**International Transaction of Electrical and Computer Engineers System:**Latest Articles More >>

## Article

# A Novel Approach for Optimal Allocation of a Distributed Generator in a Radial Distribution Feeder for Loss Minimization and Tail End Node Voltage Improvement during Peak Load

^{1}Assistant Engineer (Ele), Karnataka Power Transmission Corporation Limited (KPTCL), Bangalore, India

^{2}Research Scholar, Department of Electrical Engineering, The National Institute of Engineering, Mysore, India

^{3}Professor, Department of Electrical Engineering, The National Institute of Engineering, Mysore, India

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(2), 67-72

**DOI:**10.12691/iteces-2-2-4

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Maruthi Prasanna. H. A., Likith Kumar. M. V., T. Ananthapadmanabha. A Novel Approach for Optimal Allocation of a Distributed Generator in a Radial Distribution Feeder for Loss Minimization and Tail End Node Voltage Improvement during Peak Load.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(2):67-72. doi: 10.12691/iteces-2-2-4.

Correspondence to: Maruthi Prasanna. H. A., Assistant Engineer (Ele), Karnataka Power Transmission Corporation Limited (KPTCL), Bangalore, India. Email: maruthiprasannahaajp@gmail.com

## Abstract

## Keywords

## References

[1] | W. El-Khattam and M. M. A. Salma, “Distributed Generation technologies, definitions and benefits”, Electrical Power System Research. 71 (2004), 119-128. | ||

[2] | T. Ackermann, G. Andersson and L. Soder, “Distributed generation: a definition”, Electrical Power System Research. 2001, 57 (3): 195-204. | ||

[3] | P. Chiradeja and R. Ramkumar. “An approach to quantify the technical benefits of distributed generation”, IEEE Transaction on Energy Conversion. 2004, 19 (4): 764-773. | ||

[4] | G. Pepermans et. al, “Distributed Generation: Definition, Benefits and Issues”, Working paper series, Energy Transport and Environment of K U Lewen Energy Institute, August 2003. | ||

[5] | H. Khan and M.A. Choudhry, “Implementation of distributed generation algorithm for performance enhancement of distribution feeder under extreme load growth”, International Journal of Electrical Power and Energy Systems. 2010, 32 (9): 985-997. | ||

[6] | D.Q. Hung, N. Mithulanathan and R.C. Bansal, “Multiple distributed generators placement in primary distribution networks for loss reduction”, IEEE Transactions on Industrial Electronics, Vol 60, Issue 4, 1700-1708, April 2013. | ||

[7] | R.M. Kamel and B. Karmanshahi, “Optimal size and location of DGs for minimizing power losses in a primary distribution network”, Transaction on Computer Science and Electrical and Electronics Engineering. 2009, 16 (2): 137-144. | ||

[8] | Mithulananthan, T. Oo, L. Van Phu, “Distributed generator placement in power distribution system using genetic algorithm to reduce losses”, Thammasat International Journal of Science and Technology, Vol. 9, No. 3, July-September 2004. | ||

[9] | M. Sedighizadeh, and A. Rezazadeh, “Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses and Improve Voltage Profile”, World Academy of Science, Engineering and Technology, 37, 2008, 251-256. | ||

[10] | I. Pisică, C. Bulac, and M. Eremia, “Optimal Distributed Generation Location and Sizing using Genetic Algorithms”, 15th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 8-12 November 2009, 978-1-4244-5098-5/09 IEEE Digital Explore. | ||

[11] | A.A. Abou El-Ela a, S.M. Allama, M.M. Shatlab, “Maximal optimal benefits of distributed generation using genetic algorithms”, Electric Power Systems Research, 80 (2010) 869–877. Ruifeng Shi, Can Cui, Kai Su, Zaharn Zain, | ||

[12] | Dr.T.Ananthapadmanabha, Maruthi Prasanna.H.A, Veeresha.A.G, Likith Kumar. M. V, “A new simplified approach for optimum allocation of a distributed generation unit in the distribution network for voltage improvement and loss minimization”, International Journal of Electrical Engineering and Technology – IJEET, p. no 165-178, Volume 4, Issue 2, March-April (2013). | ||

[13] | “Comparison Study of Two Meta-heuristic Algorithms with their Applications to Distributed Generation Planning”, ICSGCE 2011: 27-30 September 2011, Chengdu, China, Energy Procedia 12 (2011), 245-252. | ||

[14] | “Genetic Algorithms for Optimization – Application in Controller Design Problems”. Andrey Popov. TU-Sofia. 2003. | ||

[15] | Randy. L. Haupt and Sue Ellen Haupt, Practical Genetic Algorithms, 2^{nd} ed., John Wiley & Sons, Inc., Publication, 2004. | ||

[16] | M.H. Haque. “Efficient load flow method for distribution systems with radial or mesh configuration”, IET Proc. On Generation, Transmission and Distribution. 1996, 143 (1): 33-38. | ||

