ISSN (Print): 2372-0115

ISSN (Online): 2372-0107

Currrent Issue: Volume 5, Number 2, 2017

Article

Bacteriocins: Limiting Factors to Optimum Activity

1Jomo Kenyatta University of Agriculture and Technology

2Department of Food Science

3Department of biochemistry


Journal of Food Security. 2017, 5(2), 19-25
doi: 10.12691/jfs-5-2-1
Copyright © 2017 Science and Education Publishing

Cite this paper:
Juliana Wanjiru Maina, Julius Maina Mathara, Gideon M. Kikuvi, Shellemiah Otieno Ouma. Bacteriocins: Limiting Factors to Optimum Activity. Journal of Food Security. 2017; 5(2):19-25. doi: 10.12691/jfs-5-2-1.

Correspondence to: Juliana  Wanjiru Maina, Jomo Kenyatta University of Agriculture and Technology. Email: juliana_maina@yahoo.com

Abstract

Bacteriocins are described as ribosomally synthesized antimicrobial peptides lethal to bacteria other than the producing strain. They are the most abundant of antimicrobial compounds produced by bacteria. These antimicrobial peptides offer an advantage over by targeting specific organisms and are generally regarded as safe for humans. The crude bacteriocins have been found to be affected by the presence of proteolytic enzymes like trypsin, temperature, pH, salts, and ions like copper or iron. These antimicrobial agents are gaining attention not only as alternative therapeutics in the pharmaceutical industry but also as a bio-preservative in food industries and in agriculture for control of bovine mastitis pathogens. These applications fundamentally depend on their antimicrobial effects and a vast understanding of their activity and factors inhibiting their mode of action. In this review factors perceived to be consequential to either activating, inactivating or maintaining the optimal activity of bacteriocins were identified and discussed. This comprehensive review delved into these factors with the aim of in-depth understanding of bacteriocins and their application for extensive exploitation. The remits of this detailed review include aspects of re-assuring public faith in bacteriocins and providing adequate information to users on their activity under the various condition in order to make informed choices before use. This review will help in restoring confidence in bacteriocins as a substitute to conventional antibiotics presents a considerable commercial challenge to the pharmaceutical industry. This indulgence will help develop innovative strategies towards the industrial application of bacteriocins.

Keywords

References

[1]  Abriouel, H., Franz, C. M., Omar, N. B., & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS microbiology reviews, 35(1), 201-232.
 
[2]  Aktypis, A., Kalantzopoulos, G., Huis in’t Veld, J. H. J., & Ten Brink, B. (1998). Purification and characterization of thermophilin T, a novel bacteriocin produced by Streptococcus thermophilus ACA‐DC 0040. Journal of applied Microbiology, 84(4), 568-576.
 
[3]  Anthony, T., Rajesh, T., Kayalvizhi, N., & Gunasekaran, P. (2009). Influence of medium components and fermentation conditions on the production of bacteriocin (s) by Bacillus licheniformis AnBa9. Bioresource technology, 100(2), 872-877.
 
[4]  Atrih, A., Rekhif, N., Moir, A. J. G., Lebrihi, A., & Lefebvre, G. (2001). Mode of action, purification and amino acid sequence of plantaricin C19, an anti-Listeria bacteriocin produced by Lactobacillus plantarum C19. International Journal of Food Microbiology, 68(1), 93-104.
 
[5]  Axelsson, L., & Ahrné, S. (2000). Lactic acid bacteria. In Applied microbial systematics (pp. 367-388). Springer Netherlands.
 
Show More References
[6]  Baquero, F., & Moreno, F. (1984). The microcins. FEMS microbiology letters, 23(2-3), 117-124.
 
[7]  Campos, C. A., Rodríguez, Ó., Calo-Mata, P., Prado, M., & Barros-Velázquez, J. (2006). Preliminary characterization of bacteriocins from Lactococcus lactis, Enterococcus faecium and Enterococcus mundtii strains isolated from turbot (Psetta maxima). Food Research International, 39(3), 356-364.
 
[8]  Cascales, E., Buchanan, S. K., Duché, D., Kleanthous, C., Lloubes, R., Postle, K., ... & Cavard, D. (2007). Colicin biology. Microbiology and Molecular Biology Reviews, 71(1), 158-229.
 
[9]  Cherif, A., Chehimi, S., Limem, F., Hansen, B. M., Hendriksen, N. B., Daffonchio, D., & Boudabous, A. (2003). Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. Journal of Applied Microbiology, 95(5), 990-1000.
 
