Journal of Atmospheric Pollution

ISSN (Print): 2381-2982

ISSN (Online): 2381-2990

Editor-in-Chief: Ki-Hyun Kim

Website: http://www.sciepub.com/journal/JAP

   

Article

Outdoor Radon Concentration in the Township of Ado-Ekiti Nigeria

1Department of Science Technology, Federal Polytechnic, P.M.B 5351, Ado-Ekiti, Ekiti State, Nigeria

2Department of Physics and Electronics, Adekunle Ajasin University, P.M.B 001, Akungba Akoko, Ondo State, Nigeria


Journal of Atmospheric Pollution. 2015, 3(1), 18-21
doi: 10.12691/jap-3-1-4
Copyright © 2015 Science and Education Publishing

Cite this paper:
OJO T.J, AJAYI I.R. Outdoor Radon Concentration in the Township of Ado-Ekiti Nigeria. Journal of Atmospheric Pollution. 2015; 3(1):18-21. doi: 10.12691/jap-3-1-4.

Correspondence to: OJO  T.J, Department of Science Technology, Federal Polytechnic, P.M.B 5351, Ado-Ekiti, Ekiti State, Nigeria. Email: talk2ojotj@yahoo.com

Abstract

Solid State Nuclear Track Detectors (CR-39) were used for the measurement of outdoor 222Radon concentration in 30 locations in the township of Ado-Ekiti Nigeria. The annual effective dose of radon and its progenies to the residents was calculated from the results of the measurement. The concentrations of radon varied from 2.22 to 92.50 Bq m-3 with an overall mean of 29.57 Bq m-3. The annual absorbed dose was found to range from 0.09 to 3.81 mSv y-1 with an average of 1.18 mSv y-1. The estimated annual effective dose to lung ranged from 0.22 to 9.14 mSv y-1 with an average of 2.88 mSv y-1. The values measured for Radon concentration were found to fall below the upper limit of the ICRP reference level.

Keywords

References

[1]  Asumadu-Sakyi, A.B. (2011): Preliminary studies on geological fault location using solid state nuclear track detector. Research Journal of Environmental and Earth Science, 3(1):24-31.
 
[2]  Chauhan RP (2010): Indian Journal of Pure & Applied Physics, 48, 470-472.
 
[3]  Darby S, Whithly E, Silcock P, Thakrar B, Green M, lomas P (1998): Risk of lung cancer associated with residential radon exposure in South-West England. A case control study.Br J Cancer. 78:394-408
 
[4]  Gupta M, Mahur AK, Sonkawade RG, Verma KD ( 2011): Advances in Applied Sciences Research, 2(5), 421-426.
 
[5]  Gusain GS, Prasad G, Prasad Y, Ramola R ( 2009): Radiation Meas. 4, 1032-1035.
 
Show More References
[6]  ICRP, International Commission on Radiological Protection (1993): Protection against Radon-222 at home and a Work” ICRP Publication 65, Ann. ICRP 23 (2).
 
[7]  IARC, International Agency for Research on Cancer (1988): Radon and Manmade Mineral Fibres. Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 43. IARC, Lyon. ISBN 92-832-1243-6.
 
[8]  ICRP, International Commission on Radiological Protection (2009): Statement on Radon, ICRP Ref. 00/902/09.
 
[9]  Kumar R, Prasad R (2000): Indian Journal of Pure and Applied Physics, 45, 116-118.
 
[10]  Kumar R, Mahur AK, Jojo PJ, Prasad R (2007): Indian Journal of Pure and Applied Physics, 45, 877-879.
 
[11]  Rahman S, Faheem M, Rehman S, Matiullah (2006): Radon awareness survey in Pakistan, Radiation Protection Dosimetry 121:333-6
 
[12]  Kumat A, Kumar A, Singh S (2012): Advances in the Applied Sciences Research, 3(5), 2900-2905.
 
[13]  Kumar R, Mahur AK, Singh H, Sonkawade RG, Swarup R ( 2010): Indian Journal of Pure and Applied Physics, 48, 802-804
 
[14]  Mehra R, Singh S, Singh K (2006): Indoor and Built Environment, 15(5), 499-505.
 
