ISSN (Print): 2372-4773

ISSN (Online): 2372-4781

You are here

Currrent Issue: Volume 3, Number 1, 2015

Article

Implementation of Optical Network Connectivity through Physical and Logical Channel Approach -An Overview

1SAIRAM PROFESSOR (E&CE) NMAMIT, NITTE


Journal of Optoelectronics Engineering. 2015, 3(1), 15-17
doi: 10.12691/joe-3-1-3
Copyright © 2015 Science and Education Publishing

Cite this paper:
Sairam Kvssss. Implementation of Optical Network Connectivity through Physical and Logical Channel Approach -An Overview. Journal of Optoelectronics Engineering. 2015; 3(1):15-17. doi: 10.12691/joe-3-1-3.

Correspondence to: Sairam  Kvssss, SAIRAM PROFESSOR (E&CE) NMAMIT, NITTE. Email: sairamvssss@gmail.com

Abstract

Optical networks play a vital role in advanced communications. Basically networks transmit and receive the packets (Bits per second). Hence this paper mainly focuses on Physical Channel Connectivity (PCC) and Logical Channel Connectivity (LCC). Further Network Connectivity Parameters (NCP) and Network Simulation Parameters (NSP) in order to obtain spatial channel connectivity in the form of throughput.PCC describes the raw bits functionality, whereas the LCC describes the Gain enhancement in terms adhoc network connectivity. NCP determines the node connectivity and their demand distribution productivity, where as NSP provides the network integrity in terms of their connectivity.

Keywords

References

[1]  Krzysztof Walkowiak et.al., “Optical networks for cost-efficient and scalable provisioning of big data traffic” International journal of Parallel, Emergent, and distributed Systems, Vol.30Issue 1, Jan 2015.
 
[2]  Krzysztof Walkowiak et.al. Elsevier Journal, “Routing and spectrum allocation algorithms for elastic optical networks with dedicated path protection”, Vol 13, Issue 2, July 2014,pp.63-75.
 
[3]  Mozhgan Mahloo et.al., Elsevier Journal, “Protection cost evaluation of WDM-based next generation optical access networks” ,Vol 10, Issue 1,Jan 2013,pp.89-99
 
[4]  Neil Akar et.al., Elsevier Journal, “ A survey of quality of service differentiation mechanisms for optical burst switching networks”, Vol. 7, Issue 1,Jan 2010, pp. 1-11.
 
[5]  T H WU and R H Cardwell. ‘Optimum routing for fiber network design: model and applications’ proceedings of IEEE, Information communications conference (ICC), Philadelphia, PA, June 1988, P2.5.1.
 
Show More References
[6]  Pin-Han Ho and Hussein, T. Moufath, “A Framework for Service- Guaranteed Shared Protection in WDM Mesh Networks”, IEEE Communications Magazine, Vol. 4, No. 5, 2002, pp. 103-109.
 
[7]  Rajeev Ramswami, “Fiber-Optic Networks: Future Trends”, Journal of IETE, Vol. 39, No. 2, 1993, pp. 59-68.
 
[8]  Rajeev Ramswami, “Optical Fiber Communication: From Transmission to Networking”, IEEE Communication Magazine, Vol. 5, No. 6, 2002, pp. 138-147.
 
[9]  Rajiv Ramaswami, Kumar N. Siva Rajan, P. Goyal, H.M. VIN and H. Chen, “Start-time Fair Queuing: A Scheduling Algorithm for Integrated Service Access”, ACM SIGCOMM, 1996.
 
