International Journal of Physics: Latest Articles  More >>

Article

An Element in a Paradigm Shift? – Could Population II Stars Actually be Younger than Population I stars?

1B&E Scientific Ltd, BN25 4PA, United Kingdom


International Journal of Physics. 2014, 2(3), 78-82
DOI: 10.12691/ijp-2-3-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Arne Bergstrom. An Element in a Paradigm Shift? – Could Population II Stars Actually be Younger than Population I stars?. International Journal of Physics. 2014; 2(3):78-82. doi: 10.12691/ijp-2-3-2.

Correspondence to: Arne  Bergstrom, B&E Scientific Ltd, BN25 4PA, United Kingdom. Email: arne.bergstrom@physics.org

Abstract

Recent astronomical observations have indicated the existence of supermassive black holes at the centres of most, perhaps all, galaxies, and also that immensely powerful relativistic jets of protons and electrons may occasionally emanate from some such supermassive black holes. Together these observations suggest a possible mechanism for alternative star formation, which may require a revision of the traditional classification of stars into a more recent Population I and a more ancient Population II. Rather than assumedly being members of an older generation of stars preceding Population I, maybe many Population II stars could perhaps actually be younger than Population I stars, with their lower metallicity being an effect of their much more recent creation from the pristine hydrogen left by such relativistic jets.

Keywords

References

[1]  T. Kuhn, The Structure of Scientific Revolutions (Kindle edition, 2012).
 
[2]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145 (1975).
 
[3]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[4]  A. Bergstrom, “Is CMB just an observational effect of a universe in accelerated expansion?”, International Journal of Physics, Vol. 1, No. 6, 133-137 (2013).
 
[5]  J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the Accelerating Universe”, Ann. Rev. Astron. Astrophys. 46 385 (2008). See also en.wikipedia.org/wiki/Cosmological_constant.
 
Show More References
[6]  G. Larsson-Leander, Astronomi och Astrofysik, 2nd Ed (Liber, Stockholm, 1977).
 
[7]  B. Carr, “The cosmic microwave background and particle physics”, Ann. Rev. Astr. Astroph. 32 531 (1994).
 
[8]  V. Bromm & R. Larson, “The first stars”, Ann. Rev. Astr. Astroph. 42 79 (2004).
 
[9]  R. Schödel, T. Ott, R. Genzel, R. Hoffmann, et al, “A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way“, Nature 419 694 (2002).
 
[10]  A. Wehrle, et al, https://science.nrao.edu/science/ Decadal%20Survey/rac/Wehrle_AGN_jets_GCT.pdf/view, retrieved 2012-05-23.
 
[11]  R. Powell, http://www.atlasoftheuniverse.com/globular.html, retrieved 2012-05-28.
 
[12]  A. Burkert & S. Tremaine, “A correlation between central supermassive black holes and the globular cluster systems of early-type galaxies”, Astroph. J. 720 516 (2010).
 
[13]  H. Decauwer, E. Jehin, G. Parmentier, P. Magain, “Abundance correlations in mildly metal-poor stars”, Astron. & Astroph. 433 285 (2005).
 
[14]  E. Jehin, P. Magain, C. Neuforge, et al, “Field halo stars: the globular cluster connection”, Astron. & Astroph. 330 L33 (1998).
 
[15]  A. Frebel, et al, “Discovery of HE-1523-0901, a strongly r-process enhanced metal-poor star with detected uranium”, Astroph. J. 660 L117 (2007).
 
[16]  Fields, B. D., “The Primordial Lithium Problem”, Ann. Rev. Nucl. & Particle Sc. 61, 47 (2011).
 
Show Less References

Article

Study of Electrocapillarity in Dielectrics Using Palm Oil

1Department. of Physics, Federal University, Ndufu-Alike – Ikwo,

2Department of Industrial Physics, Ebonyi State University, P.B.M 53, Abakaliki, Nigeria


International Journal of Physics. 2014, 2(3), 83-85
DOI: 10.12691/ijp-2-3-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Nwodo A. N, Ugwu E.I. Study of Electrocapillarity in Dielectrics Using Palm Oil. International Journal of Physics. 2014; 2(3):83-85. doi: 10.12691/ijp-2-3-3.

Correspondence to: Ugwu  E.I, Department of Industrial Physics, Ebonyi State University, P.B.M 53, Abakaliki, Nigeria. Email: ugwuei@yahoo.com

Abstract

This paper presents analytical and experimental study of electrocapillarity in dielectrics under the frame work of parallel plates using palm oil.. First, Mathematical approach was used to derive an expression relating capillary ascent with the applied field. The results obtained from the experiment and that of the analytical results were compared with the expected results from the equation relating the liquid ascent and the applied field obtained from Lippmann equation, where it was observed that there is no evidence of linear relation between the height of the capillary rise of oil in the tube and the applied field.

