction Efficiency Enhancement of PFG 01 Holographic Emulsion by New Chemical Processing Technique. Journal of Optoelectronics Engineering. 2014; 2(1):21-23. doi: 10.12691/joe-2-1-3.

Correspondence to: Vadivelan  V, Reseaerch and Development centre, Bharathiar University, Coimbatore, India. Email: vvelan@gmail.com

Abstract

In this research work, high diffraction efficiency and transmission phase holographic lens is recorded by using red sensitive commercially available fine grain PFG-01 silver halide holographic emulsion. In the preliminary stage, the exposure sensitivity is optimized and the plates were chemically developed in recommended developer of CWC2 by the supplier. In the next stage, we have modified the developer and the holographic lens was recorded for the same optimized energy level for comparison. The phase holographic lens was a result by using modified fixation-free rehalogenating bleach R10 for modified and unmodified CWC2 developer. The obtained diffraction efficiency for the holographic lens in usual processing technique is compared with our new modified CWC2 developer. As a result, the enhancement of diffraction efficiency of nearly 20% was achieved by using the new combination of modified developer and modified bleach as compare to the usual combination of developer – bleach processing technique. The experimentally obtained results are compared and explained in detail.

Keywords

References

[[[[[[[[[[[[
[1]  D. J. Cooke and A. A. Ward, "Reflection-Hologram Processing for High Efficiency in Silver-Halide Emulsions", Applied Optics, vol 23, No 6, pp 935-947, 1984.
 
[2]  V.Weiss and E Millul, “Bleached Silver Halide Holographic Recording Material,” Proc. SPIE 1026, 55-61, 1988.
 
[3]  Michael G. A, Xin Wen, Mark J. H, “Process for preparation of high bromide tabular grain emulsion,” US 5750326, May 1998.
 
[4]  Urabe, S., Shunichi, A, “ Method for making silver halide emulsion, photosensitive material using the same, and method of recoding images using the photosensitive materials,” US 5264338 Sep, 1993.
 
[5]  www.geola.it/eshop/index.php
 
Show More References
[6]  J. M. Heaton and Laszlo Solymar, “Wavelength and angular selectivity of high diffraction efficiency reflection holograms in silver halide photographic emulsion” Applied Optics, Vol. 24, No. 18, 1985
 
[7]  Simova E S and Kavehrad M, “Silver –halide sensitized gelatin derived from Agfa – Gevaert holographic plates,” Applied Optics, Vol. 33, 1875-1879, 1994.
 
[8]  Neipp c, Belendez A, Pascual I, “The influence of the development in silver halide sensitized gelatin holograms derived from PFG -01 plates,” Optics Communications. Vol. 173, Issues 1-6, 161-167, 2000.
 
[9]  Hariharan P, “Silver Halide Sensitized Gelatin Holograms: Machanism of Hologram Formation.” Applied Optics, Vol. 25, 2040, 1986.
 
[10]  Bjelkhagen H I, “Silver halide Recording Materials for Holography and their Processing,” Springer, Berlin, 166-288, 1993.
 
[11]  W.T. Cathey, “Three- dimensional wavefront reconstruction using a phase hologram,” Journal of Optical Society of America, Vol. 55, 457, 1965.
 
[12]  J. Upatnieks, C. Leonard, “Amplitude and Phase holograms exposed on Agfa- Gevaert 10E75 Plates,” Applied Optics, Vol. 8, 2353-2354, 1969.
 
[13]  D.H. McMahon, A.R. Franklin, “Efficient, high – quality, R-10 bleached holographic diffraction gratings,” Applied Optics, Vol. 8 1927 – 1929, 1969.
 
[14]  N.J. Phillips, A.A. Ward, R. Cullen, D. Porter, Photographic Science and Engineering, Vol. 24, 120-124, 1984.
 
[15]  J. Crespo, A. Fimia, J.A. Quintana, “Fixation - free methods in bleached reflection holography,” Applied Optics, Vol. 25, 1642-1645, 1986.
 
[16]  R. Kostuk, “Factorial optimization of bleach constituents for silver – halide holograms,” Applied Optics, Vol. 30, 1611–1616, 1991.
 