[17] | KashemMA, Ganapathy V, JasmonGB, Buhari MI. A novel method for loss minimization in distribution networks. In: Proceedings of international conference on electric utility deregulation and restruc-turing and power technologies, 2000. p. 251-5. | ||

[18] | Baran ME, Wu FF. Optimum sizing of capacitor placed on radial distribution systems. IEEE Trans PWRD 1989; 4: 735-43. | ||

[19] | Naresh Acharya, Pukar Mahat, N. Mithulananthan, “An analytical approach for DG allocation in primary distribution network”, Electrical Power and Energy Systems 28 (2006) 669-678. | ||

[20] | Wichit Krueasuk, Weerakorn Ongsakul, “Optimal Placement of Distributed Generation Using Particle Swarm Optimization”, In proceedings of the 2006 Australian Universities Power Engineering Conference (AUPEC), Melbourne, Victoria, Australia. | ||

[21] | T. N. Shukla, S.P. Singh, K. B. Naik, “Allocation of optimal distributed generation using GA for minimum system losses in radial distribution networks”, International Journal of Engineering, Science and Technology, Vol. 2, No. 3, 2010, pp. 94-106. | ||

[22] | K. Varesi, “Optimal Allocation of DG Units for Power Loss Reduction and Voltage Profile Improvement of Distribution Networks using PSO Algorithm”, World Academy of Science, Engineering and Technology, Vol: 60, 2011-12-26. | ||

## Article

# Study of the Power Consumption of a Digital-Front-End Using Random Sampling

^{1}Ecole polytechnique de l’Université de Nantes, Rue C. Pauc, La Chantrerie, Nantes, France

^{2}Ecole Supérieure Polytechnique, UCAD, Dakar-Fann, Sénégal

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(2), 73-80

**DOI:**10.12691/iteces-2-2-5

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Deng Xiaoyu, M. Diop, J.F. Diouris. Study of the Power Consumption of a Digital-Front-End Using Random Sampling.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(2):73-80. doi: 10.12691/iteces-2-2-5.

Correspondence to: M. Diop, Ecole Supérieure Polytechnique, UCAD, Dakar-Fann, Sénégal. Email: magdiop2002@yahoo.fr; magaye@ucad.sn

## Abstract

## Keywords

## References

[1] | J.J.Wojtiuk, Randomized Sampling for Radio Design, "Ph.D.Thesis", University of South Australia, School of Electrical and Information Engineering,2000. | ||

[2] | Jeffrey J. Wojtiuk and Richard J. Martin,"Random Sampling Enables Flexible Design for Multiband Carrier Signals,"IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 10, OCTOBER 2001. | ||

[3] | R.J. Martin and D.A. Castelow, "Reconstruction of multiband signals using irregular sampling", GEC J. Tech., vol. 14, pp. 180–185, 1997. | ||

[4] | Manel BEN-ROMDHANE, Chiheb REBAI, Adel GHAZEL,"Pseudorandom Clock Signal Generation for Data Conversion in a Multistandard Receiver", 2008 International Conference on Design & Technology of Integrated Systems in Nanoscale Era. | ||

[5] | Chiheb Rebai, Manel Ben-Romdhane&al, "Pseudorandom signal sampler for relaxed design of multistandard radio receiver," Microelectronics Journal 40 (2009)", pp.991-999. | ||

[6] | N.Michael, S.Shah, J.Das, M.M.Sandeep, C.Vijaykumar, "Nonuniform digitizer foralias-free sampling of wide band analog signals",in IEEE Region 10 Conference,TENCON2007,October–November 2007, pp. 1-4. | ||

[7] | Haïfa FARES, Manel BEN-ROMDHANE, Chiheb REBAI,"Non Uniform Sampled Signal Reconstruction for Software Defined Radio Applications", 2008 International Conference on Signals, Circuits and Systems. | ||

## Article

# Evaluation and Analysis of 3G Network in Lagos Metropolis, Nigeria

^{1}Department of Electronic &Computer Engineering, Faculty of Engineering, Lagos State University, Epe Campus

^{2}Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Benin, Edo State

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(3), 81-87

**DOI:**10.12691/iteces-2-3-1

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

L.A Akinyemi, N.T Makanjuola, O.O Shoewu, F.O Edeko. Evaluation and Analysis of 3G Network in Lagos Metropolis, Nigeria.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(3):81-87. doi: 10.12691/iteces-2-3-1.