Keywords

References

[1]  E Colgate; H.Matsumoto; J Vac Sci. Technol., (1990), An investigation of ectrowetting- based microstructure J.Voc. Sci. Technol. A8, 3625-3633
 
[2]  Berge, B (1993) Electrocapilarity and wetting of insulator film by water, C.R Acad. Sci. Paris Ser II., (1993), 317, 157-163
 
[3]  Pollack; M.G and Fair R.B.,; A.D Shenderov, (2000), Electrowetting –based actuation of Liquid droplet for microfluidic application, Appl. Phys. let. 77, 1725-1726.
 
[4]  Prins, M.; Welters W.J and Weekamp W.J. (2001), Fluid controlling multichannel structures by electrocapillarity pressure, Science 291, 277-280.
 
[5]  Lienemann J, Greiner A.; Korvink J.G., (2006), Modeling Simulation, and optimization of Electrowetting, IEEE, Tran. Comp-Aided Des Intgr. Cir. Syst., 25, 234-247.
 
Show More References
[6]  P.Zhou; C.W.Wu, Micro and Nanosystem, (2009), 1, 57-62
 
[7]  X.Shan; H. (1993), Lattice Boltzmann simulating flows with multiple phase and components Phys. Rev. E, 47, 1815-1819
 
[8]  Asberg, A. J, Kponen, A, Merikoski, D and Timnen, J, (2002),lattice Boltzmann simulation of Capillary rise dynamics, J.Stat.Phys 107, 143-153
 
[9]  H.Li; J.Li; Y. Chen; H.Fang, Comput. Phys. (2007),Lattice Boltzmann model simulation of elrctrowetting-on- dielectric in a rough wall channel. Compt. Science, http://arcxiv.org/abs/0708.4182v
 
[10]  Haung,H, Thome D.T, Schaap, M.G and Sukop M.C, (2007), Propsed approximation for contact angles in Shan-and Shen-typemulticomponet multiphase lattice Boltzmann models, Phys. Rev E, 76, 066701
 
[11]  Lin, P, (1978), “Some Electrocapiillary-Type Behaviour of Gold Electrode, J. Electrochem. Soc; 194, pp 1077-1098
 
[12]  Kata, E (1991). Electrocapillarity in dielectrics, MacMillan, India Press, Madras.
 
[13]  Chen, J.H and Hsieh, W.H,. (2006), Electrowetting-induced capillary flow in a parallel-plate Channel, J. Colloid. Interface Sci., (2006), 296, 276-283.
 
[14]  Kang K.H.; Kangn I.S and Lee,C.M, (2003), Wetting Tension Due to Coulombic Interaction in Charge- Related Wetting phenomena Langmuir Vol. 19, No. 13, 2003, 548-513.
 
Show Less References

Article

The Rest Mass of a Particle in a Field and a General Mass Equation

1Department of Mathematics, Faculty of Science, Ain-Shams University, Cairo, Egypt


International Journal of Physics. 2014, 2(3), 86-95
DOI: 10.12691/ijp-2-3-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Mohamed Ahmed Hassan. The Rest Mass of a Particle in a Field and a General Mass Equation. International Journal of Physics. 2014; 2(3):86-95. doi: 10.12691/ijp-2-3-4.

Correspondence to: Mohamed  Ahmed Hassan, Department of Mathematics, Faculty of Science, Ain-Shams University, Cairo, Egypt. Email: el_hmam.1113@Yahoo.com

Abstract

Using a modified version of the mass vector model, Hassan (1997), we explain that the particle mass decreases (increases) if the particle in attractive (repulsive) field. The concepts of the free rest mass and the rest mass in a field are introduced. We conclude that the mass of a particle in a field changes according to the rule , where is the rest mass of the particle in the field. This result is consistent with the existence of the Higgs field through the space and it causes existing particles to acquire mass. The confined theory is explained. General mass equations of a particle and of a composite particle in terms of different four forces of nature are obtained. Some applications of the general mass equation of composite particle (nucleus) are presented and discussed.

Keywords

References

[1]  Hassan, M. A., “A vector analog for the mass- Model and predictions,” Proc INSA, A63 (6). 437-456. Jul. 1997.
 
[2]  Thomson, J. J., “On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies, Philosophical Magazine, 5 11 (68). 229-249. 1881
 
[3]  Waghmare, Y. R., Introductory Nuclear Physics, Oxford &IBH publishing Co, New Delhi, 1981.
 
