International Journal of Physics: Latest Articles  More >>

Article

Electronic Circuit Simulation of the Lorenz Model With General Circulation

1Department of Physics, Prabhu Jagatbandhu College, Andul Howrah, India

2High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India


International Journal of Physics. 2014, 2(5), 124-128
DOI: 10.12691/ijp-2-5-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
D. C. Saha, Anirban Ray, A. Roy Chowdhury. Electronic Circuit Simulation of the Lorenz Model With General Circulation. International Journal of Physics. 2014; 2(5):124-128. doi: 10.12691/ijp-2-5-1.

Correspondence to: A.  Roy Chowdhury, High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India. Email: asesh_r@yahoo.com

Abstract

The nonlinear dynamics of the Lorenz model of general circulation is investigated with the help of analogue electronic circuits. The structure of the attractor is obtained for the various values of the systems parameters. Existence of two external potential terms in the equation leads to some new and interesting features. The data so generated is collected through the use of NI-6009 USB, analogue to digital converter. This was then used to compute the bifurcation pattern, parametric Lyapunov diagrams, Lyapunov exponents. The system clearly showed a non-periodic doubling route to chaos. This is farther substantiated by the simple variation of Lyapunov exponent in bi-parametric space of forcing parameter for the system. These external forcing is actually very important to settle the various issue arising in the long time behavior.

Keywords

References

[1]  S. H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity), 1st Edition, Studies in nonlinearity, Westview Press, 2001.
 
[2]  T.Matsumoto, A chaotic attractor from chua’s circuit, Circuits and Systems, IEEE Transactions on 31 (12) (1984) 1055-1058.
 
[3]  L. O. CHUA, Chua’s circuit: An overview ten years later, Journal of Circuits, Systems and Computers 04 (02) (1994) 117-159.
 
[4]  R. Madan, Chua’s Circuit: A Paradigm for Chaos, Journal of circuits, systems, and computers, World Scientific, 1993.
 
[5]  T. Carroll, L. M. Pecora, Synchronizing chaotic circuits, Circuits and Systems, IEEE Transactions on 38 (4) (1991) 453-456.
 
Show More References
[6]  L. M. Pecora, T. L. Carroll, Driving systems with chaotic signals, Phys. Rev. A 44 (1991) 2374-2383. URL http://link.aps.org/doi/10.1103/PhysRevA.44.2374
 
[7]  L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821-824. URL http://link.aps.org/doi/10.1103/PhysRevLett.64.821
 
[8]  K. Cuomo, A. Oppenheim, S. H. Strogatz, Synchronization of lorenz-based chaotic circuits with applications to communications, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 40 (10) (1993) 626-633.
 
[9]  K. M. Cuomo, A. V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett. 71 (1993) 65-68. URL http://link.aps.org/doi/10.1103/PhysRevLett.71.65
 
[10]  E. M. Bollt, Review of chaos communication by feedback control of symbolic dynamics, International Journal of Bifurcation and Chaos 13 (02) (2003) 269-285.
 
[11]  E. S´anchez, M. A. Mat´ıas, Experimental observation of a periodic rotating wave in rings of unidirectionally coupled analog lorenz oscillators, Phys. Rev. E 57 (1998) 6184-6186. URL http://link.aps.org/doi/10.1103/PhysRevE.57.6184
 
[12]  O. Gonzales, G. Han, J. de Gyvez, E. Sinencio, Lorenz-based chaotic cryptosystem: a monolithic implementation, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 47 (8) (2000) 1243-1247.
 
[13]  E. N. Lorenz, Irregularity: a fundamental property of the atmosphere*, Tellus A 36A (2) (1984) 98-110. URL http://dx.doi.org/10.1111/j.1600-0870.1984.tb00230.x
 
[14]  H. Broer, C. S. A, R. Vitolo, Bifurcations and strange attractors in the lorenz-84 climate model with seasonal forcing, Nonlinearity 15 (4) (2002) 1205.
 
[15]  L. van Veen, Baroclinic flow and the lorenz-84 model, International Journal of Bifurcation and Chaos 13 (08) (2003) 2117-2139.
 
[16]  E. N. Lorenz, Compound windows of the hnon-map, Physica D: Nonlinear Phenomena 237 (13) (2008) 1689-1704. URL http://www.sciencedirect.com/science/article/pii/S0167278907004198.
 
[17]  J. A. C. Gallas, Structure of the parameter space of the h´enon map, Phys. Rev. Lett. 70 (1993) 2714-2717. URL http://link.aps.org/doi/10.1103/PhysRevLett.70.2714
 
[18]  C. Masoller, A. Schifino, L. Romanelli, Regular and chaotic behavior in the new lorenz system, Physics Letters A 167 (2) (1992) 185-190.
 
[19]  C. Masoller, A. S. Schifino, L. Romanelli, Characterization of strange attractors of lorenz model of general circulation of the atmosphere, Chaos, Solitons & Fractals 6 (0) (1995) 357-366, complex Systems in Computational Physics.
 
[20]  A. Schifino, C. Masoller, Analitical study of the codimension two bifurcations of the new Lorenz system, in: E. Tirapegui,W. Zeller (Eds.), Instabilities and Nonequilibrium Structures V, Vol. 1 of Nonlinear Phenomena and Complex Systems, Springer Netherlands, 1996, pp. 345-348.
 
[21]  R. Gilmore, M. Lefranc, The Topology of Chaos: Alice in Stretch and Squeezeland, Wiley, 2008. URL http://books.google.co.in/books?id=XuXDrtthXHcC
 
Show Less References

Article

To Principles of Quantum Mechanics Development

1Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072

2M.V.Lomonosov Moscow State University, Moscow, 119899, RF

3Belarusian State University, Nezavisimosti Ave., 4, Minsk, 220030, RB


International Journal of Physics. 2014, 2(5), 129-145
DOI: 10.12691/ijp-2-5-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Dmitri Yerchuck, Alla Dovlatova, Felix Borovik, Yauhen Yerchak, Vyacheslav Stelmakh. To Principles of Quantum Mechanics Development. International Journal of Physics. 2014; 2(5):129-145. doi: 10.12691/ijp-2-5-2.