[10]  Cherif, A., Rezgui, W., Raddadi, N., Daffonchio, D., & Boudabous, A. (2008). Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110. Microbiological Research, 163(6), 684-692.
 
[11]  Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International journal of food microbiology, 71(1), 1-20.
 
[12]  Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777-788.
 
[13]  Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins-a viable alternative to antibiotics?. Nature Reviews Microbiology, 11(2), 95-105.
 
[14]  Davey, G. P., & Richardson, B. C. (1981). Purification and some properties of diplococcin from Streptococcus cremoris 346. Applied and environmental microbiology, 41(1), 84-89.
 
[15]  De Vuyst, L., & Vandamme, E. J. (1994). Antimicrobial potential of lactic acid bacteria. In Bacteriocins of lactic acid bacteria (pp. 91-142). Springer US.
 
[16]  Delves-broughton, J. (2005). Nisin as a food preservative. Food Australia, 57(12), 525-527.
 
[17]  Delves-Broughton, J., Blackburn, P., Evans, R. J., & Hugenholtz, J. (1996). Applications of the bacteriocin, nisin. Antonie van Leeuwenhoek, 69(2), 193-202.
 
[18]  Demain, A. L. (2010). Induction of microbial secondary metabolism. International Microbiology, 1(4), 259-264.
 
[19]  Desriac, F., Defer, D., Bourgougnon, N., Brillet, B., Le Chevalier, P., & Fleury, Y. (2010). Bacteriocin as weapons in the marine animal-associated bacteria warfare: inventory and potential applications as an aquaculture probiotic. Marine drugs, 8(4), 1153-1177.
 
[20]  Elayaraja, S., Annamalai, N., Mayavu, P., & Balasubramanian, T. (2014). Production, purification and characterization of bacteriocin from Lactobacillus murinus AU06 and its broad antibacterial spectrum. Asian Pacific journal of tropical biomedicine, 4, S305-S311.
 
[21]  Ennahar, S., Sashihara, T., Sonomoto, K., & Ishizaki, A. (2000). Class IIa bacteriocins: biosynthesis, structure and activity. FEMS microbiology reviews, 24(1), 85-106.
 
[22]  Fatima, D., & Mebrouk, K. (2013). Characterization and determination of the factors affecting anti-listerial bacteriocins from Lactobacillus plantarum and Pediococcus pentosaceus isolated from dairy milk products. African Journal of Food Science, 7(3), 35-44.
 
[23]  Gálvez, A., Abriouel, H., López, R. L., & Omar, N. B. (2007). Bacteriocin-based strategies for food biopreservation. International journal of food microbiology, 120(1), 51-70.
 
[24]  Gordon, Y. J., Romanowski, E. G., & McDermott, A. M. (2005). A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Current eye research, 30(7), 505-515.
 
[25]  Gratia, J. P. (2000). Andre Gratia: a forerunner in microbial and viral genetics. Genetics, 156(2), 471-476.
 
[26]  Güllüce, M., Karadayı, M., & Barış, Ö. (2013). Bacteriocins: promising natural antimicrobials. local environment, 3, 6.
 
[27]  Han, J. H. (2003). Antimicrobial food packaging. Novel food packaging techniques, 50-70.
 
[28]  Ivanova, I., Miteva, V., Stefanova, T. S., Pantev, A., Budakov, I., Danova, S., ... & Boyaval, P. (1998). Characterization of a bacteriocin produced by Streptococcus thermophilus 81. International journal of food microbiology, 42(3), 147-158.
 
[29]  Jack, R. W., Tagg, J. R., & Ray, B. (1995). Bacteriocins of gram-positive bacteria. Microbiological reviews, 59(2), 171-200.
 
[30]  Joerger, M. C., & Klaenhammer, T. R. (1986). Characterization and purification of helveticin J and evidence for a chromosomally determined bacteriocin produced by Lactobacillus helveticus 481. Journal of bacteriology, 167(2), 439-446.
 
[31]  Kang, J. H., & Lee, M. S. (2005). Characterization of a bacteriocin produced by Enterococcus faecium GM‐1 isolated from an infant. Journal of Applied Microbiology, 98(5), 1169-1176.
 
[32]  Karaoğlu, Ş. A., Aydin, F., Kiliç, S. S., & Kilic, A. O. (2003). Antimicrobial activity and characteristics of bacteriocins produced by vaginal lactobacilli. Turkish Journal of Medical Sciences, 33(1), 7-13.
 
[33]  Karthikeyan, V., & Santosh, S. W. (2009). Isolation and partial characterization of bacteriocin produced from Lactobacillus plantarum. African Journal of Microbiology Research, 3(5), 233-239.
 