[4]  Griffiths, D., Introduction to Elementary Particles, Harper &Row, New York, 1987.
 
[5]  ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett., B716 (1). 1-29. Sep. 2012.
 
Show More References
[6]  Biswas, S., Roy, P., and Dutt-Mazumder, A. K., “ρ-ω mixing and spin dependent CSV potential”, Indian J. Phys, 85(7). 1185-1189. Jul. 2011.
 
[7]  Clemmow P. C., An Introduction To Electromagnetic Theory, Cambridge University Press, Cambridge, 1973.
 
Show Less References

Article

A Functional Model of Measurement in Quantum Theory

1Diel Software Beratung und Entwicklung, Seestr. 102, 71067 Sindelfingen, Germany


International Journal of Physics. 2014, 2(4), 96-104
DOI: 10.12691/ijp-2-4-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hans H. Diel. A Functional Model of Measurement in Quantum Theory. International Journal of Physics. 2014; 2(4):96-104. doi: 10.12691/ijp-2-4-1.

Correspondence to: Hans  H. Diel, Diel Software Beratung und Entwicklung, Seestr. 102, 71067 Sindelfingen, Germany. Email: diel@netic.de

Abstract

The measurement problem of quantum theory (QT) is the unsolved problem of how the probabilistic predictions of QT are turned into definite measurement results. A related question is whether a measurement in QT implies a collapse of the wave function and what the collapse of the wave function exactly means. Theories proposed on these subjects have not found general agreements among physicists. This paper proposes a solution to the QT measurement problem in terms of a functional model of the measurement process. A functional model describes the process of the dynamic evolution of a physical system. The model assumes that the interactions between the measured QT object and the measurement apparatus are "normal" interactions which adhere to the laws of quantum field theory.

Keywords

References

[1]  Baumann, K., Sexl, R., Die Deutungen der Quantentheorie, Vieweg Verlag, Braunschweig/Wiesbaden, 1984.
 
[2]  Cramer, J., “The Transactional Interpretation of Quantum Mechanics”, Rev Mod Phys 58, 647-688, 1986.
 
[3]  Wikipedia on Measurement Problem, http://en.wikipedia.org/w/index.php?title=Measurement problem.
 
[4]  Maudlin, T., “Three Measurement Problems”, Topoi-Int Rev Philos 14, 1995.
 
[5]  Everett III, H., “Relative State' formulation of Quantum Mechanics”, Rev Mod Phys 29, 454, 1957.
 
Show More References
[6]  Feynman, R.P., QED: The Strange Theory of Light and Matter, Princeton University Press, Princeton, 1985.
 
[7]  Diel, H., “The Formulation of Temporal Relationships with Physics Theories”, Pensee Journal, Vol 75, No. 12; Dec 2013.
 
[8]  Wikipedia on Objective collapse theory, 2014.
 
[9]  Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw Hill, New York, 2005.
 
[10]  Diel, H., “A Functional Interpretation of Quantum Theory”, in Proceedings of ICCQMNP Barcelona, 2013.
 
[11]  Dyson, F. J., Advanced Quantum Mechanics, arXiv:quant-ph/0608140v1, 2006.
 
[12]  Ryder, L.H., Quantum Field Theory, Cambridge University Press, Cambridge, 1985.
 
[13]  Griffiths, D., Einfuehrung in die Elementarteilchenphysik.
 
[14]  Mandl, F., Shaw, G., Quantenfeldtheorie, AULA Verlag, Wiesbaden, 1993.
 
Show Less References

Article

Analysis of the Performances of Sealed Timing Resistive Plate Chambers (tRPCs)

1Max-Planck Institute for Nuclear Physics, Heidelberg, Germany


International Journal of Physics. 2014, 2(4), 105-108
DOI: 10.12691/ijp-2-4-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Khokon Hossen. Analysis of the Performances of Sealed Timing Resistive Plate Chambers (tRPCs). International Journal of Physics. 2014; 2(4):105-108. doi: 10.12691/ijp-2-4-2.

Correspondence to: Khokon  Hossen, Max-Planck Institute for Nuclear Physics, Heidelberg, Germany. Email: hossen@mpi-hd.mpg.de

Abstract

Resistive Plate Chambers (RPCs) were introduced by R. Santonico and R. Cardarelli in 1981, are gas ionization chambers made with resistive electrodes separated by precision spacers. Typical gas gap ranges from a few hundred micrometers to several millimeters wide. Timing Resistive Plate Chambers (tRPCs) were introduced in 2000 by P.Fonte, A. Smirnitsky and M.C.S Williams and since then it has reached Time Resolutions better than 50 ps (σ) with efficiencies above 99% for Minimum Ionizing Particle (MIP). In this research paper, we described the main features of gas detectors and the different types of RPCs and their properties. We described the main results that we have got during the operating the sealed tRPCs built in the laboratory.