Correspondence to: O.O Shoewu, Department of Electronic &Computer Engineering, Faculty of Engineering, Lagos State University, Epe Campus. Email: engrshoewu@yahoo.com

## Abstract

## Keywords

## References

[1] | Akinyemi L.A.O and Shoewu O.O, Path loss Models for Vegetation Areas in Lagos Environs, April 4, 2013. | ||

[2] | Amit Kumar1, Dr. Yunfei Liu2, Dr. JyotsnaSengupta, Divya; Evolution of Mobile Wireless Communication Networks from 1G to 4G, December, 2010. | ||

[3] | Al-Imran AjayiOluwafemi Samuel “Evaluation of Video Quality of Service in 3G/UMTS Wireless Network, September, 2010. | ||

[4] | COST Action 231, “Digital mobile radio towards future generation system final report, “European communities, EURI8957, 1999. | ||

[5] | Joseph Isabona Real Time Monitoring ofService Quality of a DeployedUMTS Wireless Network in Campus Environment-an Optimization Perspective | ||

[6] | L.S. Ashiho mobile technology from 1G to 4G, June 2003. | ||

[7] | Mardeni, R. and Kwan, K.F Optimization of Hata Propagation Prediction Modeling Suburban Area in Malaysia, Progress in Electromagnetic Research, Vol. 13, 2010, pp91-106. | ||

[8] | Mishra, Ajay K. “Fundamentals of Cellular Network Planning and Optimization, 2G/2.5G/3G…Evolution of 4G”, John Wiley and Sons, 2004. | ||

[9] | N.T SurajudeenBakinde, N. Faruk, A. A. Ayeni, M. Y. Muhammad, M.I “Comparative analysis of radio propagation models for wideband code division multiple access (WCDMA) and global system for mobile communications (GSM)”. | ||

[10] | Patil C.S (et al),"Review on Generations in Mobile Cellular Technology”, October, 2012. | ||

[11] | SapnaShukla(et al), “Comparative Study of 1G, 2G, 3G and 4G”,Journal of Engineering, Computers & Applied Sciences (JEC&AS) Volume 2, No.4, April 2013. | ||

[12] | SomerGoksel “Optimization and Log file Analysis in GSM” January26, 2003 | ||

[13] | Sylvain Ranvier “Physical layer methods in wireless communication systems” 23 October 2004. | ||

[14] | TEMS investigation release notes, ASCOM, Document: NT11-21089, www.ascom.com/networktesting, 2011. | ||

[15] | Ubom, E.A., Idigo V.E, Azubogu A.C.O, Ohaneme C.O and Alumona T.L “Path loss Characterization of Wireless Propagation for Suburban Enviroment in Nigeria at 800MHz”. | ||

## Article

# Fingerprint Patterns and the Analysis of Gender Differences in the Patterns Based on the *U* Test

^{1}Department of Engineering Technology, Mississippi Valley State University, Itta Bena, USA

^{2}Department of Nursing, University of Phoenix, Tempe, USA

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(3), 88-92

**DOI:**10.12691/iteces-2-3-2

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Lidong Wang, Cheryl Ann Alexander. Fingerprint Patterns and the Analysis of Gender Differences in the Patterns Based on the

*U*Test.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(3):88-92. doi: 10.12691/iteces-2-3-2.

Correspondence to: Lidong Wang, Department of Engineering Technology, Mississippi Valley State University, Itta Bena, USA. Email: lwang22@students.tntech.edu

## Abstract

*U*test. The

*U*test results show that there is no significant gender difference in fingerprint patterns between African American males and females at the 0.05 level of significance.

## Keywords

## References

[1] | Josphineleela. R, M.R Amakrishnan, “An Efficient Automatic Attendance System Using Fingerprint Reconstruction Technique,” International Journal of Computer Science and Information Security, 10 (3), March 2012. | ||

[2] | A. Hicklin and C. Reedy, “Implications of the IDENT/IAFIS: Image Quality Study for Visa Fingerprint Processing,” Technical Report, Mitretek Systems, October 31, 2002. | ||

[3] | W. Craig, F. Patricia, and C. Brian, “SlagsegII-slap fingerprint segmentation evaluation II testing procedure and results.” Technical Report, National Institute of Standards and Technology, 2009. | ||

[4] | Yong-Liang Zhang, Gang Xiao, Yan-Miao Li, Hong-Tao Wu, Ya-Ping Huang, “Slap fingerprint segmentation for live-scan devices and ten-print cards,” 2010 International Conference on Pattern Recognition, pp. 1180-1183. | ||

[5] | U.S. Department of Justice, “National fingerprint-based applicant check study (N-FACS),” Criminal Justice Information Services Division - Federal Bureau of Investigation, Technical Report IAFIS-DOC-07054-1.0, April 2004. | ||

[6] | Anil K. Jain, “Automatic Fingerprint Matching Using Extended Feature Set, Michigan State University,” Award Final Report, Award Number: 2007-RG-CX-K183, August 23, 2011. | ||

[7] | Mayank Vatsa, Quality Induced Secure Multiclassifier Fingerprint Verification using Extended Feature Set, Ph.D. Dissertation, West Virginia University, 2008. | ||

[8] | Rohan Nadgir and Arun Ross, “Roll versus Plain Prints: An Experimental Study Using the NIST SD 29 Database,” Technical Report, West Virginia University, 2006. | ||