Correspondence to: Dmitri  Yerchuck, Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072. Email: dpy@tut.by

Abstract

New insight on the principles of the quantum physics development is given. The quite different behavior of quantum microworld mechanical systems in comparison with classical mechanical macroworld systems is attributed to the drastical change of the role of the gravitation field on the dynamics of microworld mechanical systems, for which it seems to be vanishing in com- parison with the role of the gravitation field on the dynamics of macroworld mechanical systems, for which it is decisive. The conclusion on the status of the second main postulate of quantum mechanics is given. Its formulation in all textbooks has to be represented in the form of the proved statement, since the hypothesis of Schrödinger on the existence of the field scalar function, being to be observable quantity, just charge density, is strictly mathematically proved. It is shown, that the field scalar function, being to be the solution of the corresponding nonstationary in general case Schrödinger equation and being to be the function the only of coordinates and time, actually describes the state of the atomic system, more strictly its corpuscular aspect. The atomic system is considered from the positions of the field theory, that is, it is the association of elementary particles with corresponding fields. The given fields being to be the media for the particles’ propagation are responsible for the wave aspect in the characteristic of atomic systems. The wave aspect is described by the independent scalar wave-function which was also introduced in quantum physics by Schrödinger, althogh the given fact seems to be unknown to the wide circle of the readers. The second main postulate being to be mathematically strictly grounded in Schrödinger formulation of quantum nechanics, in the popular probabilistic form of quantum nechanics cannot be proved for the general case, although the probabilistic theatise, proposed by Born is true in a number of special cases, quite correctly indicated by Dirac. The possible ways of the development of quantum theory, based on clear understanding of the origin of corpuscular-wave dualism and based on the fundamental both now mathemtically grounded main postulates are analysed.

Keywords

References

[1]  Landau L.D, Lifshitz E.M, Quantum Mechanics, Moscow, Nauka, 1989, 768 pp.
 
[2]  Kramers H A, Quantum Mechanics, North-Holland, Amsterdam, 1958
 
[3]  Bohm A, Quantum Mechanics: Foundations and Applications, Springer-Verlag, N.-Y., Berlin, Heidelberg, Tokyo, 1986, M., Mir, 1990, 720 pp.
 
[4]  Davydov A.S, Quantum Mechanics, Moscow, Nauka, 1973, 703 pp.
 
[5]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, Symmetry of Differential Equations and Quantum Theory, 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490.
 
Show More References
[6]  R.Feynman, R.Leyton, M.Sands, Feynman Lections on Physics, V.8, Quantum Mechanics (I), M., 1966, 269 pp.
 
[7]  E.Vichman, Berklee Course of Physics, V.4, Quantum Physics, p.263, M., 391 pp.
 
[8]  Dmitry Yearchuck, Yauhen Yerchak, Alla Dovlatova, Quantum-mechanical and Quantum-electrodynamic Equations for Spectroscopic Transitions, Optics Communications, 2010; 283: 3448-3458.
 
[9]  Yearchuck D, Yerchak Y, Red'kov V, Quantum Mechanical Analogue of Landau{Lifshitz Equation, Doklady NANB, 2007; 51 (N 5): 57-64.
 
[10]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Erste Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 361.
 
[11]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Zweite Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 489.
 
[12]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Dritte Mitteilung), Annalen der Physik (Fierte Folge), 80 (1926) 437-490.
 
[13]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Vierte Mitteilung), Annalen der Physik (Fierte Folge), 81 (1926) 109-139.
 
[14]  SchrÄodinger E, Die Naturwissenschaften, 14 (1926) 664.
 
[15]  SchrÄodinger E, ÄUber das VerhÄaltnis der Heisenberg-Born-Jordanschen Quantenmechanick zu der meinen, Annalender Physik (Fierte Folge), 79 (1926) 734-756.
 
[16]  SchrÄodinger E, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, 28, N 6 (1926) 1049-1070.
 
[17]  A.Dovlatova and D.Yerchuck, Concept of Fully Dually Symmetric Electrodynamics, 7th International Conference on Quantum Theory and Symmetries (QTS7), J.Physics: Conference Series, 343 (2012) 012133, 23 pp.
 
[18]  Dirac P.A.M, Quelques Problemes de Mecanique Quantique, Ann.Inst. Henri Poincare, 1931, T.1, fase 4, pp 357-400.
 
[19]  Rainich G Y, Electrodynamics in the General Relativity Theory, Trans.Am.Math.Soc., 27 (1925) 106-136.
 
[20]  Heaviside Oliver, Electrical Papers, V.1, Macmillan and Co., London, New York, 1892; 594 pp, Heaviside Oliver, Some Properties of Maxwell Equations, Phil.Trans.Roy.Soc.A, 1893; 183:423-430, Heaviside Oliver, Electromagnetic Theory, London, The Electrician Printing and Publishing Company Limited, 1893; 466 pp.
 
[21]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, To Principles of Quantum Theory Construction, to be published.
 
[22]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, "Boson Model of Quantized EM-Field and Nature of Photons", 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490 (2014).
 
[23]  Abdelhak Djouadi, The Higgs mechanism and the origin of mass, The 8-th Int.Conf. on Progress in Theor.Phys., AIP Conf.Proc., 1444 (2012) 45-57.
 
[24]  D.Yearchuck, A.Alexandrov and A.Dovlatova, To Nature of Electromagnetic Field, Appl.Math.Comput.Sci., 3, N 2 (2011) 169-200.
 
[25]  Born M, Z.f.Phys. 38 (1926) 803; 40 (1926) 167; Experiment and Theory in Physics, Cambridge University Press, 1943, p.23.
 
[26]  Dirac P.A.M, On the Theory of Quantum Mechanics, Proc.Roy.Soc.A, 112 (1926) 661-677.
 
[27]  Dirac P.A M, The Quantum Theory of Emission and Absorption of Radiation, Proc.Roy.Soc.,A, 114 (1927) 243-265.
 
[28]  SchrÄodinger E, Die gegenwÄartige Situation in der Quantenmechanik, Die Naturwissenschaften, 50 (1935) 844-849.
 
[29]  SchrÄodinger E, Berl.Ber., I6.April I93I.
 
[30]  SchrÄodinger E, Annales de l'Institut H. Poincare, 269 (Paris, 1931).
 
[31]  SchrÄodinger E, Cursos de la universidad internacional de verano en Santander, I, 6o (Madrid, Signo, I935).
 
[32]  Dirac P.A.M, The Physical Interpretation of the Quantum Dynamics, Proc.Roy.Soc.A, 113 (1927) 621-641.
 
[33]  Dmitri Yerchuck, Yauhen Yerchak, Alla Dovlatova, Vyacheslav Stelmakh, Felix Borovik, The Photon Concept and the Physics of Quantum Absorption Process, in press.
 
[34]  Misochko O V, Nonclassical states of lattice excitations: squeezed and entangled phonons, Phys.-Usp., 56 (2013) 868.
 
[35]  Lee K. C., Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X.-M., Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A, Entangling Macroscopic Diamonds at Room Temperature, Science, 334 (2011) 1253-1256.
 
[36]  Dempster A J, Batho H F, Phys.Rev.,30 (1927) 644.
 
[37]  Scully M O, Zubairy M S, Quantum Optics, Cambridge University Press, 1997, 650 pp.
 
[38]  Dmitri Yerchuck, Felix Borovik, Alla Dovlatova, Andrey Alexandrov, Concept of Free Acoustic Field, British Journal of Applied Science and Technology, 4, N 15 (2014) 2169-2180.
 
[39]  Su W.-P., Schrie®er J.R, Heeger A.J, Soliton Excitations in Polyacetylene, Phys.Rev.B, 1980; 22: 2099-2111.
 