Keywords

References

[1]  P.Fonte, A. Smirnitsky and M.C.S Williams, NIM, A 443, (2000), 201.
 
[2]  Oxford Physics, C4: Particle Physics Major Option Particle Detectors.
 
[3]  William R. Leo, Techniques for Nuclear and Particle Physics Experiments.
 
[4]  http://consult.cern.ch/writeup/magboltz/.
 
[5]  P. Fonte, V. Peskov, B.D. Ramsey, “Streamers in MSGC's and other gaseous detectors” 1-13.
 
Show More References
[6]  Nicholas Tsoulfanidis, Measurement and Detection of Radiation, Second Edition.
 
[7]  http://root.cern.ch/drupal/.
 
Show Less References

Article

Optical Transitions in Quantum Dots

1Faculty of the Sciences, FUNDAPL Laboratory, University of Blida.1, Algeria

2Faculty of the technology, LATSI Laboratory, University of Blida.1, Algeria


International Journal of Physics. 2014, 2(4), 109-111
DOI: 10.12691/ijp-2-4-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
A. Benahmed, A. Aissat, M. A. Benammar. Optical Transitions in Quantum Dots. International Journal of Physics. 2014; 2(4):109-111. doi: 10.12691/ijp-2-4-3.

Correspondence to: A.  Benahmed, Faculty of the Sciences, FUNDAPL Laboratory, University of Blida.1, Algeria. Email: moumenephysique@yahoo.fr

Abstract

The analysis of the electronic states of a quantum dot of InAs grown on a GaAs substrate has been studied for different geometries. We did the calculation with each type of geometry we based on the Schrödinger equation for stationary particle and we used "Comsol" for calculations. We calculated energy values as a function of each of the parameters: length, width and thickness of the wetting layer where other parameters are held constant.

Keywords

References

[1]  H. Mathieu :« Physique des Semiconducteurs et des Composants Electronique», 6eme édition, pp (616-62 Paris, 2009).
 
[2]  COMSOL Multiphysics Model Library copyright 1998-2008 by COMSOL AB.
 
[3]  RF Module User’s Guide. 1998-2012 COMSOL-Protected by U.S. Patents 7, 519, 518; 7, 596, 474; and 7, 623, 991. Patents pending.
 
[4]  R. Chau, B. Doyle, S. Datta, J. Kavalieros and K. Zhang, Integrated nanoelectronics for the future, Nature Materials 6 (2007) 810.
 
[5]  A. Abdelali: «Rôle du rayonnement dans l’élaboration et l’étude nanoagrégats semi-conducteur de ZnS », mémoire de magister, université de Mentouri Constantine.
 
Show More References
[6]  P. M. Petroff, K. H. Schmidt, G. Medeiros-Ribeiro, A et J. Kotthaus, Size quantization and zero dimensional e in self assembled semiconductor quantum dots,Jpn. Jl. Appl Phys. 36, Part 1, 4068 (1997).
 
[7]  C. Charles: «Propriétés électroniques, optiques et dynamiques de boites quantiques auto-organisées et couplées sur substrat InP », thèse doctorat, Institut National des Sciences Appliquées de Rennes, 27 juin 2006.
 
[8]  U. Banin, Y. Cao, D. Katz et O. Millo, Identification of atomic-like electronic states inindium arsenide nanocrystal quantum dots, Nature 400, 542 (1999).
 
Show Less References

Article

Dark Energy, Exponential Expansion, CMB, Wave/Particle Duality All Result from Lorentz-Covariance of Boltzmann’s Transport Equation

1B&E Scientific Ltd, Seaford BN25 4PA, UK


International Journal of Physics. 2014, 2(4), 112-117
DOI: 10.12691/ijp-2-4-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Arne Bergstrom. Dark Energy, Exponential Expansion, CMB, Wave/Particle Duality All Result from Lorentz-Covariance of Boltzmann’s Transport Equation. International Journal of Physics. 2014; 2(4):112-117. doi: 10.12691/ijp-2-4-4.