[9] | Alaa Ahmed Abbood, Ghazali Sulong, Fingerprint Classification Techniques: A Review, International Journal of Computer Science Issues, 11 (1), January 2014, pp. 111-122. | ||

[10] | Prateek Rastogi, Keerthi R Pillai, “A study of fingerprints in relation to gender and blood group,” J Indian Acad Forensic Med, 32 (1), pp. 11-14. | ||

[11] | Cross Match Technologies, Inc., LSMS with 10-Print Scanner Customer Training Guide, Palm Beach Gardens, Florida, USA, 2007. | ||

[12] | New Mexico Department of Health, Division of Health Improvement, Fingerprint Techniques Manual. | ||

[13] | Navrit Kaur Johal, Amit Kamra, “A Novel Method for Fingerprint Core Point Detection,” International Journal of Scientific & Engineering Research, 2 (4), April-2011, pp. 1-6. | ||

[14] | J. E. Freund and B. M. Perles, Statistics: A First Course. (8^{th} Ed.), Pearson Prentice Hall, New Jersey, 2004. | ||

## Article

# A Learning Automata Based Spectrum Prediction Technique for Cognitive Radio Networks

^{1}Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(3), 93-97

**DOI:**10.12691/iteces-2-3-3

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Mehdi Golestanian, Shahrzad Iranmanesh, Reza Ghazizadeh, Mohammadreza Azimi. A Learning Automata Based Spectrum Prediction Technique for Cognitive Radio Networks.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(3):93-97. doi: 10.12691/iteces-2-3-3.

Correspondence to: Mehdi Golestanian, Faculty of Electrical and Computer Engineering, University of Birjand, Birjand, Iran. Email: mehdi.golestanian@gmail.com

## Abstract

## Keywords

## References

[1] | T. Yucek, H. Arsalan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications and Tutorial, vol. 11, no. 1, pp. 116-130, Oct. 2009. | ||

[2] | K. Tsagkaris, A. Katidiotis, P. Demestichas “Neural network-based learning schemes for cognitive radio systems,” Computer Communication, vol. 31, no. 14, pp. 3394-3404, 2008. | ||

[3] | I. A. Akbar, W. H. Tranter, “Dynamic Spectrum Allocation in Cognitive Radio Using Hidden Markov Models: Poisson Distributed Case,” in Proceeding of IEEE Southeast Conference, pp. 196-201, March. 2007. | ||

[4] | C, Ghosh, C. Cordeiro, D. P. Agrawal, M. B. Rao, “Markov Chain Existence and Hidden Markov Models in Spectrum Sensing,” IEEE International Conference on Pervasive Computing and Communications, pp. 1-6, March. 2009. | ||

[5] | N. Baldo, M.Zorzi, “Learning and adaptation in cognitive radios using neural networks,” IEEE Consumer Communications and Networking Conference, pp. 998-1003, Jan. 2008. | ||

[6] | V. K. Tumuluru, P. Wang and D. Niyato, “A Neural Network Based Spectrum Prediction Scheme for Cognitive Radio,” in Proceeding of IEEE International Conference on Communication, pp. 1-5, May. 2010. | ||

[7] | Nicola Baldo, Michele Zorzi, “Learning and Adaptation in Cognitive Radios using Neural Networks,” 5th IEEE consumer Communication and Networking Conference, pp. 998-1003, 2008. | ||

[8] | J. A. Torkestani, M. R. Meybodi, “A Learning Automata-Based Cognitive Radio for Clustered wireless Ad-Hoc Networks,” Journal of Network and Systems Management, vol. 19, no. 2, pp. 278-297, 2011. | ||

[9] | M.S. Obaidat a, G.I. Papadimitriou, A.S. Pomportsis, “Efficient Fast Learning Automata,” Information Sciences—Informatics and Computer Science, vol. 157, no. 2, pp. 121-133, 2003. | ||

## Article

# Evaluation of the Voltage Stability of a Radial Distribution System having V2G Facilities

^{1}Department of Industrial & Electrical Engineering Technology of South Carolina State University, U.S.A.

^{2}Electrical and Computer engineering, Tennessee Technological University, Cookeville, TN, U.S.A.

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(3), 98-106

**DOI:**10.12691/iteces-2-3-4

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Uwakwe C. Chukwu, Satish M. Mahajan. Evaluation of the Voltage Stability of a Radial Distribution System having V2G Facilities.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(3):98-106. doi: 10.12691/iteces-2-3-4.