[40]  Lee K. C., Sussman B J, Sprague M R, Michelberger P, Reim K F, Nunn J, Langford N K, Bustard P J, Jaksch D and Walmsley I A, Macroscopic Non-Classical States and Terahertz Quantum Processing in Room-Temperature Diamond, Nature Photonics, 6 (2012) 41-44.
 
[41]  Dodin I.Y, Geometric view on noneikonal waves, Physics Letters A 378 (2014) 1598-1621.
 
[42]  Born M, Jordan P, Zur Quantenmechanik, Zeitschrift fÄur Physik, 34 (1925) 858-888.
 
[43]  Born M, Heisenberg W, Jordan P, Zur Quantenmechanik II, Zeitschrift fÄur Physik, 35 (1926) 557-615.
 
Show Less References

Article

Big Crunch, Big Rip – or a Self-Similar Expansion Replenished by Dark Matter and Dark Energy?

1B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom


International Journal of Physics. 2014, 2(5), 146-150
DOI: 10.12691/ijp-2-5-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Arne Bergstrom. Big Crunch, Big Rip – or a Self-Similar Expansion Replenished by Dark Matter and Dark Energy?. International Journal of Physics. 2014; 2(5):146-150. doi: 10.12691/ijp-2-5-3.

Correspondence to: Arne  Bergstrom, B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom. Email: arne.bergstrom@physics.org

Abstract

Our view of the universe, its origin and development has been a long, humbling sequence of misconceptions – not surprisingly so since this is perhaps the most fundamental question of all. This paper is a further attempt in trying to shed some light on this issue, and is based on the sole assumption that quantum propagation in space must obey a Lorentz-covariant continuity equation. This would seem to be perhaps the most basic assumption that can be made, and is shown to lead to an exponentially expanding universe, as observed, and also to force new quanta to be continuously created, which would thus explain the mysterious, dominating amounts of dark energy and dark matter observed in the universe. Mass-energy, diluted by the expansion, is thus in this way continuously being replenished. In the present paper, numerical simulations of this scenario are presented, which show a self-similar expansion, and in which new quanta are created all the time as the universe expands. The spatial distribution of the quanta involved is derived to be a Pareto distribution with an infinite mean free path, and which thus also continuously creates new self-similar clusters of quanta as embryos to new galaxies in regions far away from the original source.

Keywords

References

[1]  A. Koestler, The sleepwalkers: A history of man’s changing vision of the universe (Penguin, 1964; also in Kindle 2013).
 
[2]  http://en.wikipedia.org/wiki/Planck_(spacecraft) retrieved 2014-08-17.
 
[3]  G. Ellis, R. Maartens, and M. MacCallum, Relativistic Cosmology. (Cambridge, 2012), pp 146-47.
 
[4]  R. Caldwell, M. Kamionkowski, and N. Weinberg, “Phantom Energy and Cosmic Doomsday”. Phys. Rev. Lett. 91, 7 (2003).
 
[5]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145-160 (1975).
 
Show More References
[6]  F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica Physica Acta 6, 110 (1933). F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae”, Astrophys. J. 86, 217 (1937).
 
[7]  A. Bergstrom, “Dark energy, exponential expansion, CMB, wave-particle duality all result from Lorentz-covariance of Boltzmann’s transport equation”, International Journal of Physics 2, 112-117 (2014).
 
[8]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[9]  A. Bergstrom, “Is CMB just an observational effect of a universe in accelerated expansion?”, International Journal of Physics 1, 133-137 (2013).
 
[10]  A. Bergstrom, “An element in a paradigm shift? – Could Population II stars actually be younger than Population I stars?”, International Journal of Physics 2, 78-82 (2014).
 
[11]  A. Bergstrom, “Why galaxies look like islands in the universe – and on the origin of dark matter and energy” (to be published).
 
[12]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 232.
 
[13]  J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), p. 550.
 
[14]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 235.
 
[15]  G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand, 1970), p 54.
 
[16]  N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Univariate Distributions. Vol 1, Ch 20, Sec 12 (Wiley, 1994).
 
[17]  http://en.wikipedia.org/wiki/Generalized_Pareto_Distribution retrieved 2014-08-17.
 
Show Less References

Article

Chemical Composition Effects on Enthalpy Uncertainty in Natural Gas Energy Measurement System Using Orifice Meter in a Non-adiabatic Condition

1Research Group of Engineering Physic Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 40132, Indonesia

2Research Centre for Calibration, Instumentation dan Metrology (Pusli KIM-LIPI), Indonesia


International Journal of Physics. 2014, 2(5), 151-157
DOI: 10.12691/ijp-2-5-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Gunawan Marto, Harijono. A. Tjokronegoro, Edi Leksono, Nugraha, Ghufron Zaid. Chemical Composition Effects on Enthalpy Uncertainty in Natural Gas Energy Measurement System Using Orifice Meter in a Non-adiabatic Condition. International Journal of Physics. 2014; 2(5):151-157. doi: 10.12691/ijp-2-5-4.

Correspondence to: Gunawan  Marto, Research Group of Engineering Physic Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 40132, Indonesia. Email: msc.gunawan96@gmail.com

Abstract

This paper explainsan enthalpy uncertainty ofnatural gas energy measurement (custody transfer) using orifice meter in non adiabatic condition. The method of uncertainty analysis used in this paper was developed based on theuncertainty analysis of natural gas flow measurement using orifice meter at adiabatic condition based on AGA 3, 1992 (which reference by No 10.). In addition of non adiabatic condition includes: critical pressure, critical temperature, realtime pressure, realtime temperature and generalized correlation constanta. The measurement of enthalpy uncertaintyis referring to the Guide to the Eexpression of Uncertainty Measurementof the Guide in MetrologyWorking Group 1 of Joint Committee for Guide In Metrology, 2011. Based on the energy flow in orifice meter is 1000 Mmbtud, The combined uncertainty of f enthalpy is 3.86 x 10-7 Mmbtud (3.86 x 10-8 %) while the expandeduncertainty analysis results 7.73 x 10-7 Mmbtud (7.73 x 10-8 %)with confidence level 95%. This number of uncertaintyis smaller than the Measurement Permissive Error specified by legal metrology organization 0.1667%.

Keywords

References

[1]  AGA3. “Orifice Metering Of Natural Gas And Other Related Hydrocarbon Fluids3:Natural Gas Applications”, American Gas Association, Third Edition, August 1992.
 
[2]  Upp, E loy “Fluid Measurement A Practical Guide to Accurate Flow Measurement” (2nd en). USA. Gulf Professional Publishing, 2002.
 
[3]  Yanuar YAP. “The Analysis of Gas Meter Uncertainty Using Orifice Flowmeter and Ultrasonic Flowmeter”. Chemical Engineering Department, The University of Indonesia, 2012.
 
[4]  Paul J. La Nasa. “Overall Measurement Accuracy.CPL & Associates, P.O. Box 801304, Houston, TX 77280-1304, 2003.
 