Correspondence to: Arne  Bergstrom, B&E Scientific Ltd, Seaford BN25 4PA, UK. Email: arne.bergstrom@physics.org

Abstract

The Boltzmann transport equation is the rigorous continuity equation for the angular flux f(r, t, v) of photons at positions r, time t, moving in direction v, and interacting with a surrounding medium by localized collisions. This equation is not necessarily Lorentz-covariant, but can be specialized to a Lorentz-covariant equation describing the propagation of a photon distribution through space. However, this requirement of Lorentz-covariance of the Boltzmann transport equation then leads to a wave-particle duality, in which an ensemble of photons behave as waves, but in which each individual photon interferes only with itself. Applied on cosmological scales, this requirement of Lorentz-covariance of the Boltzmann transport equation also leads to an apparent quantum multiplication, which could explain the existence of the huge amounts of the mysterious “dark energy” that appears to permeate the universe. In addition, it also requires the universe to appear subjected to an exponential expansion as observed, similar to a perspective distortion in time, and then also as a consequence to appear surrounded by a cosmic microwave background radiation (CMB) with an exact Planck spectrum, as observed.

Keywords

References

[1]  F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica Physica Acta 6, 110 (1933). F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae”, Astrophys. J. 86, 217 (1937).
 
[2]  V. Rubin, D. Burstein, W. K. Ford, and N. Thonnard, “Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties”, Astrophys. J. 289, 81 (1985).
 
[3]  S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astrophys. J. 517, 565 (1999).
 
[4]  A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J. 116, 1009 (1998).
 
[5]  http://en.wikipedia.org/wiki/Planck_(spacecraft) retrieved 2014-06-16.
 
Show More References
[6]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), pp. 223, 232.
 
[7]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145 (1975).
 
[8]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[9]  A. Bergstrom, “Is CMB just an observational effect of a universe in accelerated expansion?”, International Journal of Physics 1, 133 (2013).
 
[10]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 235.
 
[11]  J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), p. 550.
 
[12]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 236.
 
[13]  R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol III, pp. 1.1-1.9.
 
[14]  P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, 1991), p 9.
 
[15]  J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the Accelerating Universe”, Ann. Rev. Astron. Astrophys. 46 385 (2008).
 
[16]  M. Kemp, The Science of Art: Optical Themes in Western Art from Brunelleschi to Seurat (Yale University Press, 1990).
 
[17]  P. S. Wesson, “Olbers's paradox and the spectral intensity of the extragalactic background light”, Astrophys. J. 367, 399 (1991).
 
[18]  G. D. Starkman and D. J. Schwarz, “Is the universe out of tune?”, Sci. Am. 293(2), 48 (2005).
 
[19]  D. J. Fixsen, E. S. Gheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright, “The cosmic microwave background spectrum from the full COBE FIRAS data set”, Astrophys. J. 473, 576 (1996).
 
[20]  M. Brooks, “13 things that do not make sense”, NewScientist, 19 March 2005.
 
Show Less References

Article

The Magnetism as an Electric Angle-effect

1Donaustr. 22, 30519 Hannover


International Journal of Physics. 2014, 2(4), 118-123
DOI: 10.12691/ijp-2-4-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hans-Joerg Hochecker. The Magnetism as an Electric Angle-effect. International Journal of Physics. 2014; 2(4):118-123. doi: 10.12691/ijp-2-4-5.

Correspondence to: Hans-Joerg  Hochecker, Donaustr. 22, 30519 Hannover. Email: jo.hoer@yahoo.de

Abstract

The magnetic force can be described very simply as a result of relative velocities of electric charges. Transformations in inertial reference systems are very well described by special relativity. However, magnetism nevertheless is simply regarded as given. There isn't an explanation for the emergence of magnetism yet. I have found a quite simple way to explain the emergence of magnetism, that is, I have discovered, how the electric field changes so that magnetism is created. I would like to introduce this idea here.

Keywords

References

[1]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
 
[2]  Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006.
 
[3]  PAM Dirac: The Quantum Theory of the Electron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Nr. 778, 1928, S. 610-624.
 
[4]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
 

Article

Electronic Circuit Simulation of the Lorenz Model With General Circulation

1Department of Physics, Prabhu Jagatbandhu College, Andul Howrah, India

2High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India


International Journal of Physics. 2014, 2(5), 124-128
DOI: 10.12691/ijp-2-5-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
D. C. Saha, Anirban Ray, A. Roy Chowdhury. Electronic Circuit Simulation of the Lorenz Model With General Circulation. International Journal of Physics. 2014; 2(5):124-128. doi: 10.12691/ijp-2-5-1.