Correspondence to: Uwakwe C. Chukwu, Department of Industrial & Electrical Engineering Technology of South Carolina State University, U.S.A.. Email: uchukwu@scsu.edu

## Abstract

**.**This is a pressing issue since the next generation electric distribution system may exhibit a high level of volatility due to V2G

**penetration. In this paper, the impact of V2G parking lots on voltage stability of a radial distribution network is investigated. IEEE 13 Node test feeder network was modeled in the RDAP. Load flow results were applied to the voltage stability index. Results show that for a given penetration level, 3-phase and system-wide V2G integration results in an improved voltage stability than a 1-phase V2G integration. Results also indicate that using V2G parking lots to inject reactive power will have an improved impact on the voltage stability of the system than injecting a real power into the system. These results could be useful for real-time applications as well as for power system operators and planners dealing with an increasing influx of V2Gs in the distribution system.**

## Keywords

## References

[1] | Saber, A.Y., Venayagamoorthy, G.K., “Optimization of vehicle-to-grid scheduling in Constrained parking lots.” PES GM, pp.1-8. 2009. | ||

[2] | M. Duvall. “Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options for Compact Sedan and Sport Utility Vehicles, EPRI, Palo Alto, CA, Final Report 1006892. 2002. | ||

[3] | V. Ajjarapu and B. Lee. “Bibliography on voltage stability, IEEE Trans. on power systems,” Vol. 13, pp. 115-125, 1998. | ||

[4] | T. Gonen, “Electric Power Distributed System Engineering,” 2^{nd} Ed. New York: McGraw-Hill, pp. 414-435, 1987. | ||

[5] | P. Nagendra, T. Datta, S. Halder and S. Paul. “Power system stability assessment using Network Equivalents- A Review,” Journal of applied sciences, Vol. 10, Iss 18, pp. 2147-2153, 2010. | ||

[6] | P. Kundur. Power system stability and control, McGraw-Hill, 1st Ed. | ||

[7] | B. Gao, G. K. Morison, and P. Kundur. “Voltage stability evaluation using Modal analysis,” IEEE trans. on power systems, Vol. 7, Iss 4, pp. 1529-1542, 1992. | ||

[8] | V. Ajjarapu and C. Christy, “The continuation power flow: A tool for steady State voltage stability analysis,” IEEE Trans on power systems, 7(1), pp. 416-423, 1992. | ||

[9] | C. A. Canizares. Voltage stability assessment: concepts, practices & tools. IEEE-PES Power systems stability subcommittee publication. | ||

[10] | D.O. Dike, S.M. Mahajan, “Utilization of L-index in microgrid interconnected power system network, proceedings of the IEEE PES GM, 1-6, 2008. | ||

[11] | P. Aravindhababu and G. Mohan “Optimal Capacitor Placement for Voltage Stability Enhancement in Distribution Systems,” ARPN Journal of Engineering and Applied Sciences Vol. 4, No. 2, 88-92, 2009. | ||

[12] | M. H. Haque, “A linear static voltage stability margin for radial distribution systems,” in Proc. IEEE PES GM, Quebec pp. 1-6, 2006. | ||

[13] | [Online]http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html. | ||

[14] | G. Mohan and P. Aravindhababu. Load shedding Algorithm for avoiding Voltage instability in distribution systems, Int. J. of Power Engineering and Green Technology (IJPEGT), Vol. 1. Iss. 1, pp. 39-45. 2010. | ||

## Article

# Quarter-Pixel Accuracy Motion Estimation (ME) - A Novel ME Technique in HEVC

^{1}Department of E&EC, IIT, KHARAGPUR

^{2}Department of ETC, Department of ELTCE, VSSUT, BURLA, ODISHA

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(3), 107-113

**DOI:**10.12691/iteces-2-3-5

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Kalyan Kumar Barik, Somnath Sengupta, Manas Ranjan Jena. Quarter-Pixel Accuracy Motion Estimation (ME) - A Novel ME Technique in HEVC.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(3):107-113. doi: 10.12691/iteces-2-3-5.

Correspondence to: Kalyan Kumar Barik, Department of E&EC, IIT, KHARAGPUR. Email: kalyankumar333@gmail.com

## Abstract

## Keywords

## References

[1] | Jens-Rainer Ohm and G. J. Sullivan, “High Efficiency Video Coding : The Next Frontier in Video Compression,” IEEE Signal Processing Magazine, pp.153-158, January 2013. | ||

[2] | Wang Gang, C. Hexin, C. Maianshu, “A Study on Sub-pixel Interpolation Filtering Algorithim and Hardware Structural Design Aiming at HEVC,” Telkomnia, Vol.11, No. 12, pp. 7564-7570, Dec. 2013. | ||

[3] | B. Bross, W. J. Han, J. R. Ohm, G. J. Sullivan, T. Wiegand, “High Efficiency Video Coding (HEVC) Text Specification Draft 7”, JCTVC-I1003, May 2012. | ||

[4] | M.T. Pourazad, C. Doutre, M. Azimi, P. Nasiopoulos, "HEVC: The New Gold Standard for Video Compression", IEEE Consumer Electronics Magazine, July 2012. | ||

[5] | G. J. Sullivan, J.-R.Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard”, IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1649-1668, Dec. 2012. | ||

