International Journal of Physics

ISSN (Print): 2333-4568

ISSN (Online): 2333-4576

Editor-in-Chief: B.D. Indu




A Theoretical Study of the Atomic Properties for Subshells of N+ and O+2 Using Hartree-Fock Approximation

1Department of physics, Faculty of Sciences, Kufa University, Iraq

International Journal of Physics. 2016, 4(4), 74-77
doi: 10.12691/ijp-4-4-1
Copyright © 2016 Science and Education Publishing

Cite this paper:
Hayder Ali Abd Alabas, Qassim Shamkhi AL-Khafaji, Abbas Hassan Raheem. A Theoretical Study of the Atomic Properties for Subshells of N+ and O+2 Using Hartree-Fock Approximation. International Journal of Physics. 2016; 4(4):74-77. doi: 10.12691/ijp-4-4-1.

Correspondence to: Hayder  Ali Abd Alabas, Department of physics, Faculty of Sciences, Kufa University, Iraq. Email:


In this research, we calculated the atomic properties of systems have been studied (N+ and O+2 ) for intra-shells (1s, 2s and 2p) using Hartree-Fock wave function. These properties included, one-particle radial density function, one-particle and inter-particle expectation values, inter-particle density function and expectation values of energies. All these atomic properties increase with atomic number, have highest values in 1s shell and lowest values in 2p shell. All results are obtained numerically by using the computer program (MathCad 14) because it able to calculation and plot functions. All atomic properties are calculated in atomic units.



[1]  Szabo and N.S. Ostlund, “Modern Quantum Chemistry Introduction to Advanced Electronic Structure Theory”, Dover Publications, INC., New York, 1989.
[2]  I. N. Levine, “Quantum chemistry”, Prentice-Hall, Inc. New Jersey. 2000.
[3]  J. c. Slater, “Quantum theory of atomic structure.” McGRAW-HILL BOOK COMPANY, INC., New York, 1960.
[4]  Q. S. Alkafaji, S. K. AL-Shebly, H. H. Bilal, and N. H. Ali, J. Adv. Phys., Vol. 5, pp. 1-4, 2016.
[5]  B. H.Al-Asaad, S. A.Hasson and K. H.Al-Bayati, J. Um-Salama Sceience Vol. 4, No. 3, pp. 393-396, 2007.
Show More References
[6]  K.H.AL-bayati, K. A. Mohammed and K.O.AL-baiti, J.Um-Salama Sceience, Vol. 2, No. 2, pp. 317-326, 2005.
[7]  R. J. Dosh, J. Kufa of Physics, Vol. 6, No. 1, pp. 107-111, 2014.
[8]  H. Matsuyama and T. Koga, Theor. Chem. Acc., Vol. 118, pp. 643-647, 2007.
[9]  T. Oyamada, K. Hongo, Y. Kawazoe, and H. Yasuhara (2010) J. of Chem. Phys., Vol. 133.
[10]  Koga et al. (1999) J. Chem. Phys., Vol. 110, No. 12, pp. 5763-5771.
[11]  K. H. AL-bayati, A.K. Ahmed and N.CH.AL-Tamimei, J.Um-Salama Sceience, Vol. 3, No. 2, pp. 246-253, 2006.
[12]  C. A. Coulson and A. H. Neilson, Proc. Phys. Soc., Vol. 78, pp. 831-837, 1961.
[13]  R. J. Boyd and C. A. Coulson, J. Phys. B At. Mol. Phys., Vol. 6, pp. 782-793, 1973.
[14]  R. J.Dosh and Q. S. AL-Kafaji, J. Kufa of Physics, Vol. 5, No. 1, pp. 91-102, 2013.
[15]  C. L. Ladera and E. Alomá, Lat. Am. J. Phys. Educ., Vol. 4, No. 2, pp. 260-266, 2010.
Show Less References


Stability of Dissipative Optical Solitons in the 2D Complex Swift-Hohenberg Equation