Correspondence to: A.  Roy Chowdhury, High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India. Email: asesh_r@yahoo.com

Abstract

The nonlinear dynamics of the Lorenz model of general circulation is investigated with the help of analogue electronic circuits. The structure of the attractor is obtained for the various values of the systems parameters. Existence of two external potential terms in the equation leads to some new and interesting features. The data so generated is collected through the use of NI-6009 USB, analogue to digital converter. This was then used to compute the bifurcation pattern, parametric Lyapunov diagrams, Lyapunov exponents. The system clearly showed a non-periodic doubling route to chaos. This is farther substantiated by the simple variation of Lyapunov exponent in bi-parametric space of forcing parameter for the system. These external forcing is actually very important to settle the various issue arising in the long time behavior.

Keywords

References

[1]  S. H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity), 1st Edition, Studies in nonlinearity, Westview Press, 2001.
 
[2]  T.Matsumoto, A chaotic attractor from chua’s circuit, Circuits and Systems, IEEE Transactions on 31 (12) (1984) 1055-1058.
 
[3]  L. O. CHUA, Chua’s circuit: An overview ten years later, Journal of Circuits, Systems and Computers 04 (02) (1994) 117-159.
 
[4]  R. Madan, Chua’s Circuit: A Paradigm for Chaos, Journal of circuits, systems, and computers, World Scientific, 1993.
 
[5]  T. Carroll, L. M. Pecora, Synchronizing chaotic circuits, Circuits and Systems, IEEE Transactions on 38 (4) (1991) 453-456.
 
Show More References
[6]  L. M. Pecora, T. L. Carroll, Driving systems with chaotic signals, Phys. Rev. A 44 (1991) 2374-2383. URL http://link.aps.org/doi/10.1103/PhysRevA.44.2374
 
[7]  L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821-824. URL http://link.aps.org/doi/10.1103/PhysRevLett.64.821
 
[8]  K. Cuomo, A. Oppenheim, S. H. Strogatz, Synchronization of lorenz-based chaotic circuits with applications to communications, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 40 (10) (1993) 626-633.
 
[9]  K. M. Cuomo, A. V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett. 71 (1993) 65-68. URL http://link.aps.org/doi/10.1103/PhysRevLett.71.65
 
[10]  E. M. Bollt, Review of chaos communication by feedback control of symbolic dynamics, International Journal of Bifurcation and Chaos 13 (02) (2003) 269-285.
 
[11]  E. S´anchez, M. A. Mat´ıas, Experimental observation of a periodic rotating wave in rings of unidirectionally coupled analog lorenz oscillators, Phys. Rev. E 57 (1998) 6184-6186. URL http://link.aps.org/doi/10.1103/PhysRevE.57.6184
 
[12]  O. Gonzales, G. Han, J. de Gyvez, E. Sinencio, Lorenz-based chaotic cryptosystem: a monolithic implementation, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 47 (8) (2000) 1243-1247.
 
[13]  E. N. Lorenz, Irregularity: a fundamental property of the atmosphere*, Tellus A 36A (2) (1984) 98-110. URL http://dx.doi.org/10.1111/j.1600-0870.1984.tb00230.x
 
[14]  H. Broer, C. S. A, R. Vitolo, Bifurcations and strange attractors in the lorenz-84 climate model with seasonal forcing, Nonlinearity 15 (4) (2002) 1205.
 
[15]  L. van Veen, Baroclinic flow and the lorenz-84 model, International Journal of Bifurcation and Chaos 13 (08) (2003) 2117-2139.
 
[16]  E. N. Lorenz, Compound windows of the hnon-map, Physica D: Nonlinear Phenomena 237 (13) (2008) 1689-1704. URL http://www.sciencedirect.com/science/article/pii/S0167278907004198.
 
[17]  J. A. C. Gallas, Structure of the parameter space of the h´enon map, Phys. Rev. Lett. 70 (1993) 2714-2717. URL http://link.aps.org/doi/10.1103/PhysRevLett.70.2714
 
[18]  C. Masoller, A. Schifino, L. Romanelli, Regular and chaotic behavior in the new lorenz system, Physics Letters A 167 (2) (1992) 185-190.
 
[19]  C. Masoller, A. S. Schifino, L. Romanelli, Characterization of strange attractors of lorenz model of general circulation of the atmosphere, Chaos, Solitons & Fractals 6 (0) (1995) 357-366, complex Systems in Computational Physics.
 
[20]  A. Schifino, C. Masoller, Analitical study of the codimension two bifurcations of the new Lorenz system, in: E. Tirapegui,W. Zeller (Eds.), Instabilities and Nonequilibrium Structures V, Vol. 1 of Nonlinear Phenomena and Complex Systems, Springer Netherlands, 1996, pp. 345-348.
 