[34]  Kiuchi, K., & Hosoi, T. (2003). Natto ‚Äî A Food Made by Fermenting Cooked Soybeans with Bacillus subtilis (natto). In Handbook of fermented functional foods (pp. 227-250). CRC Press.
 
[35]  Klaenhammer, T. R. (1988). Bacteriocins of lactic acid bacteria. Biochimie, 70(3), 337-349.
 
[36]  Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS microbiology reviews, 12(1-3), 39-85.
 
[37]  KR, R., & Tallapragada, P. (2015). Purification, characterization and application of bacteriocin for improving the shelf-life of sprouts: An approach to Bio preservation. indicator, 8(9), 10.
 
[38]  Liu, W., & Hansen, J. N. (1990). Some chemical and physical properties of nisin, a small-protein antibiotic produced by Lactococcus lactis. Applied and environmental microbiology, 56(8), 2551-2558.
 
[39]  Maina, J. W. (2015). Isolation, Identification and Screening of Bacillus species from Rastrineobola argentea “Omena” for Production of Bacteriocins active against Bovine Mastitis Pathogens (Escherichia coli and Staphylococcus aureus).
 
[40]  Marie, K. P., François, Z. N., Abbasi, A., Anwar, F., Ali, S. A., Victor, S. D., & Félicité, T. M. (2012). Characterization of a Bacteriocin Produced by Lactobacillus plantarum Lp6SH Isolated from" Sha'a", a Maize-Based Traditionally Fermented Beverage from Cameroon. International Journal of Biology, 4(2), 149.
 
[41]  Martirani, L., Varcamonti, M., Naclerio, G., & De Felice, M. (2002). Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformi s. Microbial cell factories, 1(1), 1.
 
[42]  McAuliffe, O., Ross, R. P., & Hill, C. (2001). Lantibiotics: structure, biosynthesis and mode of action. FEMS microbiology reviews, 25(3), 285-308.
 
[43]  Motta, A. S., & Brandelli, A. (2008). Evaluation of environmental conditions for production of bacteriocin-like substance by Bacillus sp. strain P34. World Journal of Microbiology and Biotechnology, 24(5), 641-646.
 
[44]  Nomura, M. (1967). Colicins and related bacteriocins. Annual Reviews in Microbiology, 21(1), 257-284.
 
[45]  Ogunbanwo, S. T., Sanni, A. I., & Onilude, A. A. (2003). Characterization of bacteriocin produced by Lactobacillus plantarum F1 and Lactobacillus brevis OG1. African Journal of Biotechnology, 2(8), 219-227.
 
[46]  Oh, S., Kim, S. H., & Worobo, R. W. (2000). Characterization and purification of a bacteriocin produced by a potential probiotic culture, Lactobacillus acidophilus 30SC. Journal of Dairy Science, 83(12), 2747-2752.
 
[47]  Parente, E., Brienza, C., Ricciardi, A., & Addario, G. (1997). Growth and bacteriocin production by Enterococcus faecium DPC1146 in batch and continuous culture. Journal of industrial microbiology & biotechnology, 18(1), 62-67.
 
[48]  Rakshita, P. K. (2011). Antimicrobial Activity of Lactic Acid Bacteria and Partial Characterization of its Bacteriocin.
 
[49]  Rauch, P. J., & De Vos, W. M. (1992). Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. Journal of Bacteriology, 174(4), 1280-1287.
 
[50]  Reddy, K. V. R., Yedery, R. D., & Aranha, C. (2004). Antimicrobial peptides: premises and promises. International journal of antimicrobial agents, 24(6), 536-547.
 
[51]  Reeves, P. (1965). The bacteriocins. Bacteriological reviews, 29(1), 24.
 
[52]  Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual Reviews in Microbiology, 56(1), 117-137.
 
[53]  Risøen, P. A., Rønning, P., Hegna, I. K., & Kolstø, A. B. (2004). Characterization of a broad range antimicrobial substance from Bacillus cereus. Journal of Applied Microbiology, 96(4), 648-655.
 
[54]  Rogers, L. A., & Whittier, E. O. (1928). Limiting factors in the lactic fermentation. Journal of Bacteriology, 16(4), 211.
 
[55]  Ross, R. P., Morgan, S., & Hill, C. (2002). Preservation and fermentation: past, present and future. International journal of food microbiology, 79(1), 3-16.
 