1Ecole Supérieure Africaine des Technologies d’Information et de Communication (ESATIC), Abidjan, Côte d’Ivoire

2Université Félix Houphouët Boigny, Abidjan, Côte d’Ivoire

3Institut National Polytechnique Félix Houphouët Boigny (INP-HB), Yamoussoukro, Côte d’Ivoire

International Journal of Physics. 2016, 4(4), 78-84
doi: 10.12691/ijp-4-4-2
Copyright © 2016 Science and Education Publishing

Cite this paper:
P. Yoboue, A. Diby, O. Asseu, A. Kamagate. Stability of Dissipative Optical Solitons in the 2D Complex Swift-Hohenberg Equation. International Journal of Physics. 2016; 4(4):78-84. doi: 10.12691/ijp-4-4-2.

Correspondence to: O.  Asseu, Ecole Supérieure Africaine des Technologies d’Information et de Communication (ESATIC), Abidjan, Côte d’Ivoire. Email:


This article deals with stationary localized solutions of the (2D) two-dimensional complex Swift-Hohenberg equation (CSHE). Our approach is based on the semi-analytical method of collective coordinate approach. According to the parameters of the equation and a suitable choice of ansatz, the stationary dissipative solitons of the 2D CSHE equation are mapped. This approach allows to describe the influence of the parameters of the equation on the various physical parameters of the pulse and their dynamics. Finally, the major impact of spectral filtering terms on the dynamic of the solitons is demonstrated.