[15]  Sharma N, Sharma R, Virk H.S (2011): Advances in the Applied Sciences Research, 2(3), 186-190.
 
[16]  Singh S, Malhotra R, Kumar J, Singh L (2001): Radiation Meas, 34, 505-508.
 
[17]  UNSCEAR, United Nation Scientific Committee on the effect of Atomic Radiation (2000): Exposure due to Natural Radiation Sources, United Nation, New York.
 
[18]  USEPA Environmental Protection Agency, (2004): 402-K02-006. A Citizen’s Guide to radon: The Guide to Protecting Yourself and Your Family from Radon. US EPA, Washington, DC.
 
[19]  WHO, World Health Organization (2009): Radon and Cancer (www.WHO.org).
 
Show Less References

Article

Aircraft Observation of Aerosol and Cloud-droplet Properties over the East China Sea Influenced by the Outflow of Asian Polluted Air

1Central Department of Hydrology and Meteorology, Tribhuvan University, Kirtipur, Kathmandu, Nepal

2Division of General education, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin 470-0195, Japan

3Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan


Journal of Atmospheric Pollution. 2015, 3(1), 22-30
doi: 10.12691/jap-3-1-5
Copyright © 2015 Science and Education Publishing

Cite this paper:
Deepak Aryal, Yutaka Ishizaka, Kikuo Okada. Aircraft Observation of Aerosol and Cloud-droplet Properties over the East China Sea Influenced by the Outflow of Asian Polluted Air. Journal of Atmospheric Pollution. 2015; 3(1):22-30. doi: 10.12691/jap-3-1-5.

Correspondence to: Deepak  Aryal, Central Department of Hydrology and Meteorology, Tribhuvan University, Kirtipur, Kathmandu, Nepal. Email: daryal1@hotmail.com

Abstract

Airborne measurements of aerosol particles and cloud microstructures were made over the ocean around the south of Kyushu Islands of Japan during the Asian Atmospheric Particulate Environmental Change Experiment 3/Asia Pacific Regional Aerosol Characterization Experiment (APEX-E3/ACE-Asia) during the period of 17 March to 13 April 2003. Results demonstrated that polluted air from the Asia continent could penetrate several hundreds of kilometers over the oceans and clouds forming in that air had significantly altered microphysical properties. Based on the number concentration of aerosol particles with diameters between 0.3 and 5 μm, two cases were investigated: 22 March 2003 was termed a "clean" case and 12 April 2003 as a "polluted" case. Single particle analysis of particles was also carried out by electron microscopy. The particles in the polluted marine boundary layer were characterized by the presence of sulfate particles with traces of potassium and heavy metals. The cloud droplets in the polluted marine boundary layer exhibited larger number concentrations than those in the clean boundary layer, along with the decrease in the droplet size. Present study demonstrated that polluted air from the Asia continent could penetrate several hundreds of kilometers over the oceans and clouds forming in that air had significantly altered microphysical properties.

Keywords

References

[1]  Akimoto, H., Narita, H., 1994. Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1o×1 o resolution. Atmospheric Environment 28, 213-225.
 
[2]  Andreae, M. O., 1996. Raising dust in the greenhouse. Nature 380, 389-390.
 
[3]  Andreae, M. O., Atlas, E., Cachier, H., Cofer III, W. R., Harris, G. W., Helas, G., Koppmann, R., Lacaux, J. P., Ward, D. E., 1996. Trace gas and aerosol emissions from savanna fires, in Biomass Burning and global changes. Vol. 1, edited by Levine, J. S., pp 278-295, MIT Press, Cambridge, Mass.
 
[4]  Charlson, R.J., Heintzenberg, J. (Eds.), 1995. Aerosol Forcing of Climate. Wiley, New York 416pp.
 
[5]  Charlson, R. J., Schwartz, S.E., Hales, J.M., Cess, R. D. Coakley Jr., J.A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
 
Show More References
[6]  Christensen, K. A., Livbjerg, H., 1995. Formation of submicron particles from the combustion of straw. Journal of Aerosol Science 26, 691-696.
 
[7]  Coffman, D. J., Hegg, D.A., 1995. A preliminary study of the effect of ammonia on particle nucleation in the marine boundary layer. Journal of Geophysical Research 100, 7147-7160.
 