[6] | Kim,et al, “Block portioning structure in the HEVC standard,” IEEE Trans. On circuits and system for video tecnkology, vol. 22, pp. 1697-1706, Dec. 2012. | ||

[7] | Chih-Ming Fu, Elena Alshina, A. Alshin, Y.W. Huang, C.Y. Chen,” Sample Adaptive Offset in the HEVC Standard,” IEEE Trans. Circuits and Systems for Video Technology, Vol. 22, No. 12, pp. 1755, Dec. 2012. | ||

[8] | F. Bossen, Et. Al, HEVC complexity and implementation analysis," IEEE Trans-actions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1685-1696, Dec 2012. | ||

[9] | Gary J.Sullivian and Jens-Rainer Ohm. Recent developments in standardization of High Efficiency Video Coding (HEVC) volume 7798.SPIE, 2010. | ||

[10] | T. Wiegand and G. J. Sullivan, “The H.264 video coding standard”, IEEE Signal Processing Magazine, vol. 24, pp. 148-153, March 2007. | ||

[11] | G. Sullivan, P. Topiwala and A. Luthra, “The H.264/AVC Advanced Video Coding Standard: Overview and Introduction to the Fidelity Range Extensions”, SPIE conference on Applications of Digital Image Processing XXVII, vol. 5558, pp. 53-74, Aug. 2004. | ||

## Article

# Design of Digital Multiplier with Reversible Logic by Using the Ancient Indian Vedic Mathematics Suitable for Use in Hardware of Cryptosystems

^{1}Department of ETC, SIET, Dhenkanal, Odisha, India

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(4), 114-119

**DOI:**10.12691/iteces-2-4-1

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Giridhari Muduli, Siddharth Kumar Dash, Bibhu Datta Pradhan, Manas Ranjan Jena. Design of Digital Multiplier with Reversible Logic by Using the Ancient Indian Vedic Mathematics Suitable for Use in Hardware of Cryptosystems.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(4):114-119. doi: 10.12691/iteces-2-4-1.

Correspondence to: Manas Ranjan Jena, Department of ETC, SIET, Dhenkanal, Odisha, India. Email: manas.synergy@gmail.com

## Abstract

## Keywords

## References

[1] | Bayrakci, A. and Akkas, A.. “Reduced delay bcd adder”, Proc. Application -specic Systems, Architectures and Processors. 266-271, 2007. | ||

[2] | Biswas, A. K., Hasan, M. M., Chowdhury, A. R., and Hasan Babu, H. M. “Efficient approaches for designing reversible binary coded decimal adders”, Microelectron. J. 39, 12, 1693-1703, 2008. | ||

[3] | Bruce, J. W., Thornton, M. A., Shivakumaraiah, L., Kokate, P. S., and Li, X. “Efficient adder circuits based on a conservative reversible logic gate”, Proc. IEEE Symposium on VLSI, 2002. 83-88, 2002. | ||

[4] | Cuccaro, S. A., Draper, T. G., Kutin, S. A., and Moulton, D. P. “A new quantum ripple-carry addition circuit”, http://arXiv.org/quant-ph/0410184,2004. | ||

[5] | Haghparast, M., Jassbi, S., Navi, K., and O.Hashemipour. “Design of a novel reversible multiplier circuit using hng gate in nanotechnology”, World App. Sci. J. 3, 6, 974-978, 2008. | ||

[6] | Maslov, D. and Dueck, G. W. “Reversible cascades with minimal garbage”, IEEE Trans. Computer-Aided Design, 23, 11 (Nov.), 1497-1509, 2004. | ||

[7] | Mohammadi, M., Eshghi, M., Haghparast, M., and Bahrololoom, A. “Design and optimization of reversible bcd adder/subtractor circuit for quantum and nanotechnology based systems”, World Applied Sciences Journal 4, 6, 787-792, 2008.. | ||

[8] | Shende, V. V., Prasad, A., Markov, I., and Hayes, J. “Synthesis of reversible logic Circuits”. IEEE Trans. on CAD 22, 710-722, 2003. | ||

[9] | S.K.Sastry, H.S.Shroff, Mahammad, S. N., and Kamakoti, V. “Efficient building blocks for reversible sequential circuit design”. Proc. the 49th IEEE Intl. l Midwest Symp.on Cir. and Sys. Puerto Rico, 437-441, 2006. | ||

[10] | B. Parhami, “Computer architecture arithmetic algorithms & hardware architectures”, 2^{nd} edition, Oxford university press, New York, 2010. | ||

[11] | Anvesh kumar, Ashish raman,”Low power ALU design by ancient mathematics”, 978-1-4244-5586-7/10, 2010, IEEE. | ||

## Article

# Analysis of Relationship between Resistances in Delta Circuit to Determine Total Resistance

^{1}Unika De la Salle Manado Kampus Kombos Kairagi I Manado-Indonesia

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(4), 120-123

**DOI:**10.12691/iteces-2-4-2

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Lianly Rompis. Analysis of Relationship between Resistances in Delta Circuit to Determine Total Resistance.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(4):120-123. doi: 10.12691/iteces-2-4-2.