[1]  Y. Silberberg, Collapse of optical pulses, Optics Letters 15 (1990), 1282-1284.
[2]  N. N. Rosanov, Spatial hysteresis and optical patterns, Springer Berlin, 2002.
[3]  N. Akhmediev and A. Ankiewicz, Solitons Around Us: Integrable, Hamiltonian and Dissipative Systems, Lecture Notes in Physics, Springer, Heidelberg, 2003.
[4]  N. Akhmediev and A. Ankiewicz, Dissipative solitons. Ed. Springer, Heidelberg, 2005.
[5]  N. Akhmediev and A. Ankiewicz, Dissipative solitons: from optics to biology and medicine, Springer, Heidelberg, 2008.
Show More References
[6]  Q. Zhou, Y. Zhong, M. Mirzazadeh, A.H. Bhrawy, E. Zerrad and A. Biswas, Thirring combo solitions with cubic nonlinearity and spatio-temporal dispersion, Waves in Random and Complex Media. Vol. 26 (2016), Issue 2, 204-210.
[7]  Q. Zhou, M. Mirzazadeh, E. Zerrad, A. Biswas and M. Belic, Bright, dark and singular solitons in optical fibers with spatio-temporal dispersion and spatially-dependent coefficients, Journal of Modern Optics. Vol. 63 (2016), Number 10, 950-954.
[8]  M. Mirzazadeh, M. Eslami, M. Savescu, A. H. Bhrawy, A. A. Alshaery, E. M. Hilal and A. Biswas, Optical solitons in dwdmsystem with spatio-temporal dispersion, Journal of Nonlinear Optical Physics and Materials. Vol. 24 (2015), Issue 1, 1550006.
[9]  J.M. Soto Crespo, Ph. Grelu and N. Akhmediev, Optical bullets and “rockets” in nonlinear dissipative systems and their transformations and interactions, Optics Express 14 (2006), 4013-4025.
[10]  J.M. Soto Crespo, N. Akhmediev and Ph. Grelu, Spatiotemporal optical solitons in nonlinear dissipative media: From stationary light bullets to pulsating complexes, CHAOS 17 (2007), 037112.
[11]  A. H. Arnous, M. Mirzazadeh, S. Moshokoa, S. Medhekar, Q. Zhou, M. F. Mahmood, A. Biswas and M. Belic, Solitons in optical metamaterials with trial solution approach and backlund transform of riccati equation, Journal and Computational and Theoretical Nanoscience. Vol. 12 (2015), Number 12, 5940-5948.
[12]  V. Skarla and N. Aleksic, Stability Criterion for Dissipative Soliton Solutions of the One-, Two-, and Three-Dimensional Complex Cubic-Quintic Ginzburg-Landau Equations, Phys. Rev. Lett. 96 (2006), 013903.
[13]  A. Kamagaté, Ph. Grelu, P. Tchofo-Dinda, J.M. Soto-Crespo, N. Akhmediev, Stationary and pulsating dissipative light bullets from a collective variable approach. Phys. Rev. E, 2009, 79, 026609.
[14]  M. Mirzazadeh, M. F. Mahmood, F. B. Majid, A. Biswas and M. Belic, Optical solitons in birefringent fibers with riccati equation method, Optoelectronics and Advanced Materials - Rapid Communications. Vol. 9 (2015), Numbers7-8, 1032-1036.
[15]  P. Tchofo-Dinda, A.B. Moubissi, K. Nakkeeran, Collective variable theory for optical solitons in fibers. Phys Rev. E, 64 (2001), 016608.
[16]  G. Nicolis and I. Prigogine, Self-organization in nonequilibrium systems - From dissipative structures to order through fluctuations, John Wiley \& sons, New York,1977.
[17]  W.V. Saarlos and P.C. Hhenberg, Fronts, pulse, sources and sinks in generalized Ginzburg-Landau. Physica D, 56 (1992), 303-367.
[18]  N. Bekki and K. Nozaki, Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation, Phys. Lett., 110 (1985), 133-135.
[19]  N. Akhmediev and V.V. Afanasjev, Novel arbitrary-amplitude soliton solutions of cubic-quintic complex Ginzburg-Landau equation, Phys. Rev. Lett., 75 (1995), 2320-2323.
[20]  Y. Kuramoto, Chemical Oscillations, Waves and Turbulence Dissipative Solitons, Springer-Verglag, Berlin, 1984.
[21]  C. Normand, Y. Pomeau, M.G. Velarde, Convective instability: A physicist’s approach, Rev. Mod. Phys., 49 (1977), 581-624.
[22]  N. Akhmediev and A. Ankiewicz, Solitons of the Complex Ginzburg-Landau equation, Springer, Berlin, 2001.
[23]  P.A. Belanger, Coupled-cavity mode-locking: a nonlinear model, J. Opt. Soc. Am. B, 8 (1991), 2077-2082.
[24]  J.D. Moores, On the Ginzburg-Landau laser mode-locking model with fifth-oder saturable absorber term, Opt. commun., 96 (1993), 65-70.
[25]  L.F. Mollenauer, J.P. Gordon and S.G. Evangelides, The sliding-frequency guiding: an improved from soliton jitter control, Opt. Lett., 1992, vol.17 (1992), 1575-1577.
[26]  W.J. Firth and A.J. Scroggie, Optical bullet holes: Robust controllable localized states of a nonlinear cavity, Phys. Rev. Lett., 76 (1996), 1623-1626.
[27]  P.S. Jian, W.E. Torruellas, M. Haelterman, U. Peschel and F. Lederer, Solitons of singly resonant optical parametric oscillators, Opt. Lett, 24 (1994), 400-402.
[28]  M. Mirzazadeh, A. H. Arnous, M. F. Mahmood, E. Zerrad and A. Biswas, Solitons solutions to resonant nonlinear Schrodinger’s equation with time dependent coefficients by trial solution approach, Nonlinear Dynamics. Vol. 81 (2015), Issue 1-2. 277-282.
Show Less References


On the Origin of Magnetism and Gravitation and on the Nature of Electricity and Matter

1Donaustr. 22, 30519 Hannover, Germany

International Journal of Physics. 2016, 4(4), 85-105
doi: 10.12691/ijp-4-4-3
Copyright © 2016 Science and Education Publishing

Cite this paper:
Hans-Joerg Hochecker. On the Origin of Magnetism and Gravitation and on the Nature of Electricity and Matter. International Journal of Physics. 2016; 4(4):85-105. doi: 10.12691/ijp-4-4-3.