[5]  M. Roncier, R. Philippe, J. Saint-Just, and F. Dewerdt, Estimated Uncertainty of Calculated Liquefied Natural Gas Density from a Comparison of NBS and Gaz de France Densimeter Test Facilities, Journal Of Research of the National Bureau of Standards, Vol. 88, No. 3, May-June 1983.
 
Show More References
[6]  Aaron Jhonson, Tom kegel, Uncertainity and Traceability for CESSI lowa Natural Gas Facilities, Jounal of Research of National Institut of Standard and Technology, volume 109, Number 3, May-june, 2004.
 
[7]  Gunawan, Harijono A Tjokronegoro, Edi Leksono, Nugraha “ The effect of non adibatic condition to pressure drop and volumetric rate of natural gas measurment using orifice flowmeter “ National Seminar of Calibration, instrumentation and metrology, Research Centre For Calibration, Instumentation dan Metrology (Pusli KIM-LIPI), Indonesia, 39th, 2013.
 
[8]  Mahmood Farzaneh-Gord, Azad Khamforoush, ShahramHashemi and HosseinPourkhademNamin,“Computing Thermal Properties of Natural Gasby Utilizing AGA8 Equation of State”International Journal of Chemical Engineering and Applications, Vol. 1, No. 1, June 2010, page No.20-24.
 
[9]  Ibrahim Reda “Method To Calculation Uncertainties In Measuring Shortwave Solar Irradiation Using Thermopile and Semiconductor Solar Radiometer” National Renewable Energy Laboratory, Technical Report NREL/TP-3B10-52194, July, 2011.
 
[10]  Smith.J.M, Abbott.M.M, Van Ness.H.C. “Introduction to Chemical Engineering Thermodynamic“ Fifth edition, The Mcgraw Hill Companies, Inc, Singapore, 1996.
 
[11]  McCabe”Unit Operation Of Chemical Engineeering” fifth edition, McGraw Hill Chemical Engineering Series, 1993.
 
[12]  Bird.B.R, Steaward E.W, “Transport Phenomena” Second Edition, John Wiley and Sons, Inc, 2001.
 
[13]  JCGM/WG 1. “Guide the expression of uncertainty measurement”. Working Group 1 of Joint Committee for Guide In Metrology, 2011.
 
[14]  Kirkup, Les and Frenkel, Bob. “An Introduction to Uncertainty in Measurement”. New York, Cambridge, 2006
 
[15]  ISO (1993). ”Guide to the Expression of Uncertainty in Measurement”, Geneva, International Organisation for Standardisation (corrected and reprinted 1995).
 
[16]  James T Nakos. “Uncertainity Analysis of Steady State Incident Flux Measurements In Hydrocarbon Fuel Fires”. Sandia Report, Sandia National Laboratories, 2005.
 
[17]  Francisco J, “Uncertainty Analysis For Experimental Heat Transfer Data Obtained By Wilson Plot Methode”. Journal Of Thermal Science, Volume 17 No 2, pp 471-481, 2013.
 
[18]  Gunawan, Harijono A Tjokronegoro, Edi Leksono, NUgraha “Effect of Heat loss Caused By Friction Factor To Natural Gas Measurement System By Orifice Meter “Jurnal of Instrumentasi, Research Centre For Calibration, Instumentation dan Metrology, 2012.
 
[19]  Gunawan, Harijono A Tjokronegoro, Edi Leksono, Nugraha “Effect Of Heat Radiation To Natural Gas Measurement System By Orifice Meter “ Jurnal of Indonesian Physical Society, 2014.
 
Show Less References

Article

Unified Field Theory and Foundation of Physics

1Wayne State University, 42 W Warren Ave, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Northwestern University, Evanston, IL 60208, USA


International Journal of Physics. 2014, 2(5), 158-164
DOI: 10.12691/ijp-2-5-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
Zhiliang Cao, Henry Gu Cao. Unified Field Theory and Foundation of Physics. International Journal of Physics. 2014; 2(5):158-164. doi: 10.12691/ijp-2-5-5.

Correspondence to: Zhiliang  Cao, Wayne State University, 42 W Warren Ave, Detroit. Email: williamcao12252000@yahoo.com

Abstract

The paper "Unified field theory" (UFT) [1] opened a new chapter of physics. The main model of UFT is Torque Grids that unify Space, Time, Energy and Force. The configuration of invisible particles [2] and structure of the grand universe [3] can be logically induced. Visually, the universe can be modeled as single Torque Grids’ hierarchy. A simple UDP Java program can be used to prove the space-time-energy-force relationship predicted by the unified field theory and explain why the continents are drifting [4]. One of the applications of UFT is to predict the nuclei topologies [5] of each element. Physics, "knowledge of nature", is defined as a natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. UFT gives a better definition of Physics: “A natural science that involves the study of motion of space-time-energy-force to explain/predict the motion, interaction and configuration of matter.”

Keywords

References

[1]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298.
 
[2]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
 
[3]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170.
 
[4]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and Topology of Nuclei.” International Journal of Physics 2, no. 1 (2014): 15-22.
 
Show More References
[6]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
 
[7]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[8]  R. Oerter (2006). The Theory of Almost Everything: The Standard Model, the Unsung Triumph of Modern Physics (Kindle ed.). Penguin Group. p. 2.
 
[9]  Sean Carroll, Ph.D., Cal Tech, 2007, The Teaching Company, Dark Matter, Dark Energy: The Dark Side of the Universe, Guidebook Part 2 page 59, Accessed Oct. 7, 2013, “...Standard Model of Particle Physics: The modern theory of elementary particles and their interactions ... It does not, strictly speaking, include gravity, although it's often convenient to include gravitons among the known particles of nature...”
 
[10]  In fact, there are mathematical issues regarding quantum field theories still under debate (see e.g. Landau pole), but the predictions extracted from the Standard Model by current methods applicable to current experiments are all self-consistent. For a further discussion see e.g. Chapter 25 of R. Mann (2010). An Introduction to Particle Physics and the Standard Model. CRC Press.
 
[11]  S.L. Glashow (1961). “Partial-symmetries of weak interactions”. Nuclear Physics 22 (4): 579-588. Bibcode: 1961NucPh..22..579G.
 
[12]  S. Weinberg (1967). “A Model of Leptons”. Physical Review Letters 19 (21): 1264-1266. Bibcode: 1967PhRvL..19.1264W.
 
[13]  A. Salam (1968). N. Svartholm, ed. “Elementary Particle Physics: Relativistic Groups and Analyticity”. Eighth Nobel Symposium. Stockholm: Almquvist and Wiksell. p. 367.
 
[14]  “The Global Religious Landscape”. The Pew Forum on Religion & Public Life. Pew Research center. 18 December 2012. Retrieved 18 March 2013.
 
[15]  Masuzawa, Tomoko (2005). The Invention of World Religions. Chicago University of Chicago Press.
 
[16]  Stephen R. L. Clark. “World Religions and World Orders”. Religious studies 26.1 (1990).
 
[17]  Joel E. Tishken. “Ethnic vs. Evangelical Religions: Beyond Teaching the World Religion Approach”. The History Teacher 33.3 (2000).
 