[17]  C. Neipp a, I. Pascual b, A. Belendez, “Fixation-free rehalogenating bleached reflection holograms recorded on BB-640 plates”, Optics Communications, Vol. 182, 107-114, 2000.
 
Show Less References

Article

Tunable Photonic Band Gap in a One-Dimensional Lattice Substituted Multiferroic - Dielectric Photonic Crystals in Near Infrared Region

1Department of Materials Science and Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, India


Journal of Optoelectronics Engineering. 2014, 2(1), 7-20
DOI: 10.12691/joe-2-1-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Sanjay Srivastava. Tunable Photonic Band Gap in a One-Dimensional Lattice Substituted Multiferroic - Dielectric Photonic Crystals in Near Infrared Region. Journal of Optoelectronics Engineering. 2014; 2(1):7-20. doi: 10.12691/joe-2-1-2.

Correspondence to: Sanjay  Srivastava, Department of Materials Science and Metallurgical Engineering, Maulana Azad National Institute of Technology, Bhopal, India. Email: s.srivastava.msme@gmail.com

Abstract

This document gives formatting instructions for authors preparing papers for publication in the journal. Authors are encouraged to prepare manuscripts directly using this template. This template demonstrates format requirements for the JournalIn order to investigate band gap tunability in polar oxides, the photonic band gap of antiferromagnetic-dielectric binary photonic crystal can be significantly enlarged by the substitution of the lattice atoms with other suitable atoms which forms a solid solution with the parent lattice. In this paper we measured the optical properties of a series of Bi (Fe1−xMnx) O3 thin films. Two substrates with different orientation of the crystal plane were selected which were also acting as dielectric materials in multilayer photonic crystals. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members; as a result it demonstrates straightforward band gap tunability in this system. First, the band gap enlargement due to the addition of the Mn+3 atoms in BFO lattice is examined in the case of normal incidence. Next, in the oblique incidence, a wider omnidirectional band gap can be obtained beyond 30o angle of incidence. By substitution of Mn+3 in BFO lattice, enhanced band gap was observed in the different optical region due to a large band gap of the existing materials.

Keywords

References

[[[[[[[[[[[[[[[[
[1]  Yablonovitch, E., “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., Vol. 58, 2059, 1987.
 
[2]  John, S., “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., Vol. 58, 2486, 1987.
 
[3]  Suthar, B. and A. Bhargava, “Tunable multi-channel filtering using 1-D photonic quantum well structures,” Progress In Electromagnetics Research Letters, Vol. 27, 43-51, 2011.
 
[4]  Bhargava, A. and B. Suthar, “Optical switching properties of kerr- nonlinear chalcogenide photonic crystal,” J. of Ovonic Research, Vol. 5, No. 6, 187, 2009.
 
[5]  Li, B., Zhou J., Li L., Wang X. J., Liu X. H., and Zi J., “Ferroelectric inverse opals with electrically tunable photonic band gap,” Appl. Phys. Lett., Vol. 83, 4704, 2003.
 
Show More References
[6]  Kumar, V., Singh K. S., and Ojha S. P., “Broadening of omnidirectional photonic band gap in Si-based one-dimensional photonic crystals,” Progress In Electromagnetics Research M, Vol. 14, 101-111, 2010.
 
[7]  Wang, X., Kempa K., Ren Z. F., and Kimball B., “Rapid photon flux switching in two-dimensional photonic crystals,” Appl. Phys. Lett., Vol. 84, 1817, 2004.
 
[8]  Fink, Y., Winn J. N., Fan S., Chen C., Michel J., Joannopoulos J. D., and Thomas E. L., “A dielectric omnidirectional reflector,” Science, Vol. 282, 1679-1682, 1998.
 
[9]  Chigrin, D. N., Lavrinenko A. V., Yarotsky D. A., and Gaponenko S. V., “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A: Mater.Sci. Process. Vol. 68, 25-28, 1999.
 
[10]  Yablonovitch, E., “Photonic band-gap structures,” J. Opt. Soc. Amer. B, Vol. 10, 283-295, 1993.
 
[11]  Li, H. H., “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data, Vol. 9, 561, 1980.
 