Correspondence to: Hans-Joerg  Hochecker, Donaustr. 22, 30519 Hannover, Germany. Email:


This is a significantly improved resumption of my previous paper on gravitation [40]. I can show in a improved way that gravitation is an electric effect. To this, it is necessary to better understand the qualities of the electric charges and their forces. I start by showing that the magnetic field can be represented as an angled electric field. To this, the electric field must have two qualities: the dependence of the electric force on the velocity, and the electric anti-field. All previous cognitions on electrodynamics stay with it untouched. Then, I apply these two new qualities to gravitation, and it turns out that gravitation is an electric effect if a third quality applies to the electric field: the quantization of the energy transfer of the electric field. These three new qualities complete our picture of electrodynamics. Finally, I go to the origins of the three new qualities with the help of the early quantum mechanics. This turns out well by representing the electric charge as a space time wave, in which its frequency corresponds to its mass.



[1]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
[2]  PAM Dirac: The Quantum Theory of the Electron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Nr.778, 1928, S.610-624.
[3]  Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006, ISBN 3-540-25421-8.
[4]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
[5]  Introduction to Electrodynamics (3rd Edition), D.J. Griffiths, Pearson Education, Dorling Kindersley, 2007.
Show More References
[6]  Electromagnetism (2nd Edition), I.S. Grant, W.R. Phillips, Manchester Physics, John Wiley & Sons, 2008.
[7]  Dirac, Paul (1996), General Theory of Relativity, Princeton University Press.
[8]  Einstein, Albert (1916), “Die Grundlage der allgemeinen Relativitätstheorie”, Annalen der Physik 49.
[9]  Hartle, James B. (2003), Gravity: an Introduction to Einstein's General Relativity, San Francisco: Addison-Wesley.
[10]  M. Planck: Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. In: Verhandlungen der Deutschen physikalischen Gesellschaft. 2, Nr. 17, 1900, S. 245, Berlin (vorgetragen am 14. Dezember 1900).
[11]  Roger Bach, Damian Pope, Sy-Hwang Liou, Herman Batelaan Controlled double-slit electron diffraction In: New Journal of Physics, Roger Bach et al 2013 New J. Phys.15 033018.
[12]  JoernBleck-Neuhaus: ElementareTeilchen. Von den Atomenüber das Standard-Modell biszum Higgs-Boson. 2., überarbeitete Auflage. Springer, Berlin Heidelberg 2013.
[13]  J. Baez. What´s the energy density of the vacuum?, 2006.
[14]  M. Gell-Mann: A Schematic Model of Baryons and Mesons in Phys. Lett. 8, 1964, 214-215.
[15]  Moshe Carmeli, John G. Hartnett, Firmin J. Oliveira On the anomalous acceleration of Pioneer spacecraft Int.J.Theor.Phys. 45 (2006) 1074-1078.
[16]  Albert Einstein: Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie. In: Sitzungsberichte der Preußischen Akademie der Wissenschaften.
[17]  Chandrasekhar Roychoudhuri, Rajarshi Roy: The nature of light: What is a photon? In: Optics and Photonics News. 14, Nr. 10, 2003, ISSN 1047-6938, Supplement, S. 49-82.
[18]  Harry Paul: Photonen: Eine Einführung in die Quantenoptik. 2. Auflage. Teubner, Stuttgart 1999, ISBN 3-519-13222-2. (Teubner-Studienbücher Physik).