Correspondence to: Lianly Rompis, Unika De la Salle Manado Kampus Kombos Kairagi I Manado-Indonesia. Email: lr079@uowmail.edu.au

## Abstract

## Keywords

## References

[1] | Malvino, A.P., translated by: Alb. Joko Santoso. (2003) Prinsip-prinsip Elektronika Jilid 1, Jakarta: Penerbit Salemba Teknika. | ||

[2] | Nahvi, M., dan Joseph A. Edminister. (2004) Schaum’s Easy Outlines: Rangkaian Listrik, Jakarta: Penerbit Erlangga. | ||

[3] | Soegito, Ken Endar Supardjo, dan Sutriyono. (1991) Prima EBTA Fisika SMA, Edisi ke-1, Semarang: PT Intan Pariwara. | ||

[4] | William H. Hayt, Jr. and Jack E. Kemmerly (Pantur Silaban). (1999) Rangkaian Listrik Jilid 1. Jakarta: Penerbit Erlangga. | ||

[5] | William H. Hayt, Jr. and Jack E. Kemmerly (Pantur Silaban). (1999) Rangkaian Listrik Jilid 2. Jakarta: Penerbit Erlangga. | ||

[6] | Edminister, Joseph A. (Sahat Pakpahan). (1988) Teori dan Soal-Soal Rangkaian Listrik. Jakarta: Penerbit Erlangga. Online Articles | ||

[7] | Tony R. Kuphaldt. (2004) Lessons in Electric Circuits: Volume II-AC, fifth edition. [Online] Available: http://www.scribd.com/ doc/62569767/Lessons-in-Electric-Circuits-2-AC-Tony-R-Kuphaldt. [Accessed: November 2013]. | ||

[8] | Tony R. Kuphaldt. (2004) Lessons in Electric Circuits: Volume III-Semiconductors, fifth edition. [Online] Available: http://www3.eng.cam.ac.uk/DesignOffice/mdp/electric_web/Semi/. [Accessed: November 2013]. | ||

## Article

# Using Poisson Integral Formula to Evaluate Four Types of Definite Integrals

^{1}Department of Information Technology, Nan Jeon University of Science and Technology, Tainan City, Taiwan

*International Transaction of Electrical and Computer Engineers System*.

**2014**, 2(4), 124-127

**DOI:**10.12691/iteces-2-4-3

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Chii-Huei Yu. Using Poisson Integral Formula to Evaluate Four Types of Definite Integrals.

*International Transaction of Electrical and Computer Engineers System*. 2014; 2(4):124-127. doi: 10.12691/iteces-2-4-3.

Correspondence to: Chii-Huei Yu, Department of Information Technology, Nan Jeon University of Science and Technology, Tainan City, Taiwan. Email: chiihuei@nju.edu.tw

## Abstract

## Keywords

## References

[1] | A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin, “Automated theorem proving in support of computer algebra: symbolic definite integration as a case study,” Proceedings of the 1999 International Symposium on Symbolic and Algebraic Computation, Canada, pp. 253-260, 1999. | ||

[2] | M. A. Nyblom, “On the evaluation of a definite integral involving nested square root functions,” Rocky Mountain Journal of Mathematics, Vol. 37, No. 4, pp. 1301-1304, 2007. | ||

[3] | C. Oster, “Limit of a definite integral,” SIAM Review, Vol. 33, No. 1, pp. 115-116, 1991. | ||

[4] | C. -H. Yu, “A study of two types of definite integrals with Maple,” Jökull Journal, Vol. 64, No. 2, pp. 543-550, 2014. | ||

[5] | C. -H. Yu, “Evaluating two types of definite integrals using Parseval’s theorem,” Wulfenia Journal, Vol. 21, No. 2, pp. 24-32, 2014. | ||

[6] | C. -H. Yu, “Solving some definite integrals using Parseval’s theorem,” American Journal of Numerical Analysis, Vol. 2, No. 2, pp. 60-64, 2014. | ||

[7] | C. -H. Yu, “Some types of integral problems,” American Journal of Systems and Software, Vol. 2, No. 1, pp. 22-26, 2014. | ||

[8] | C. -H. Yu, “Using Maple to study the double integral problems,” Applied and Computational Mathematics, Vol. 2, No. 2, pp. 28-31, 2013. | ||

[9] | C. -H. Yu, “A study on double Integrals,” International Journal of Research in Information Technology, Vol. 1, Issue. 8, pp. 24-31, 2013. | ||

[10] | C. -H. Yu, “Application of Parseval’s theorem on evaluating some definite integrals,” Turkish Journal of Analysis and Number Theory, Vol. 2, No. 1, pp. 1-5, 2014. | ||