Show Less References

Article

Etching Techniques for Thinning Silicon Wafer for Ultra Thin High Efficiency Interdigitated Back Contact Solar Cells

1Grup de Recerca en Micro i Nanotecnologies (MNT), Universitat Politècnica de Catalunya (UPC), C. Jordi Girona, Barcelona, Spain


Journal of Optoelectronics Engineering. 2015, 3(1), 7-14
doi: 10.12691/joe-3-1-2
Copyright © 2015 Science and Education Publishing

Cite this paper:
Iduabo John Afa, Gema López, Pablo Rafael Ortega Villasclaras. Etching Techniques for Thinning Silicon Wafer for Ultra Thin High Efficiency Interdigitated Back Contact Solar Cells. Journal of Optoelectronics Engineering. 2015; 3(1):7-14. doi: 10.12691/joe-3-1-2.

Correspondence to: Iduabo  John Afa, Grup de Recerca en Micro i Nanotecnologies (MNT), Universitat Politècnica de Catalunya (UPC), C. Jordi Girona, Barcelona, Spain. Email: iduabo.john.afa@estudiant.upc.edu

Abstract

High efficiency Interdigitated back contact (IBC) solar cells help reduce the area of solar panels needed to supply sufficient amount of energy for household consumption. We believe that a properly passivated IBC cell with the aid of light trapping schemes can maintain an efficiency of 20% even with thickness under 20 μm. In this work, photolithography and etching techniques are used for deep etching of crystalline Silicon (c-Si) wafer to a thickness less than 20 μm. Tetramethylammoniumhydroxide (TMAH) wet anisotropic etching and plasma based Reactive ion etching (RIE) are used with SPR 220-7.0 and SU-8 photoresists. SiO2 is used as making layer for TMAH etching. TMAH etch of a 4-inch c-Si wafer is done at a temperature of 80°C for 8 hours. RIE of a quarter of a 4-inch c-Si wafer is done for 3 hours using SF6 as reactive gas. A baseline photolithography process flow for SU-8 photoresist deposition was developed. The etch rates of TMAH etch techniques fall within the range of 0.3 – 0.45 μm/min and etch rates for RIE fall within the range of 1.2 – 1.8 μm/min. The RIE shows capability of achieving smaller thickness sizes with greater advantages than the TMAH etching technique.

Keywords

References

[1]  Verlinden P 2012 Simple power-loss analysis method for high-efficiency interdigitated back contact (IBC) silicon solar cells, Proc. 2nd SiliconPV conf., Leuven, Belgium.
 
[2]  Papet, P., Nichiporuk, O., Fave, A., Kaminski, A., Bazer-Bachi, B., Lemiti, M., 2006 “TMAH texturisation and etching of interdigitated back-contact solar cells”, Materials Science-Poland, 24(4): 1043-1049.
 
[3]  López G, Ortega PR, Voz C, Martín I, Colina M, Morales A B, Orpella A and Alcubilla R, 2013 Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates, Beilstein J Nanotech 4 726-731.
 
[4]  Lammert MD, Schwartz RJ, 1977 The Interdigitated Back Contact Solar Cell: A Silicon solar cell for use in concentrated sunlight, IEEE Trans. Electron. Dev., 24, 337-342.
 
[5]  Beck FJ, Mokkapati S, and Catchpole KR 2010 Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles, Prog. Photovolt. Res. Appl. 18 500-504 (2010).
 
Show More References
[6]  Carrio, D., Ortega, P., Lopez, G., Lopez-Gonzalez, J.M., Martin, I., Alcubilla, R. 2013 “3D simulations of back-contact back-junction c-Si(P) solar cells with doped point contacts”, EU PVSEC, 2CV 3.44.
 
[7]  Ortega, P., Martin, I., Lopez, G., et al 2012 “p-type c-Si solar cells based on rear side laser processing of Al2O3/SiCx stacks”, Solar Energy Materials and Solar Cells, 106: 80-83.
 
[8]  Lopez, G., Ortega, Voz C., et al 2013 “Surface passivation and optical characterization of Al2O3/a-SiCx stacks on c-Si substrates”, Proc. E-MRS Spring Meeting, Strasbourg, France.
 
[9]  Tabata, O., 1996 “PH-controlled TMAH etchants for silicon micromachining”, Sensors and Actuators A, 53: 335-339.
 