[19]  Klaus Hentschel: Einstein und die Lichtquantenhypothese. In: Naturwissenschaftliche Rundschau. 58(6), 2005, ISSN 0028-1050, S. 311-319.
[20]  Liang-Cheng Tu, Jun Luo, George T. Gillies: The mass of the photon. In: Reports on Progress in Physics. 68, Nr. 1, 2005, S. 77-130.
[21]  J D Franson Apparent correction to the speed of light in a gravitational potential In: New Journal of Physics, J D Franson 2014 New J. Phys.16 065008.
[22]  Berestetskii V B, Lifshitz E M and Pitaevskii L P 1980 Quantum Electrodynamics (Oxford: Pergamon).
[23]  H. Grote: On the possibility of vacuum QED measurements with gravitational wave detectors In: Phys. Rev. D 91, 0220022 - 7 January 2015.
[24]  Max Born, Albert Einstein: Albert Einstein, Max Born. Briefwechsel 1916-1955. München (Nymphenburger) 1955, S. 210.
[25]  Simon Gröblacher, Tomasz Paterek, Rainer Kaltenbaek, Caslav Brukner, Marek Zukowski, Markus Aspelmeyer, Anton Zeilinger: An experimental test of non-local realism. In: Nature. 446, 2007, S. 871-875. (Abstract).
[26]  Jacob Biemond The MagneticFfield of Pulsars and the Gravito-Magnetic Theory Trends in Pulsar Research (Ed. Lowry, J. A.), Nova Science Publishers, New York, Chapter 2 (2007).
[27]  Shervgi S. Shahverdiyev Unification of Electromagnetism and Gravitation in the Framework of General Geometry Proceedings of the workshop in “Fizika” N 12, 2004.
[28]  Friedrich W. Hehl An Assesment of Evans´Uunified Field Theory Foundations of Physics 38 (2008) 7-37.
[29]  Bahram Mashhoon, Frank Gronwald and Herbert I.M. Lichtenegger Gravitomagnetism and the Clock Effect Lect.Notes Phys. 562 (2001) 83-108.
[30]  Sumana Bhadra Electromagnetic Mass Models in General Theory of Relativity Ph.D. thesis, Sambalpur University, Jyoti Vihar, Burla – 768019, Orissa, India (2007).
[31]  J.H. Field Forces Between Electric Charges in Motion: Rutherford Scattering, Circular Keplerian Orbits, Action-at-a-Distance and Newton’s Third Law in Relativistic Classical Electrodynamics arXiv:physics/0507150v3 (2007).
[32]  Weinberg, S. (1995). The Quantum Theory of Fields, Volume 1: Foundations. Cambridge University Press.
[33]  M. Tajmar and C. J. de Matos Extended Analysis of Gravitomagnetic Fields in Rotating Superconductors and Superfluids ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France.
[34]  M. Tajmar, F. Plesecu, B. Seifert and K. Marhold Measurement of Gravitomagnetic and Acceleration Fields Around Rotating Superconducters AIP Conf. Proc. 880, 1071 (2007).
[35]  Martin Tajmar, Florin Plesescu, Klaus Marhold and Clovis J. Matos Experimental Detection of the Gravitomagnetic London Moment Space Propulsion, ARC Seibersdorf research GmbH, A-2444 Seibersdorf, Austria and ESA-HQ, European Space Agency, 8-10 rue Mario Nikis, 75015 Paris, France (2006).
[36]  V.V. Roschin and S. M. Godin Experimental Research of the Magnetic-Gravity Effects Institute for High Temperatures, Russian Academy of Science.
[37]  Misner, C. W.; Thorne, K. S.; Wheeler, J. A. (1973). Gravitation. W. H. Freeman.
[38]  Einstein, A (1918). “Ueber Gravitationswellen”. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin. part 1: 154-167.
[39]  H.-J. Hochecker Theory of Objects of Space At:
[40]  Hans-Joerg Hochecker Magnetism as an Electric Angle-effect and Gravitation as an Electric Effect International Journal of Physics Vol. 3, No. 4, 2015, pp 175-201.
Show Less References