[12]  Xu X. S., Ihlefeld J. F., Lee J. H., Ezekoye O. K., Vlahos E., Ramesh R., Gopalan V., Pan X. Q., Schlom D. G., and Musfeldt J. L., “Tunable band gap in Bi (Fe1−xMnx)O3 films” Applied Physics Letters 96, 192901, 2010.
 
[13]  Seema H., Durrani S. K., Saeed K., Mohammadzai I. and Hussain N. “Auto –Combustion synthesis and characterization of Multi-ferroic (BiFeO3) Materials” JPMS Conference Issue, Materials 2010
 
[14]  Carvalho T.T., Tavares P.B. “Synthesis and thermodynamic stability of multiferroic BiFeO3” Materials Letters 62, 3984-3986, 2008.
 
[15]  Zhao Y. Miao J. Zhang X. Chen Y. Xu X. G. Jiang Y. “Ultra-thin BiFeO3 Nanowires prepared by a Sol–gel combustion method: an investigation of its multiferroic and optical properties” J Mater Sci: Mater Electron (2012) 23:180-184.
 
[16]  Yeh, P., Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
 
[17]  Kumar Amit, Ram Rai C, Podraza Nikolas J., Denev Sava, Ramirez Mariola, Chu Ying-Hao, Martin Lane W., Ihlefeld,Jon Heeg T., Schubert J., Schlom Darrell G., Orenstein J., Ramesh R., Collins Robert W., Musfeldt, Janice L. and Gopalan V., “Linear and nonlinear optical properties of BiFeO3” Applied Physics Letters 92, 121915 (2008).
 
[18]  Lee J. H., Ke X., Misra R., Ihlefeld J. F., Xu X. S., Mei Z. G., Heeg T., Roeckerath M., Schubert J., Liu Z. K., Musfeldt J. L., Schiffer P., and Schlom D. G. “Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy” Applied Physics Letters 96, 262905 (2010).
 
[19]  Xu X. S., Ihlefeld J. F., Lee J. H., Ezekoye O. K., Vlahos E., Ramesh R., Gopalan V., Pan X. Q., Schlom D. G., and Musfeldt J. L., “Tunable band gap in Bi(Fe1−xMnx)O3 films” Applied Physics Letters 96, 192901 (2010).
 
[20]  Lee, J. H. Ke X., Misra R., Ihlefeld J. F., Xu X. S., Mei Z. G., Heeg T., Roeckerath M., Schubert J., Liu Z. K., Musfeldt J. L., Schiffer P., and Schlom D. G. “Adsorption-controlled growth of BiMnO3 films by molecular-beam epitaxy” Applied Physics Letters 96, 262905 (2010).
 
[21]  Xu X. S., Ihlefeld J. F., Lee J. H., Ezekoye O. K., Vlahos E., Ramesh R., Gopalan V., Pan X. Q., Schlom D. G., and Musfeldt J. L.. “Tunable band gap in Bi (Fe1−xMnxO3) films” Applied Physics Letters, 192901 (2010).
 
Show Less References

Article

Well Width Effects on Material Gain and Lasing Wavelength in InGaAsP / InP Nano-Heterostructure

1Department of Physics, Banasthali Vidyapith, Rajasthan (INDIA)

2Department of Physics, Aligarh Muslim University, Aligarh, UP (INDIA)

3Department of Pure and Applied Physics, University of Kota, Kota, Rajasthan (INDIA)


Journal of Optoelectronics Engineering. 2014, 2(1), 1-6
DOI: 10.12691/joe-2-1-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Rashmi Yadav, Pyare Lal, F. Rahman, S. Dalela, P. A. Alvi. Well Width Effects on Material Gain and Lasing Wavelength in InGaAsP / InP Nano-Heterostructure. Journal of Optoelectronics Engineering. 2014; 2(1):1-6. doi: 10.12691/joe-2-1-1.