[10]  Sakaino, K., Adachi, S., 2001 “Study of Si(100) surfaces etched in TMAH solution”, Sensors and Actuators A, 88: 71-78.
 
[11]  Gui-zhen Y., Chan, P.C.H., Hsing, I.M., Sharma, R.K, Sin, J.K.O., 2001 “An improved TMAH Si etching solution without attacking exposed Aluminum”, Sensors and Actuators A, 89: 135-141.
 
[12]  Jahns J, Helfert S. 2001 Introduction Micro- and Nanooptics, (Weinheim: Wiley) p. 187.
 
[13]  Taylor, R.F., Schultz, J.S. 1996 Handbook of Chemistry and Biological Sensors, (IOP: Bristol) pp. 49-51.
 
[14]  Sonphao W, Chaisirikul S 2001 Silicon anisotropic etching of TMAH solution. Proc. IEEE Intl. Sym. Indust. Elect. (ISIE), Pusan, 2049-2052.
 
[15]  Abgrall P, Nguyen N, 2009 Nanofluidics, (Norwood: Artech House) p. 94.
 
[16]  Tabata O, Asahi R, Funabashi H, Sugiyama S 1991 Anisotropic etching of Silicon (CH/sub 3/)/sub 4/NOH solutions. Intl. Conf. Solid-State Sens. Actuators, 24 June, San Francisco, 811 – 814.
 
[17]  Emirov Y, Belyaev A, Cruson D, Tarasov I, Kumar A, Wu H, Melkote S, Ostapenko S, 2011 Pinhole detection in Si solar cells using Resonance Ultrasonic vibrations. 37th IEEE Photovoltaic Specialists conference (PVSC), 19th June, Seattle 002161-002163.
 
[18]  Scheibe C, and Obermeier E, 1995 Compensating corner undercutting in anisotropic etching of (100) Silicon for chip separation. J Micromech. Microeng. 5 109.
 
[19]  Li, Y.X., French, P.J., Wolffenbuttel, R.F., 1995 “Selective reactive ion etching of Silicon nitride over silicon using CHF3 with N2 addition”, J. Vac. Sci. Technol. B, 13(5): 2008-2012.
 
[20]  J Yoo et al 2008 RIE texturing optimization for thin c-Si solar cells in SF6/O2 plasma, J Phys. D: App Phys., 41 125205.
 
[21]  Jansen H, Gardeniers H, de Boer M, Elwenspoek M, Fluitman J 1996 A survey on the reactive ion etching of silicon in microtechnology. J Micromech. Microeng. 6 14-28.
 
[22]  Lysevych, M., Tan, H.H., Karouta, F., Jagadish, C., 2011 “Single-step RIE fabrication process of low loss InP waveguide using CH4/H2 chemistry”, J. Electrochem. Soc., 158(3): H281-H284.
 
Show Less References

Article

Analysis of Strained Al0.15In0.22Ga0.63As/GaAs Graded Index–Separate Confinement Lasing Nano-heterostructure

1Department of Electronics, Banasthali Vidyapith, Rajasthan, India

2Department of Physics, Banasthali Vidyapith, Rajasthan, India

3Department of Physics, Aligarh Muslim University, Aligarh, U.P., India


Journal of Optoelectronics Engineering. 2015, 3(1), 1-6
doi: 10.12691/joe-3-1-1
Copyright © 2015 Science and Education Publishing

Cite this paper:
Swati Jha, Meha Sharma, H. K. Nirmal, Pyare Lal, F. Rahman, P. A. Alvi. Analysis of Strained Al0.15In0.22Ga0.63As/GaAs Graded Index–Separate Confinement Lasing Nano-heterostructure. Journal of Optoelectronics Engineering. 2015; 3(1):1-6. doi: 10.12691/joe-3-1-1.