[8]  Cooper, W. A., Bruintjes, R. T., Mather, G. K., 1997. Calculations Pertaining to Hygroscopic Seeding with Flares. Journal of Applied Meteorology 36, 1449-1469.
 
[9]  Dentener, F. J., Carmichael, G. R., Zhang, Y., Lelieveld, J., Crutzen, P. J., 1996. Role of mineral aerosol as a reactive surface in the global troposphere. Journal of Geophysical Research. 101 (D17), 22,869-22889.
 
[10]  Durkee, P. A., Nooke, K.J., Ferek, R.J., Johnson, D.W., Taylor, J. P., Garrett, T.J., Hobbs, P.V., Hudson, J. G., Bretherton, C.S., Innis, G., Frick, G.M., Hoppel,W.A., O’Dowd, C.D., Russel, L.M., Gasparavic, R., Nielsen, K. E., Tessmer, S. A., Ostrom, E., Osborne, S. R., Flagan, R.C., Seinfeld, J. H., Rand, H., 1999. The Impact of Ship-Produced Aerosols on the Microstructure and Albedo of Warm Marine Stratocumulus Clouds: A Test of MAST Hypotheses 1i and 1ii. Journal of Atmospheric Sciences, 57, 2554-2569.
 
[11]  Frank, E.R., Lodge, J. P., 1967. Morphological identification of air-borne particles with electron microscope. Journal of Microscopy 6, 449-456.
 
[12]  Galloway, J. N., 1989. Atmospheric Acidification: Projections for the future. Ambio.18, 161-166.
 
[13]  Galloway, J. N., Zhao, D., Thomson, V. E., Chang, L. H., 1996. Nitrogen mobilization in the United States of America and the People’s Republic of China. Atmospheric Environment 30, 1551-1561.
 
[14]  Gao, Y., Anderson, J. R., 2001. Characteristics of Chinese aerosols determined by individual-particle analysis. Journal of Geophysical Research 106, 18037-18045.
 
[15]  Hatakeyama, S., Murano, K., Bandow, H., Sakamaki, F. M. Yamato, Tanaka S., Akimoto H., 1995. The 1991 PEACAMPOT aircraft observation of Ozone, NOX and SO2 over the East China Sea, the Yellow Sea and the Sea of Japan. Journal of Geophysical Research 100, 23,143-23, 151.
 
[16]  Hegg, D. A., 2000. Impact of gas-phase HNO3 and NH3 on microphysical processes in atmospheric clouds, Geophysical Research Letters 27, 2201-2204.
 
[17]  Ikegami, M., Okada, K., Zaizen, Y., Makino., Y., Jensen, J. B., Gras, J. L., Harjanto, H., 2001. Very high weight ratios of S/K in individual haze particles over Kalimantan during the 1997 Indonesian forest fires. Atmospheric Environment 35, 4237-4243.
 
[18]  Ikegami, M., Okada, K., Zaizen, Y., Tsutsumi, Y., Makino., Y., Jensen, J. B., Gras, J. L., 2004. The composition of aerosol particles in the middle troposphere over the western Pacific Ocean: Aircraft observations from Australia to Japan 1994. Atmospheric Environment 38, 5945-5956.
 
[19]  Kajii, Y., Akimoto, H., Komazaki, Y., Tanaka, S., Mukai, H., Murano, K., Merrill, J., 1997. Long-range transport of ozone, carbon monoxide, and acidic trace gases at Oki Island, Japan during PEMWEST(B)/PEACAMPOT (B) campaign. Journal of Geophysical Research 102, 28637-28649.
 
[20]  Kato, N., Akimoto, H., 1992. Anthropogenic emissions of SO2 and NOX in Asia emission inventories. Atmospheric Environment 26A, 2297-3017.
 
[21]  Kulmala, M., Laaksonen, A., Korhonen, P., Vesala, T., Ahonen, T., Barrett, J. C. 1993. The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. Journal of Geophysical Research 98, 22949-22958.
 
[22]  Okada, 1983. Nature of Individual Hygroscopic Particles in the Urban Atmosphere. J. Meteor. Soc. Japan 61, 727-736.
 