Correspondence to: P.  A. Alvi, Department of Physics, Banasthali Vidyapith, Rajasthan (INDIA). Email: drpaalvi@gmail.com

Abstract

This paper reports the effects of quantum well width on material gain and lasing wavelength of the InGaAsP / InP lasing nano-heterostructure which is based on simple SCH (Separate Confinement Heterostructure) design. The studies made in this paper are directed towards the well width dependent modeling of InGaAsP / InP lasing nano-heterostructure and simulation of the lasing characteristics such as material gain, differential gain, anti-guiding factor and refractive index change with carrier density. The outcomes of the work reported in this paper suggest that both the material gain and lasing wavelength can be controlled by varying width of the quantum well sandwiched between the barriers followed by claddings in the nano-structure. Since, the maximum material gain has been achieved at wavelength of 1.35 µm for minimum quantum well width (2 nm) with in TE mode; therefore, InGaAsP / InP based nano-heterostructure with 2 nm well width may be very useful in the area of nano-opto-electronics.

Keywords

References

[[[[[[[[[[[[[
[1]  P. A. Alvi, Sapna Gupta, M. J. Siddiqui, G. Sharma, and S. Dalela, Physica B: Condensed Matter, Vol. 405, pp. 2431-2435 (2010).
 
[2]  P. A. Alvi, Sapna Gupta, P. Vijay, G. Sharma, M. J. Siddiqui, Physica B: Condensed Matter, Vol. 405, pp. 3624-3629 (2010).
 
[3]  Wang Yang, Qiu Ying-Ping, PAN Jiao-Qing, ZHAO Ling-juan, ZHU Hong-Liang, Wang Wei, Chin. Phys. Lett. 27, No. 11, 114201 (2010).
 
[4]  M. Bugajski, B. Mroziewicz, K. Reginski, J. Muszalski, J. Kubica, M. Zbroszczyk, P. Sajewicz, T. Piwonski, A. Jachymek, R. Rutkowski, T. Ochalski, A. Wojcik, E. Kowalczyk, A. Malag, A. Kozlowska, L. Dobrzanski, and A. Jagoda, Opto-Electronics Review 9 (1) (2001).
 
[5]  Durga Prasad Sapkota, Madhu Sudan Kayastha, Kiochi Wakita, Opt. Quant Electron., 45 35-43 (2013).
 
Show More References
[6]  Carsten Rohr, Paul Abbott, Ian Ballard, James P. Connolly, and Keith W. J. Barnham, Massimo Mazzer, Chris Button, Lucia Nasi, Geoff Hill and John S. Roberts, Graham Clarke, Ravin Ginige, J. of Appl. Phys., 100, 114510 (2006).
 
[7]  L.P. Hou, M. Haji, C. Li, B.C. Qiu, and A.C. Bryce, Laser Phys. Lett. 8, 535 (2011).
 
[8]  Vahid Bahrami Yekta and Hassan Kaatuzian, Commun. Theor. Phys. 54, pp. 529-535 (2010).
 
[9]  Jong-Jae KIM, J. of the Korean Physical Society, 48, No. 1, pp. 166-169 (2006).
 
[10]  Pyare Lal, Shobhna Dixit, S. Dalela, F. Rahman, P. A. Alvi, Physica E 46, pp. 224-231(2012).
 
[11]  Beatrice Saint-Cricq, Francoise Lozes-Dupuy, and Georges Vassilieff, IEEE J. of Quantum Electronics QE-22, No. 5 (1986).
 
[12]  Sandra R. Selmic, Tso-Min Chou, Jiehping Sih, Jay B. Kirk, Art Mantie, Jerome K. Butler, Gary A. Evans, IEEE J. On Selected Topics in Quantum Electronics, 7, No. 2 (2001).
 
[13]  G. D. Mahan, L. E. Oliveira, Phys. Rev. B 44, 3150-3156 (1991).
 
[14]  P. A. Alvi, Pyare Lal, S. Dalela, and M. J. Siddiqui, Physica Scripta 85, 035402 (2012).
 
[15]  Pyare Lal, Rashmi Yadav, F. Rahman, P. A. Alvi, Adv. Sci. Eng. Med. 5, 918-925 (2013).
 
[16]  N. Choudhary, N. K. Dutta, J. Appl. Phys., Vol. 90, No. 1, pp. 38-42 (2001).
 
[17]  P. L. Derry, A. Yariv, K.Y. Lau, N. Bar-Chaim, K. Lee, J. Rosenberg, Appl. Phys. Lett. 50, 1773 (1987).
 
[18]  A. Yariv, Appl. Phys. Lett. 53, 1033 (1988).
 
Show Less References