[21]  R. Gilmore, M. Lefranc, The Topology of Chaos: Alice in Stretch and Squeezeland, Wiley, 2008. URL http://books.google.co.in/books?id=XuXDrtthXHcC
 
Show Less References

Article

To Principles of Quantum Mechanics Development

1Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072

2M.V.Lomonosov Moscow State University, Moscow, 119899, RF

3Belarusian State University, Nezavisimosti Ave., 4, Minsk, 220030, RB


International Journal of Physics. 2014, 2(5), 129-145
DOI: 10.12691/ijp-2-5-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Dmitri Yerchuck, Alla Dovlatova, Felix Borovik, Yauhen Yerchak, Vyacheslav Stelmakh. To Principles of Quantum Mechanics Development. International Journal of Physics. 2014; 2(5):129-145. doi: 10.12691/ijp-2-5-2.

Correspondence to: Dmitri  Yerchuck, Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072. Email: dpy@tut.by

Abstract

New insight on the principles of the quantum physics development is given. The quite different behavior of quantum microworld mechanical systems in comparison with classical mechanical macroworld systems is attributed to the drastical change of the role of the gravitation field on the dynamics of microworld mechanical systems, for which it seems to be vanishing in com- parison with the role of the gravitation field on the dynamics of macroworld mechanical systems, for which it is decisive. The conclusion on the status of the second main postulate of quantum mechanics is given. Its formulation in all textbooks has to be represented in the form of the proved statement, since the hypothesis of Schrödinger on the existence of the field scalar function, being to be observable quantity, just charge density, is strictly mathematically proved. It is shown, that the field scalar function, being to be the solution of the corresponding nonstationary in general case Schrödinger equation and being to be the function the only of coordinates and time, actually describes the state of the atomic system, more strictly its corpuscular aspect. The atomic system is considered from the positions of the field theory, that is, it is the association of elementary particles with corresponding fields. The given fields being to be the media for the particles’ propagation are responsible for the wave aspect in the characteristic of atomic systems. The wave aspect is described by the independent scalar wave-function which was also introduced in quantum physics by Schrödinger, althogh the given fact seems to be unknown to the wide circle of the readers. The second main postulate being to be mathematically strictly grounded in Schrödinger formulation of quantum nechanics, in the popular probabilistic form of quantum nechanics cannot be proved for the general case, although the probabilistic theatise, proposed by Born is true in a number of special cases, quite correctly indicated by Dirac. The possible ways of the development of quantum theory, based on clear understanding of the origin of corpuscular-wave dualism and based on the fundamental both now mathemtically grounded main postulates are analysed.

Keywords

References

[1]  Landau L.D, Lifshitz E.M, Quantum Mechanics, Moscow, Nauka, 1989, 768 pp.
 
[2]  Kramers H A, Quantum Mechanics, North-Holland, Amsterdam, 1958
 
[3]  Bohm A, Quantum Mechanics: Foundations and Applications, Springer-Verlag, N.-Y., Berlin, Heidelberg, Tokyo, 1986, M., Mir, 1990, 720 pp.
 
[4]  Davydov A.S, Quantum Mechanics, Moscow, Nauka, 1973, 703 pp.
 
[5]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, Symmetry of Differential Equations and Quantum Theory, 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490.
 
Show More References
[6]  R.Feynman, R.Leyton, M.Sands, Feynman Lections on Physics, V.8, Quantum Mechanics (I), M., 1966, 269 pp.
 
[7]  E.Vichman, Berklee Course of Physics, V.4, Quantum Physics, p.263, M., 391 pp.
 
[8]  Dmitry Yearchuck, Yauhen Yerchak, Alla Dovlatova, Quantum-mechanical and Quantum-electrodynamic Equations for Spectroscopic Transitions, Optics Communications, 2010; 283: 3448-3458.
 
[9]  Yearchuck D, Yerchak Y, Red'kov V, Quantum Mechanical Analogue of Landau{Lifshitz Equation, Doklady NANB, 2007; 51 (N 5): 57-64.
 
[10]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Erste Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 361.
 
[11]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Zweite Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 489.
 
[12]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Dritte Mitteilung), Annalen der Physik (Fierte Folge), 80 (1926) 437-490.
 
[13]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Vierte Mitteilung), Annalen der Physik (Fierte Folge), 81 (1926) 109-139.
 
[14]  SchrÄodinger E, Die Naturwissenschaften, 14 (1926) 664.
 
[15]  SchrÄodinger E, ÄUber das VerhÄaltnis der Heisenberg-Born-Jordanschen Quantenmechanick zu der meinen, Annalender Physik (Fierte Folge), 79 (1926) 734-756.
 
[16]  SchrÄodinger E, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, 28, N 6 (1926) 1049-1070.
 