Correspondence to: P.  A. Alvi, Department of Physics, Banasthali Vidyapith, Rajasthan, India. Email: drpaalvi@gmail.com

Abstract

The paper deals with a theoretical insight into the various characteristics of a 0.89 μm Al0.15In0.22Ga0.63As/GaAs strained single quantum well based Graded Index (GRIN) - separate confinement lasing nano-heterostructure. Major emphasis has been laid on the optical and modal gain. Both these gain have been simulated with respect to lasing wavelength, photon energy and current density. In this paper, we have also drawn a comparative picture of the two polarization modes i.e Transverse Electric (TE) and Transverse Magnetic (TM). The maximum optical gain has been observed to be 5557.18 cm-1 at the lasing wavelength ~ 0.90 μm and photonic energy ~ 1.36 eV in TE mode and it is only 2760.70 cm-1 at the lasing wavelength ~ 0.78 μm and at photonic energy ~ 1.58 eV in TM mode. However, the maximum modal gain has been observed to be 54.65 cm-1 in TE mode and it is 27.16 cm-1 in TM mode at the same lasing wavelengths and photonic energies respectively at 298 K. The behavior of quasi Fermi levels for the conduction band and valence band has also been studied. Other important parameters like gain compression, differential gain and refractive index profile have also been simulated with respect to carrier density. Anti-guiding factor has been plotted against current density to observe its behavior in order to support the explanation of optical gain simulated.

Keywords

References

[1]  Y.S. Yong, H.Y. Wong, H.K. Yow, M. Sorel, “Systematic study on the confinement structure design of 1.5 μm InGaAlAs/InP multiple quantum well lasers”, Laser Phys. 20(4),811-815, (2010).
 
[2]  J. M. Gaines, “Compound Semiconductor Epitaxy”, edited by C. W. Tu, L. A. Kolodziejshi, and U. R. McGray, MRS Symposia Proceedings No. 340, Materials Research Society, Pittsburgh, p. 419,(1994).
 
[3]  C. Weisbuch and B. Vinter, “Quantum Semiconductor Heterostructures”, Academic, New York, (1993).
 
[4]  W. T. Tsang, “Extremely low threshold AlGaAs modified multiquantum-well heterostructure lasers grown by MBE”, Appl. Phys. Lett. 39, 786 (1981).
 
[5]  W. T. Tsang, “Extremely low threshold (AlGa)As graded‐index waveguide separate‐confinement heterostructure lasers grown by molecular beam epitaxy”, Appl. Phys. Lett. 40, 217 (1982).
 
Show More References
[6]  D. Kasemset, C.-S. Hong, N. B. Patel and P. D. Dapkus,“Graded barrier single quantum well lasers — theory and experiment”, IEEE J. Quantum Electron., Vol. QE-19, pp. 1025-30 (1983).
 
[7]  S.W. Ryu and P.D. Dapkus, “Low threshold current density GaAsSb quantum well (QW) lasers grown by metal organic chemical vapour deposition on GaAs substrates”, Electron. Lett., Vol. 36, No. 16, pp. 1387- 1388, (2000).
 
[8]  J.C. Yong, J.M. Rorison, I.H. White “1.3 μm quantum well InGaAsP, AlGaInAs and InGaAsN laser material gain: a theoretical study”, IEEE J. Quantum Electroxn, Vol. 38, No. 12, pp. 1553-1564 (2002).
 
[9]  D. P. Sapkota, M.S. Kayastha and K. Wakita, “Proposed Model of Electric Field Effects in High-Purity GaAs at Room Temperature”, Opt. Quant Electron., Vol. 4, No. 5,pp. 99-103 (2014).
 
[10]  Carsten Rohr, Paul Abbott, Ian Ballard, James P. Connolly, and Keith W. J. Barnham, Massimo Mazzer, Chris Button, Lucia Nasi, Geoff Hill and John S. Roberts, Graham Clarke, Ravin Ginige, “InP based lattice-matched InGaAsP and strain-compensated InGaAs∕InGaAs quantum well cells for thermohotovoltaic applications”, J. of Appl. Phys., 100, 114510, (2006).
 