[18]  Charles Joseph Adams, Classification of religions: geographical, Encyclopedia Britannica.
 
[19]  Brodd, Jefferey (2003). World Religions. Winona, Minnesota: Saint Mary's Press.
 
[20]  Pippa Norris, Ronald Inglehart (2007-01-06), Sacred and Secular, Religion and Politics Worldwide, Cambridge University Press, pp. 43-44, retrieved 2006-12-29.
 
[21]  Pew Research Center (2002-12-19). “Among Wealthy Nations U.S. Stands Alone in its Embrace of Religion”. Pew Research Center. Retrieved 2006-10-12.
 
[22]  The Indus Script and the Rg-Veda, by Egbert Richter-Ushanas, Motilal Banarsidass Publ., 1 Jan 1997 p. 243.
 
[23]  The Migration of Symbols, by Goblet d'Alviella, Chapter II, hosted at the Internet Sacred Text Archive
 
[24]  The Handbook of Tibetan Buddhist Symbols, Robert Beer, Serindia Publications, Inc., 2003, p. 97.
 
[25]  RELG: World, by Robert Van Voorst, Cengage Learning, 1 Jan 2012, p. 90.
 
[26]  The Illustrated Encyclopedia of Hinduism: N-Z, by James G. Lochtefeld, The Rosen Publishing Group, 2002, p. 678
 
[27]  Rosenberg, Jennifer. “History of Swastika”. about.com. Retrieved 26 April 2013.
 
[28]  “svasti meaning”. http://www.sanskritdictionary.com. Retrieved 6 June 2014.
 
[29]  “Swastika Flag Specifications and Construction Sheet (Germany)”. Flags of the World.
 
[30]  “Centred vs. Offset Disc and Swastika 1933-1945 (Germany)”. Flagspot.net. Retrieved 2 March 2010.
 
[31]  Freed, S. A. and R. S., “Origin of the Swastika”, Natural History, January 1980, 68-75.
 
[32]  Kabai, Sándor (2007). “Double Helix”. The Wolfram Demonstrations Project.
 
[33]  Alberts et al. (1994). The Molecular Biology of the Cell. New York: Garland Science.
 
[34]  “Helical repeat of DNA in solution”. PNAS 76 (1): 200-203. Bibcode: 1979 PNAS...76.. 200W. PMC 382905.
 
[35]  Pabo C, Sauer R (1984). “Protein-DNA recognition”. Annu Rev Biochem 53: 293-321.
 
[36]  James D. Watson and Francis Crick (1953). “A structure for deoxyribose nucleic acid”. Nature 171 (4356): 737-738. Bibcode: 1953 Natur. 171.. 737W.
 
[37]  Crick F, Watson JD (1954). “The Complementary Structure of Deoxyribonucleic Acid”. Proceedings of the Royal Society of London. 223, Series A: 80-96.
 
[38]  The Structure of the DNA Molecule
 
[39]  Wilkins MHF, Stokes AR, Wilson HR (1953). “Molecular Structure of Deoxypentose Nucleic Acids” (PDF). Nature 171 (4356): 738-740. Bibcode: 1953 Natur. 171.. 738W.
 
[40]  National Research Council (U.S.). Committee on the Future of the Global Positioning System; National Academy of Public Administration (1995). The global positioning system: a shared national asset: recommendations for technical improvements and enhancements. National Academies Press. p. 16.
 
[41]  “Factsheets: GPS Advanced Control Segment (OCX)”. Losangeles.af.mil. October 25, 2011. Retrieved November 6, 2011.
 
[42]  Astronautica Acta II, 25 (1956)
 
[43]  “GPS and Relativity”. Astronomy.ohio-state.edu. Retrieved November 6, 2011.
 
[44]  Guier, William H.; Weiffenbach, George C. (1997). “Genesis of Satellite Navigation”. John Hopkins APL Technical Digest 19 (1): 178-181.
 
[45]  Steven Johnson (2010), Where good ideas come from, the natural history of innovation, New York: Riverhead Books
 
[46]  Helen E. Worth and Mame Warren (2009). Transit to Tomorrow. Fifty Years of Space Research at The Johns Hopkins University Applied Physics Laboratory.
 
[47]  Catherine Alexandrow (Apr-2008). “The Story of GPS”.
 
[48]  DARPA: 50 Years of Bridging the Gap. Apr-2008.
 
[49]  Jerry Proc. “Omega”. Jproc.ca. Retrieved December 8, 2009.
 
[50]  “Why Did the Department of Defense Develop GPS?”. Trimble Navigation Ltd. Archived from the original on October 18, 2007. Retrieved January 13, 2010.
 
[51]  “Charting a Course Toward Global Navigation”. The Aerospace Corporation. Retrieved January 14, 2010. [dead link]
 
[52]  “A Guide to the Global Positioning System (GPS)-GPS Timeline”. Radio Shack. Retrieved January 14, 2010.
 
[53]  “SECOR Chronology”. Mark Wade's Encyclopedia Astronautica. Retrieved January 19, 2010.
 
[54]  “MX Deployment Reconsidered.” Retrieved: 7 June 2013.
 
[55]  Michael Russell Rip, James M. Hasik (2002). The Precision Revolution: GPS and the Future of Aerial Warfare. Naval Institute Press. p. 65. Retrieved January 14, 2010.
 
[56]  “ICAO Completes Fact-Finding Investigation”. International Civil Aviation Organization. Retrieved September 15, 2008.[dead link]
 
[57]  “United States Updates Global Positioning System Technology”. America.gov. February 3, 2006.
 
[58]  The Global Positioning System Assessing National Policies, by Scott Pace, Gerald P. Frost, Irving Lachow, David R. Frelinger, Donna Fossum, Don Wassem, Monica M. Pinto, Rand Corporation, 1995, Appendix B, GPS History, Chronology, and Budgets.
 
[59]  “GPS & Selective Availability Q&A”. [1]. Retrieved May 28, 2010.[dead link]
 
[60]  “GPS Modernization Fact Sheet”. U.S. Air Force.[dead link]
 
[61]  GPS Wing Reaches GPS III IBR Milestone in Inside GNSS November 10, 2008.
 
[62]  “GPS almanacs”. Navcen.uscg.gov. Retrieved October 15, 2010.
 
[63]  Dietrich Schroeer, Mirco Elena (2000). Technology Transfer. Ashgate. p. 80. Retrieved May 25, 2008.
 
[64]  Michael Russell Rip, James M. Hasik (2002). The Precision Revolution: GPS and the Future of Aerial Warfare. Naval Institute Press. Retrieved May 25, 2008.
 
[65]  “AF Space Command Chronology”. USAF Space Command. Retrieved June 20, 2011.
 
[66]  “FactSheet: 2nd Space Operations Squadron”. USAF Space Command. Retrieved June 20, 2011.
 
[67]  The Global Positioning System: Assessing National Policies, p. 245. RAND corporation
 
[68]  “USNO NAVSTAR Global Positioning System”. U.S. Naval Observatory. Retrieved January 7, 2011.
 