[56]  Ryan, M. P., Rea, M. C., Hill, C., & Ross, R. P. (1996). An application in cheddar cheese manufacture for a strain of Lactococcus lactis producing a novel broad-spectrum bacteriocin, lacticin 3147. Applied and Environmental Microbiology, 62(2), 612-619.
 
[57]  Sahl, H. G. (1994). Gene-encoded antibiotics made in bacteria. Antimicrobial peptides, 186, 27.
 
[58]  Sang, Y., & Blecha, F. (2008). Antimicrobial peptides and bacteriocins: alternatives to traditional antibiotics. Animal Health Research Reviews, 9(02), 227-235.
 
[59]  Scannell, A. G., Hill, C., Ross, R. P., Marx, S., Hartmeier, W., & Arendt, E. K. (2000). Development of bioactive food packaging materials using immobilised bacteriocins Lacticin 3147 and Nisaplin®. International journal of food microbiology, 60(2), 241-249.
 
[60]  Sharma, N. and Gautam, N. (2008). Antibacterial activity and characterization of bacteriocin of Bacillus mycoides isolated from whey. Ind J Biotechnol 8: 117-121.
 
[61]  Silva, M., Jacobus, N. V., Deneke, C., & Gorbach, S. L. (1987). Antimicrobial substance from a human Lactobacillus strain. Antimicrobial agents and chemotherapy, 31(8), 1231-1233.
 
[62]  Sivakumar, N., & Saif, A. B. (2010). Partial characterization of bacteriocins produced by Lactobacillus acidophilus and Pediococcus acidilactici. Brazilian Archives of Biology and Technology, 53(5), 1177-1184.
 
[63]  Stark, M., Liu, L. P., & Deber, C. M. (2002). Cationic hydrophobic peptides with antimicrobial activity. Antimicrobial agents and chemotherapy, 46(11), 3585-3590.
 
[64]  Stoffels, G., Nissen-Meyer, J., Gudmundsdottir, A., Sletten, K., Holo, H., & Nes, I. F. (1992). Purification and characterization of a new bacteriocin isolated from a Carnobacterium sp. Applied and environmental microbiology, 58(5), 1417-1422.
 
[65]  Tagg, J. R., Dajani, A. S., & Wannamaker, L. W. (1976). Bacteriocins of gram-positive bacteria. Bacteriological reviews, 40(3), 722.
 
[66]  Teo, A. Y., & Tan, H. M. (2003). The effect of heat, pH and bile salts on a new strain of Bacillus subtilis isolated from the gastrointestinal tract of healthy chicken. Abstr. 12th World Food Sci. Technol. Congr., Chicago, IL. IFST, UK.
 
[67]  Terlabie, N. N., Sakyi-Dawson, E., & Amoa-Awua, W. K. (2006). The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. International journal of food microbiology, 106(2), 145-152.
 
[68]  Todorov, S. D., Ho, P., Vaz-Velho, M., & Dicks, L. M. T. (2010). Characterization of bacteriocins produced by two strains of Lactobacillus plantarum isolated from Beloura and Chouriço, traditional pork products from Portugal. Meat Science, 84(3), 334-343.
 
[69]  Todorov, S. D., van Reenen, C. A., & Dicks, L. M. T. (2004). Optimization of bacteriocin production by Lactobacillus plantarum ST13BR, a strain isolated from barley beer. The Journal of general and applied microbiology, 50(3), 149-157.
 
[70]  Todorov, S. D., Vaz-Velho, M., de Melo Franco, B. D. G., & Holzapfel, W. H. (2013). Partial characterization of bacteriocins produced by three strains of Lactobacillus sakei, isolated from salpicao, a fermented meat product from North-West of Portugal. Food Control, 30(1), 111-121.
 
[71]  Torreblanca, M., Meseguer, I., & Ventosa, A. (1994). Production of halocin is a practically universal feature of archaeal halophilic rods. Letters in applied microbiology, 19(4), 201-205.
 
[72]  Vaara, M. (1992). Agents that increase the permeability of the outer membrane. Microbiological reviews, 56(3), 395-411.
 
[73]  Vandenbergh, P. A. (1993). Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiology Reviews, 12(1-3), 221-237.
 
[74]  Whitehead, H. R. (1933). A substance inhibiting bacterial growth, produced by certain strains of lactic streptococci. Biochemical Journal, 27(6), 1793.
 
[75]  Yang, R., Johnson, M. C., & Ray, B. I. B. E. K. (1992). Novel method to extract large amounts of bacteriocins from lactic acid bacteria. Applied and Environmental Microbiology, 58(10), 3355-3359.
 
Show Less References