[11]  Pyare Lal, Shobhna Dixit, S. Dalela, F. Rahman, and P. A. Alvi, “Gain Simulation of lasing nano-heterostructure Al0.10Ga0.90As/GaAs” Physica E: Low dimensional Systems and Nanostructures, 46, pp. 224-231, (2012).
 
[12]  P.A. Alvi, Pyare Lal, Rashmi Yadav, Shobhna Dixit, S. Dalela, “Modal Gain characteristics of InGaAlAs/InP lasing nano-heterostructures.” Superlattices and Microstructures, 61, 1-12 (2013).
 
[13]  G. P. Agrawal, “Fiber-Optic Communication Systems”, 4th Edition, Wiley Interscience, Chap. 3, (2010).
 
[14]  C.A. Wang, J. N. Walpole, L. J. Missaggia, “AlInGaAs/AlGaAs separate‐confinement heterostructure strained single quantum well diode lasers grown by organometallic vapor phase epitaxy”, Appl. Phy. Lett., 58, 2208, (1991).
 
[15]  Robert N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent Light Emission From GaAs Junctions”, Physical Review Letters 9, pp. 366-369, (1962).
 
[16]  T. D. Moustakas and A. Bhattacharyya, “Experimental Evidence that the Plasma-Assisted MBE Growth of Nitride Alloys is a Liquid Phase Epitaxy Process,” ECS Transactions: 219th ECS Meeting, vol. 35, no. 6, pp. 63-71, (2011).
 
[17]  T. D. Moustakas and A. Bhattacharyya, “The Role of Liquid Phase Epitaxy During Growth of AlGaN by MBE,” Physica Status Solidi C, vol. 9, no. 3-4, pp. 580-583, (2011).
 
[18]  A. Bhattacharyya, T. D. Moustakas, L. Zhou, D. J. Smith, and W. Hug, “Deep Ultraviolet Emitting AlGaN Quantum Wells with High Internal Quantum Efficiency,” Applied Physics Letters, vol. 94, no. 18, article no. 181907, (2009).
 
[19]  Y. Liao, C. Thomidis, C.-K. Kao, and T. D. Moustakas, “AlGaN Based Deep Ultraviolet Light Emitting Diodes with High Internal Quantum Efficiency Grown by Molecular Beam Epitaxy,” Applied Physics Letters, vol. 98, no. 8, article no. 081110, (2011).
 
[20]  T. D. Moustakas, Y. Liao, C-k. Kao, C. Thomidis, A. Bhattacharyya, D. Bhattarai and A. Moldawer, “Deep UV-LEDs with High IQE Based on AlGaN Alloys with Strong Band Structure Potential Fluctuations,” Proceedings of SPIE, vol. 8278, (2012).
 
[21]  Pyare Lal, Rashmi Yadav, Meha Sharma, F. Rahman, S. Dalela, P. A. Alvi, “Qualitative analysis of gain spectra of InGaAlAs/InP lasing nano-heterostructure” International Journal of Modern Physics B, Vol. 28, No. 29 (2014) pp. 1450206.
 
[22]  Sandra R. Selmic, Tso-Min Chou, Jiehping Sih, Jay B. Kirk, Art Mantie, Jerome K. Butler, Gary A. Evans, IEEE J. On Selected Topics in Quantum Electronics, 7, No. 2 (2001).
 
[23]  Rashmi Yadav, Pyare Lal, F. Rahman, S. Dalela, P. A. Alvi, “Investigation of material gain of In0.90Ga0.10As0.59P0.41/InP lasing nano-heterostructure” International Journal of Modern Physics B, Vol. 28, No. 10 (2014) pp. 1450068.
 
[24]  G. D. Mahan, L. E. Oliveira, “Quasi-Fermi-levels in quantum-well photoluminescence,” Phys. Rev. B 44, 3150 (1991).
 
Show Less References