[69]  National Archives and Records Administration. U.S. Global Positioning System Policy. March 29, 1996.
 
[70]  “National Executive Committee for Space-Based Positioning, Navigation, and Timing”. Pnt.gov. Retrieved October 15, 2010.[dead link]
 
[71]  “Assisted-GPS Test Calls for 3G WCDMA Networks”. 3g.co.uk. November 10, 2004. Retrieved November 24, 2010.
 
[72]  This story was written by 010907 (September 17, 2007). “losangeles.af.mil”. losangeles.af.mil. Retrieved October 15, 2010.
 
[73]  Johnson, Bobbie (May 19, 2009). “GPS system 'close to breakdown'“. The Guardian (London). Retrieved December 8, 2009.
 
[74]  Coursey, David (May 21, 2009). “Air Force Responds to GPS Outage Concerns”. ABC News. Retrieved May 22, 2009.
 
[75]  “Air Force GPS Problem: Glitch Shows How Much U.S. Military Relies On GPS”. Huffingtonpost.comm. June 1, 2010. Retrieved October 15, 2010.
 
[76]  “Contract Award for Next Generation GPS Control Segment Announced”. Retrieved December 14, 2012.
 
[77]  “United States Naval Observatory (USNO) GPS Constellation Status”. Retrieved October 13, 2009.
 
[78]  United States Naval Observatory. GPS Constellation Status. Retrieved December 20, 2008.
 
[79]  “United Launch Alliance GPS IIF-2”. United Launch Alliance. Retrieved July 16, 2011.
 
[80]  Rice University-Galileo's Theory of the Tides-by Rossella Gigli, retrieved 10 March 2010
 
[81]  “The Laplace Tidal Equations and Atmospheric Tides”.
 
[82]  A T Doodson (1921), “The Harmonic Development of the Tide-Generating Potential”, Proceedings of the Royal Society of London. Series A, Vol. 100, No. 704 (Dec. 1, 1921), pp. 305-329.
 
[83]  S Casotto, F Biscani, “A fully analytical approach to the harmonic development of the tide-generating potential accounting for precession, nutation, and perturbations due to figure and planetary terms”, AAS Division on Dynamical Astronomy, April 2004, vol. 36 (2), 67.
 
[84]  D E Cartwright, “Tides: a scientific history”, Cambridge University Press 2001, at pages 163-4.
 
[85]  See e.g. T D Moyer (2003), “Formulation for observed and computed values of Deep Space Network data types for navigation”, vol. 3 in Deep-space communications and navigation series, Wiley (2003), e.g. at pp. 126-8.
 
[86]  NOAA. “Eastport, ME Tidal Constituents”. NOAA. Retrieved 2012-05-22.
 
[87]  Tidal theory website South African Navy Hydrographic Office
 
[88]  “Dynamic theory for tides”. Oberlin.edu. Retrieved 2012-06-02.
 
[89]  “Dynamic Theory of Tides”.
 
[90]  “Dynamic Tides-In contrast to “static” theory, the dynamic theory of tides recognizes that water covers only three-quarters o”. Web.vims.edu. Retrieved 2012-06-02.
 
[91]  “The Dynamic Theory of Tides”. Coa.edu. Retrieved 2012-06-02.
 
[92]  https://beacon.salemstate.edu/~lhanson/gls214/gls214_tides
 
[93]  “Tides-building, river, sea, depth, oceans, effects, important, largest, system, wave, effect, marine, Pacific”. Waterencyclopedia.com. 2010-06-27. Retrieved 2012-06-02.
 
[94]  “TIDES”. Ocean.tamu.edu. Retrieved 2012-06-02.
 
[95]  Floor Anthoni. “Tides”. Seafriends.org.nz. Retrieved 2012-06-02.
 
[96]  “The Cause & Nature of Tides”.
 
[97]  “Shelf and Coastal Oceanography”. Es.flinders.edu.au. Retrieved 2012-06-02.
 
[98]  “Scientific Visualization Studio TOPEX/Poseidon images”. Svs.gsfc.nasa.gov. Retrieved 2012-06-02.
 
[99]  “TOPEX/Poseidon Western Hemisphere: Tide Height Model: NASA/Goddard Space Flight Center Scientific Visualization Studio: Free Download & Streaming: Internet Archive”. Archive.org. Retrieved 2012-06-02.
 
[100]  http://www.geomag.us/info/Ocean/m2_CHAMP+longwave_SSH.swf
 
[101]  “OSU Tidal Data Inversion”. Volkov.oce.orst.edu. Retrieved 2012-06-02.
 
[102]  “Dynamic and residual ocean tide analysis for improved GRACE de-aliasing (DAROTA)”.
 
[103]  Reddy, M.P.M. & Affholder, M. (2002). Descriptive physical oceanography: State of the Art. Taylor and Francis. p. 249.
 
[104]  Hubbard, Richard (1893). Boater's Bowditch: The Small Craft American Practical Navigator. McGraw-Hill Professional. p. 54.
 
[105]  Coastal orientation and geometry affects the phase, direction, and amplitude of amphidromic systems, coastal Kelvin waves as well as resonant seiches in bays. In estuaries seasonal river outflows influence tidal flow.
 
[106]  “Tidal lunar day”. NOAA. Do not confuse with the astronomical lunar day on the Moon. A lunar zenith is the Moon's highest point in the sky.
 
[107]  Mellor, George L. (1996). Introduction to physical oceanography. Springer. p. 169.
 
[108]  Tide tables usually list mean lower low water (mllw, the 19 year average of mean lower low waters), mean higher low water (mhlw), mean lower high water (mlhw), mean higher high water (mhhw), as well as perigean tides. These are mean values in the sense that they derive from mean data.”Glossary of Coastal Terminology: H-M”. Washington Department of Ecology, State of Washington. Retrieved 5 April 2007.
 
[109]  “Types and causes of tidal cycles”. U.S. National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (Education section).
 
[110]  Swerdlow, Noel M.; Neugebauer, Otto (1984). Mathematical astronomy in Copernicus's De revolutionibus, Volume 1. Springer-Verlag. p. 76.
 
[111]  Plait, Phil (11 March 2011). “No, the “supermoon” didn’t cause the Japanese earthquake”. Discover Magazine. Retrieved 16 May 2012.
 
[112]  Rice, Tony (4 May 2012). “Super moon looms Saturday”. WRAL-TV. Retrieved 5 May 2012.
 
[113]  U.S. National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (Education section), map showing world distribution of tide patterns, semi-diurnal, diurnal and mixed semi-diurnal.
 
[114]  Thurman, H.V. (1994). Introductory Oceanography (7 ed.). New York, NY: Macmillan. pp. 252-276. Ref.
 
[115]  Ross, D.A. (1995). Introduction to Oceanography. New York, NY: HarperCollins. pp. 236-242.
 
[116]  Le Provost, Christian (1991). Generation of Overtides and compound tides (review). In Parker, Bruce B. (ed.) Tidal Hydrodynamics. John Wiley and Sons.
 