[17]  A.Dovlatova and D.Yerchuck, Concept of Fully Dually Symmetric Electrodynamics, 7th International Conference on Quantum Theory and Symmetries (QTS7), J.Physics: Conference Series, 343 (2012) 012133, 23 pp.
 
[18]  Dirac P.A.M, Quelques Problemes de Mecanique Quantique, Ann.Inst. Henri Poincare, 1931, T.1, fase 4, pp 357-400.
 
[19]  Rainich G Y, Electrodynamics in the General Relativity Theory, Trans.Am.Math.Soc., 27 (1925) 106-136.
 
[20]  Heaviside Oliver, Electrical Papers, V.1, Macmillan and Co., London, New York, 1892; 594 pp, Heaviside Oliver, Some Properties of Maxwell Equations, Phil.Trans.Roy.Soc.A, 1893; 183:423-430, Heaviside Oliver, Electromagnetic Theory, London, The Electrician Printing and Publishing Company Limited, 1893; 466 pp.
 
[21]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, To Principles of Quantum Theory Construction, to be published.
 
[22]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, "Boson Model of Quantized EM-Field and Nature of Photons", 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490 (2014).
 
[23]  Abdelhak Djouadi, The Higgs mechanism and the origin of mass, The 8-th Int.Conf. on Progress in Theor.Phys., AIP Conf.Proc., 1444 (2012) 45-57.
 
[24]  D.Yearchuck, A.Alexandrov and A.Dovlatova, To Nature of Electromagnetic Field, Appl.Math.Comput.Sci., 3, N 2 (2011) 169-200.
 
[25]  Born M, Z.f.Phys. 38 (1926) 803; 40 (1926) 167; Experiment and Theory in Physics, Cambridge University Press, 1943, p.23.
 
[26]  Dirac P.A.M, On the Theory of Quantum Mechanics, Proc.Roy.Soc.A, 112 (1926) 661-677.
 
[27]  Dirac P.A M, The Quantum Theory of Emission and Absorption of Radiation, Proc.Roy.Soc.,A, 114 (1927) 243-265.
 
[28]  SchrÄodinger E, Die gegenwÄartige Situation in der Quantenmechanik, Die Naturwissenschaften, 50 (1935) 844-849.
 
[29]  SchrÄodinger E, Berl.Ber., I6.April I93I.
 
[30]  SchrÄodinger E, Annales de l'Institut H. Poincare, 269 (Paris, 1931).
 
[31]  SchrÄodinger E, Cursos de la universidad internacional de verano en Santander, I, 6o (Madrid, Signo, I935).
 
[32]  Dirac P.A.M, The Physical Interpretation of the Quantum Dynamics, Proc.Roy.Soc.A, 113 (1927) 621-641.
 
[33]  Dmitri Yerchuck, Yauhen Yerchak, Alla Dovlatova, Vyacheslav Stelmakh, Felix Borovik, The Photon Concept and the Physics of Quantum Absorption Process, in press.
 
[34]  Misochko O V, Nonclassical states of lattice excitations: squeezed and entangled phonons, Phys.-Usp., 56 (2013) 868.
 
[35]  Lee K. C., Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X.-M., Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A, Entangling Macroscopic Diamonds at Room Temperature, Science, 334 (2011) 1253-1256.
 
[36]  Dempster A J, Batho H F, Phys.Rev.,30 (1927) 644.
 
[37]  Scully M O, Zubairy M S, Quantum Optics, Cambridge University Press, 1997, 650 pp.
 
[38]  Dmitri Yerchuck, Felix Borovik, Alla Dovlatova, Andrey Alexandrov, Concept of Free Acoustic Field, British Journal of Applied Science and Technology, 4, N 15 (2014) 2169-2180.
 
[39]  Su W.-P., Schrie®er J.R, Heeger A.J, Soliton Excitations in Polyacetylene, Phys.Rev.B, 1980; 22: 2099-2111.
 
[40]  Lee K. C., Sussman B J, Sprague M R, Michelberger P, Reim K F, Nunn J, Langford N K, Bustard P J, Jaksch D and Walmsley I A, Macroscopic Non-Classical States and Terahertz Quantum Processing in Room-Temperature Diamond, Nature Photonics, 6 (2012) 41-44.
 
[41]  Dodin I.Y, Geometric view on noneikonal waves, Physics Letters A 378 (2014) 1598-1621.
 
[42]  Born M, Jordan P, Zur Quantenmechanik, Zeitschrift fÄur Physik, 34 (1925) 858-888.
 
[43]  Born M, Heisenberg W, Jordan P, Zur Quantenmechanik II, Zeitschrift fÄur Physik, 35 (1926) 557-615.
 
Show Less References