[23]  Okada, k., Hitzenberger, R. M., 2001. Mixing properties of individual submicrometer aerosol particles in Vienna. Atmospheric Environment 35, 5617-5628.
 
[24]  Okada, K., Ikegami, M., Zaizen, Y., Tsutsumi, Y., Makino, Y., Jensen, J. B., Gras, J. L., 2005. Soot particles in the free troposphere over Australia. Atmospheric Environment 39, 5079-5089.
 
[25]  Okada, K., Ohata, T., Furukawa, A.,Seko, K., 1999. Individual aerosol particles in the atmosphere of the Tibetan Plateau. In proceedings of First Asia Aerosol Conference, Nagoya, Japan, July 27-29, pp. 157-158.
 
[26]  Pacyna, J., 1984. Estimation of atmospheric emission of trace elements from anthropogenic sources in Europe. Atmospheric Environment 18, 41-50.
 
[27]  Post, J.E., Buseck, P. R., 1984. Characterization of individual particles in the Phoenix of marine aerosols over the Atlantic Ocean, Atmospheric Research 20, 23-37.
 
[28]  Project Prospectus of ACE-Asia, IGAC. p. 54.
 
[29]  Pruppacher, H. R., Klett, J. D., 1997. Microphysics of clouds and Precipitation, Kluwer Academic Press, Norwell, Mass.
 
[30]  Pszenny, A. A., Prinn, R.G., (Eds.) 1994. International Global Atmospheric Chemistry (IGAC) Project. The operational plan, IGBP, Stockholm.Rep. No. 32 p. 21-24.
 
[31]  Rojas, C., Van Grieken, R., 1992. Electron microprobe characterization of individual aerosol particles collected by aircraft above the southern bight of North Sea. Atmospheric Environment 26A, 1231-1237.
 
[32]  Sokolik, I. N., Toon, O. B., Bergstrom, R. W., 1998. Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths. Journal of Geophysical Research 103(D8), 8813-8826.
 
[33]  Xhoffer, C., Bernard, P., Van Grieken, R., 1991. Chemical characterization and source apportionment of individual aerosol particles over the North Sea and the English Channel using multivariate techniques. Environmental Science and Technology 25, 1470-1478.
 
[34]  Zaizen, Y., Ikegami, M., Tsutsumi, Y., Makino, Y., Okada, K., Jensen, J., Gras, J. L. 1996. Number concentration and size distribution of aerosol particles in the middle troposphere over the western Pacific Ocean. Atmospheric Environment 30, 1755-1762.
 
[35]  Zhang, D., Ishizaka, Y., Aryal, D., 2006. Individual particles and droplets in continentally influenced a stratocumulus: a case study over the Sea of Japan. Atmospheric Research: 79, 30-51.
 
[36]  Zhang, D., Iwasaka, Y., Shi, G. Y., 2001. Soot particles and their impacts on the mass cycle in Tibetan atmosphere. Atmospheric Environment 35, 5883-5894.
 
Show Less References

Article

The Analysis of Influence of Weather Conditions on Atmospheric Extinction Coefficient over Bauchi, North Eastern Nigeria

1Department of PRE-ND, Federal Polytechnic, Bauchi State-Nigeria

2Department of Physics, University of Jos. Plateau State-Nigeria

3Department of Pure and Applied Physics, Federal University Wukari, Taraba State-Nigeria


Journal of Atmospheric Pollution. 2015, 3(1), 31-38
doi: 10.12691/jap-3-1-6
Copyright © 2015 Science and Education Publishing

Cite this paper:
D. Buba, F.O. Anjorin, A. Jacob. The Analysis of Influence of Weather Conditions on Atmospheric Extinction Coefficient over Bauchi, North Eastern Nigeria. Journal of Atmospheric Pollution. 2015; 3(1):31-38. doi: 10.12691/jap-3-1-6.