[117]  Accad, Y. & Pekeris, C.L. (November 28, 1978). “Solution of the Tidal Equations for the M2 and S2 Tides in the World Oceans from a Knowledge of the Tidal Potential Alone”. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 290 (1368): 235-266.
 
[118]  “Tide forecasts”. New Zealand: National Institute of Water & Atmospheric Research. Retrieved 2008-11-07. Including animations of the M2, S2 and K1 tides for New Zealand.
 
[119]  Schureman, Paul (1971). Manual of harmonic analysis and prediction of tides. U.S. Coast and geodetic survey. p. 204.
 
[120]  Lisitzin, E. (1974). “2 “Periodical sea-level changes: Astronomical tides”“. Sea-Level Changes, (Elsevier Oceanography Series) 8. p. 5.
 
[121]  “What Causes Tides?”. U.S. National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (Education section).
 
[122]  See for example, in the 'Principia' (Book 1) (1729 translation), Corollaries 19 and 20 to Proposition 66, on pages 251-254, referring back to page 234 et seq.; and in Book 3 Propositions 24, 36 and 37, starting on page 255.
 
[123]  Wahr, J. (1995). Earth Tides in “Global Earth Physics”, American Geophysical Union Reference Shelf #1,. pp. 40-46.
 
[124]  Zuosheng, Y.; Emery, K.O. & Yui, X. (July 1989). “Historical Development and Use of Thousand-Year-Old Tide-Prediction Tables”. Limnology and Oceanography 34 (5): 953-957.
 
[125]  Cartwright, David E. (1999). Tides: A Scientific History. Cambridge, UK: Cambridge University Press.
 
[126]  Case, James (March 2000). “Understanding Tides—From Ancient Beliefs to Present-day Solutions to the Laplace Equations”. SIAM News 33 (2).
 
[127]  Doodson, A.T. (December, 1921). “The Harmonic Development of the Tide-Generating Potential”. Proceedings of the Royal Society of London. Series A 100 (704): 305-329. Bibcode: 1921RSPSA.100..305D.
 
[128]  Casotto, S. & Biscani, F. (April 2004). “A fully analytical approach to the harmonic development of the tide-generating potential accounting for precession, nutation, and perturbations due to figure and planetary terms”. AAS Division on Dynamical Astronomy 36 (2): 67.
 
[129]  Moyer, T.D. (2003) “Formulation for observed and computed values of Deep Space Network data types for navigation”, vol. 3 in Deep-space communications and navigation series, Wiley, pp. 126-8.
 
[130]  According to NASA the lunar tidal force is 2.21 times larger than the solar.
 
[131]  See Tidal force-Mathematical treatment and sources cited there.
 
[132]  Munk, W.; Wunsch, C. (1998). “Abyssal recipes II: energetics of tidal and wind mixing”. Deep Sea Research Part I Oceanographic Research Papers 45 (12): 1977. Bibcode: 1998DSRI...45.1977M.
 
[133]  Ray, R.D.; Eanes, R.J.; Chao, B.F. (1996). “Detection of tidal dissipation in the solid Earth by satellite tracking and altimetry”. Nature 381 (6583): 595. Bibcode: 1996Natur.381..595R.
 
[134]  Lecture 2: The Role of Tidal Dissipation and the Laplace Tidal Equations by Myrl Hendershott. GFD Proceedings Volume, 2004, WHOI Notes by Yaron Toledo and Marshall Ward.
 
[135]  Flussi e riflussi. Milano: Feltrinelli. 2003.
 
[136]  van der Waerden, B.L. (1987). “The Heliocentric System in Greek, Persian and Hindu Astronomy”. Annals of the New York Academy of Sciences 500 (1): 525-545 [527]. Bibcode: 1987NYASA.500..525V.
 
[137]  Cartwright, D.E. (1999). Tides, A Scientific History: 11, 18
 
[138]  “The Doodson-Légé Tide Predicting Machine”. Proudman Oceanographic Laboratory. Retrieved 2008-10-03.
 
[139]  Glossary of Meteorology American Meteorological Society.
 
[140]  Webster, Thomas (1837). The elements of physics. Printed for Scott, Webster, and Geary. p. 168.
 
[141]  “FAQ”. Retrieved June 23, 2007.
 
[142]  O'Reilly, C.T.R.; Ron Solvason and Christian Solomon (2005). “Where are the World's Largest Tides”. In Ryan, J. BIO Annual Report “2004 in Review” (in English) (Washington, D.C.: Biotechnol. Ind. Org.): 44-46.
 
Show Less References

Article

Analytical Solution of Homogeneous Damped Mathieu Equation

1Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str., 15, Minsk, RB

2M.V.Lomonosov Moscow State University, Moscow

3Belarusian State University, Nezavisimosti Avenue 4, Minsk, RB


International Journal of Physics. 2014, 2(5), 165-169
DOI: 10.12691/ijp-2-5-6
Copyright © 2014 Science and Education Publishing

Cite this paper:
Dmitri Yerchuck, Alla Dovlatova, Yauhen Yerchak, Felix Borovik. Analytical Solution of Homogeneous Damped Mathieu Equation. International Journal of Physics. 2014; 2(5):165-169. doi: 10.12691/ijp-2-5-6.

Correspondence to: Dmitri  Yerchuck, Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str., 15, Minsk, RB. Email: dpy@tut.by

Abstract

The general solution of the homogeneous damped Mathieu equation in the analytical form, allowing its practical using in many applications, including superconductivity studies, without numerical calculations has been found.

Keywords

References

[1]  Kim P W, de Graaf A M, Chen J T, Friedman E J, and Kim S H,Phase Reversal and Modulated Flux Motion in Superconducting Thin Films, Phys. Rev. B, 6, N 3 (1972) 887-893.
 
[2]  Kotowski G, Z.Angew. Math. Mech., 23 (1943) 213.
 
[3]  Meixner J and SchÄafke F W, Mathieusche Funktionen und SphÄaroidfunktionen, Springer, Berlin, 1954.
 
[4]  Bateman H,Erdelyi A, Higher Transcendental Functions, V.3, New York, Toronto, London, MC Graw-Hill Book Company, Inc., 1955, M., Nauka, 1967, 300 pp.
 
[5]  Mac Lachlan, Theory and Applications of Mathieu Functions, M., Izd.In.Lit., 1953, 476 pp.
 
Show More References
[6]  Zaitsev V F, Polyanin A D, Hand-Book on Ordinary Differential Equations, M, Fizmatlit, 2001, 576 pp.
 
Show Less References

Article

Dispersion of SH and Love Waves

1Institute for Problems in Mechanics, Prosp. Vernadskogo, Moscow, Russia


International Journal of Physics. 2014, 2(5), 170-180
DOI: 10.12691/ijp-2-5-7
Copyright © 2014 Science and Education Publishing

Cite this paper:
Sergey V. Kuznetsov. Dispersion of SH and Love Waves. International Journal of Physics. 2014; 2(5):170-180. doi: 10.12691/ijp-2-5-7.