[11] | C. -H. Yu, “Evaluation of two types of integrals using Maple,” Universal Journal of Applied Science, Vol. 2, No. 2, pp. 39-46, 2014. | ||

[12] | C. -H. Yu, “Studying three types of integrals with Maple,” American Journal of Computing Research Repository, Vol. 2, No. 1, pp. 19-21, 2014. | ||

[13] | C. -H. Yu, “The application of Parseval’s theorem to integral problems,” Applied Mathematics and Physics, Vol. 2, No. 1, pp. 4-9, 2014. | ||

[14] | C. -H. Yu, “A study of some integral problems using Maple,” Mathematics and Statistics, Vol. 2, No. 1, pp. 1-5, 2014. | ||

[15] | C. -H. Yu, “Solving some definite integrals by using Maple,” World Journal of Computer Application and Technology, Vol. 2, No. 3, pp. 61-65, 2014. | ||

[16] | C. -H. Yu, “Using Maple to study two types of integrals,” International Journal of Research in Computer Applications and Robotics, Vol. 1, Issue. 4, pp. 14-22, 2013. | ||

[17] | C. -H. Yu, “Solving some integrals with Maple,” International Journal of Research in Aeronautical and Mechanical Engineering, Vol. 1, Issue. 3, pp. 29-35, 2013. | ||

[18] | C. -H. Yu, “A study on integral problems by using Maple,” International Journal of Advanced Research in Computer Science and Software Engineering, Vol. 3, Issue. 7, pp. 41-46, 2013. | ||

[19] | C. -H. Yu, “Evaluating some integrals with Maple,” International Journal of Computer Science and Mobile Computing, Vol. 2, Issue. 7, pp. 66-71, 2013. | ||

[20] | C. -H. Yu, “Application of Maple on evaluation of definite integrals,” Applied Mechanics and Materials, Vols. 479-480 (2014), pp. 823-827, 2013. | ||

[21] | C. -H. Yu, “Application of Maple on the integral problems,” Applied Mechanics and Materials, Vols. 479-480 (2014), pp. 849-854, 2013. | ||

[22] | C. -H. Yu, “Using Maple to study the integrals of trigonometric functions,” Proceedings of the 6th IEEE/International Conference on Advanced Infocomm Technology, Taiwan, No. 00294, 2013. | ||

[23] | C. -H. Yu, “A study of the integrals of trigonometric functions with Maple,” Proceedings of the Institute of Industrial Engineers Asian Conference 2013, Taiwan, Springer, Vol. 1, pp. 603-610, 2013. | ||

[24] | C. -H. Yu, “Application of Maple on the integral problem of some type of rational functions,” (in Chinese) Proceedings of the Annual Meeting and Academic Conference for Association of IE, Taiwan, D357-D362, 2012. | ||

[25] | C. -H. Yu, “Application of Maple on some integral problems,” (in Chinese) Proceedings of the International Conference on Safety & Security Management and Engineering Technology 2012, Taiwan, pp. 290-294, 2012. | ||

[26] | C. -H. Yu, “Application of Maple on some type of integral problem,” (in Chinese) Proceedings of the Ubiquitous-Home Conference 2012, Taiwan, pp. 206-210, 2012. | ||

[27] | C. -H. Yu, “Application of Maple on evaluating the closed forms of two types of integrals,” (in Chinese) Proceedings of the 17th Mobile Computing Workshop, Taiwan, ID16, 2012. | ||

[28] | C. -H. Yu, “Application of Maple: taking two special integral problems as examples,” (in Chinese) Proceedings of the 8th International Conference on Knowledge Community, Taiwan, pp. 803-811, 2012. | ||

[29] | C. -H. Yu, “Evaluating some types of definite integrals,” American Journal of Software Engineering, Vol. 2, Issue. 1, pp. 13-15, 2014. | ||

[30] | C. -H. Yu and B. -H. Chen, “Solving some types of integrals using Maple,” Universal Journal of Computational Mathematics, Vol. 2, No. 3, pp. 39-47, 2014. | ||

[31] | T. -J. Chen and C. -H. Yu, “A study on the integral problems of trigonometric functions using two methods,” Wulfenia Journal, Vol. 21, No. 4, pp. 76-86, 2014. | ||

[32] | T. -J. Chen and C. -H. Yu, “Fourier series expansions of some definite integrals,” Sylwan Journal, Vol. 158, Issue. 5, pp. 124-131, 2014. | ||

[33] | T. -J. Chen and C. -H. Yu, “Evaluating some definite integrals using generalized Cauchy integral formula,” Mitteilungen Klosterneuburg, Vol. 64, Issue. 5, pp. 52-63, 2014. | ||

[34] | J. E. Marsden, Basic complex analysis, W. H. Freeman and Company, San Francisco, 1973. | ||