Correspondence to: F.O.  Anjorin, Department of Physics, University of Jos. Plateau State-Nigeria. Email: frankanj@yahoo.com

Abstract

Weather conditions are natural causes of visibility deterioration and increase in atmospheric extinction coefficient at a place. A 10- year dataset (1998-2007) of visibility and meteorological parameters such as Relative Humidity, Temperature and Atmospheric Pressure measured every 3-hour daily were analysed to examine the dependence of Atmospheric Extinction Coefficient, βext on seasonal meteorological conditions and synoptic weather patterns in Bauchi, a City in the North-eastern-Nigeria. From the visibility data obtained, the corresponding atmospheric extinction coefficient (βext) for the period under review was computed by using the Koschmieder relationship. In year 2000, when the Relative Humidity and atmospheric extinction coefficient, βext are highest, the temperature and visibility values are lowest. In 2003, when temperature (29.82°C) is highest, the Relative Humidity (42.52%) is lowest, although, the atmospheric coefficient was not at its lowest neither was the visibility (18.49km) at its highest. Of the years considered, year 2000 has the highest estimated atmospheric extinction coefficient, βext for both raining season and harmattan season. The raining season (June-September) has βext of 0.267 while the harmattan season has βext of 0.689. Their respective decadal mean for both raining season and harmattan season for the period under review are 0.205 ± 0.036 and 0.689±0.133.

Keywords

References

[1]  American Meteorological Society. (2000). Glossary of Meteorology (edited by Glickman TS). 850 pp.
 
[2]  Blackwell, H., 1946. Contrast thresholds of the human eye.
 
[3]  Chatfield, C., The analysis of time series: an introduction, 4 ed1996, Weinheim. New York. Tokyo: Chapman & Hall London.
 
[4]  Cocker, D. C., N. E. Whitlock, R. C. Flagan, et al., 2001: Hygroscopic properties of Pasadena, California aerosol, Aerosol Sci. Technol., 35, 637-647.
 
[5]  El-Shazely SM, Abdelmaged AM, Hassan GY, Nobi B. Atmospheric extinction related to aerosol mass concentration and meteorological condition in the atmosphere of Qena (Egypt). Mausam 1991;42:367±74.
 
Show More References
[6]  Hursar R.B and Hursar J.D., (1996): Air Pollution Emissions, Atmospheric Processes and Effects on Visibility. Center for Air Pollution Impact and Trend Analysis (CAPITA). Washington University.
 
[7]  Isikwue, B., M. Akiishi and E. Utah, 2014. Investigation of Radiation Energy Balance in some selected cities in Nigeria. IOSR Journal of Applied Physics, 6(2): 21-27.
 
[8]  Koschmieder, H., 1930. Measurements of visibility at Danzig. Monthly Weather Review, 58: 439.
 
[9]  Liu, X. G., Y. H. Zhang, Y. F. Cheng, et al., 2012: Aerosol hygroscopicity and its impact on atmospheric visibility and radiative forcing in Guangzhou during the 2006 PRIDE-PRD campaign, Atmos. Environ., 60, 59-67.
 
[10]  Malm, K. C., and D. E. Day, 2001: Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmos. Environ., 35, 2845-2860.
 
[11]  Shendrikar, A. D., and W. K. Steinmetz, 2003: Integrating nephelometer measurements for the airborne fine particulate matter (PM2.5) mass concentrations. Atmos. Environ., 37, 1383-1392.
 
[12]  Swietlicki, E., J. Zhou, O. H. Berg, et al., 1999: A closure study of sub-micrometer aerosol particle hygroscopic behavior, J. Atmos. Res., 50, 205-240.
 
[13]  SWOV Fact sheet, (2012). The influence of weather on road safety. Institute of Road Safety Research, Netherlands. Pg.1.
 
[14]  United Kingdom Meteorological Office. (1994). Handbook of Aviation Meteorology. 412pp.
 
[15]  Goyal,P, Sumer Budhiraja, Anikender Kumar (2014): Impact of Air Pollutants on Atmospheric Visibility in Delhi. International Journal of Geology, Agriculture and Environmental Sciences Volume – 2 Issue – 2 April 2014.
 
[16]  Shaltout Mosalam M.A., Tadros M.T.Y., El-Metwally M. (2000): Studying the extinction coefficient due to aerosol particles at di€erent spectral bands in some regions at great Cairo. Renewable Energy 19 (2000) 597-615.
 
Show Less References