Correspondence to: Sergey  V. Kuznetsov, Institute for Problems in Mechanics, Prosp. Vernadskogo, Moscow, Russia. Email: kuzn-sergey@yandex.ru

Abstract

A mathematical model for analyzing both Love waves and horizontally polarized shear surface waves (SH-waves) propagating in stratified media with monoclinic symmetry is worked out. Analytic and numerical solutions for SH and Love waves obtained by applying the Modified Transfer Matrix (MTM) method and a special complex formalism, are presented. Displacement fields, specific energy, phase, ray, and group velocities, and dispersion curves for SH and Love waves are compared and analyzed. Plates with different types of boundary conditions imposed on the outer surfaces are considered. Behavior of the leakage Love waves and anomalous SH-waves is discussed.

Keywords

References

[1]  A.E.H. Love, Some Problems of Geodynamics. Cambridge University Press, London (1911).
 
[2]  E. Dieulesaint and D. Royer, Elastic Waves in Solids. Wiley, N.Y. (1980).
 
[3]  T.C.T. Ting and D.M. Barnett, Classifications of surface waves in anisotropic elastic materials. Wave Motion 26 (1997) 207-218.
 
[4]  S.V. Kuznetsov, Subsonic Lamb waves in anisotropic plates. Quart. Appl. Math. 60 (2002) 577-587.
 
[5]  S.V. Kuznetsov, Love waves in stratified monoclinic media. Quart. Appl. Math. 62 (2004) 749-766.
 
Show More References
[6]  S.V. Kuznetsov, SH-waves in multilayered plates. Quart. Appl. Math. 64 (2006) 153-165.
 
[7]  S.V. Kuznetsov, Love waves in non-destructive diagnostics of layered composites, Acoustical Physics, 56 (2010) 877-892.
 
[8]  M.J.S. Lowe, Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 42 (1995) 525-542.
 
[9]  D. Lévesque and L. Piché, A robust transfer matrix formulation for the ultrasonic response of multilayered absorbing media. J. Acoust. Soc. 92 (1992) 452-467.
 
[10]  M. Castaings and B. Hosten, Transfer matrix of multilayered absorbing and anisotropic media. Measurments and simulations of ultrasonic wave propagation through composite materials. J. Acoust. Soc. Am. 94 (1993) 1488-1495.
 
[11]  P. Michaels and V. Gottumukkula, Theory of viscoelastic Love waves and their potential application to near-surface sensing to permeability. In: Advances in near-surface seismology and ground-penetrating radar. Geophysical Developments Series. (2010) 263-278.
 
[12]  D. Restrepo, J.D. Gomez, and J.D. Jaramillo, SH wave number Green’s function for a layered, elastic half-space. Part I: Theory and dynamic canyon response by the discrete wave number boundary element method. Pure Appl. Geophys. (2014) 1-14.
 
[13]  M. Behm and R. Snieder, Love waves from local traffic noise interferometry. The Leading Edge. 32 (2013) 628-632.
 
[14]  J. Xia, X. Yin, and Y. Xu, Feasibility of determining Q of near-surface materials from Love waves. J. Appl. Geophysics. 95 (2013) 47-52.
 
Show Less References

Article

To Principles of Quantum Theory Construction

1Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk

2M.V.Lomonosov Moscow State University, Moscow


International Journal of Physics. 2014, 2(6), 181-188
DOI: 10.12691/ijp-2-6-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov. To Principles of Quantum Theory Construction. International Journal of Physics. 2014; 2(6):181-188. doi: 10.12691/ijp-2-6-1.

Correspondence to: Dmitri  Yerchuck, Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk. Email: dpy@tut.by

Abstract

New insight to the principles of the quantum theory construction is given. It is based on the symmetry study of main differential equations of mechanics and electrodynamics. It has been shown, that differential equations, which are invariant under transformations of groups, which are symmetry groups of mathematical numbers (considered within the frames of the number theory) determine the mathematical nature of the quantities, incoming in given equations. The substantial consequence of the given consideration is the proof of the main postulate of quantum mechanics, that is, the proof of the statement, that to any quantum mechanical quantity can be set up into the correspondence the Hermitian matrix. It is shown, that a non-abelian character of the multiplicative group of the quaternion ring leads to the nonapplicability of the quaternion calculus for the construction of new versions of quantum mechanics directly. The given conclusion seems to be actual, since there is a number of modern publications with the development of the quantum mechanics theory using the quaternions with the standard basis {e, i, j, k}. The correct way for the construction of new versions of quantum mechanics on the quaternion base is discussed in the paper presented. It is realized by means of the representation of the quaternions through the basis of the linear space of complex numbers over the field of real numbers, under the multiplicative group of which the equations of the dynamics of mechanical systems are invariant. At the same time the quaternion calculus is applicable in electrodynamics, at that the new versions of quantum electrodynamics can be constructed by an infinite number of the ways corresponding to an infinite number of the matrix representations of the standard quaternion basis {e, i, j, k}. The given conclusion is the consequence of the high symmetry of Maxwell equations.

Keywords

References

[1]  Landau L.D, Lifshitz E.M, Quantum Mechanics, Moscow, Nauka, 1989, 768 pp.
 
[2]  Kramers H A, Quantum Mechanics, North-Holland, Am- sterdam, 1958.
 
[3]  Bohm A, Quantum Mechanics: Foundations and Ap- plications, Springer-Verlag, N.-Y., Berlin, Heidelberg, Tokyo, 1986, M., Mir, 1990, 720 pp.
 
[4]  Davydov A.S, Quantum Mechanics, Moscow, Nauka, 1973, 703 pp.
 
[5]  Heisenberg W, Quantum-Theoretical Re-Interpretation of Kinematic and Mechanical Relations, Zeitschrift fu¨r Physik, 33 (1925) 879-893.
 
Show More References
[6]  Born M, Jordan P, Zur Quantenmechanik, Zeitschrift fu¨r Physik, 34 (1925) 858-888.
 
[7]  Born M, Heisenberg W, Jordan P, Zur Quantenmechanik II, Zeitschrift fu¨r Physik, 35 (1926) 557-606.
 
[8]  Dirac P.A.M, The Fundamental Equations of Quantum Mechanics, Proc. Roy. Soc. A 109 (1925) 642-653.
 
[9]  Pauli M,U¨ ber das Wassestoffspektrum vom Standpunkt der neuen Quantummechanik, Zeitschrift fu¨r Physik, 36 (1926) 336-363.
 
[10]  Dirac P.A.M, Quantum Mechanics and a Preliminary In- vestigation of the Hydrgen Atom, Proc. Roy. Soc. A, 110 (1926) 561-569
 
[11]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, Symmetry of Differential Equations and Quantum The- ory, 2nd International Conference on Mathematical Mod- eling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490 (2014) 012233-7.
 
[12]  Dovlatova A, Yearchuck D, QED Model of Resonance Phenomena in Quasionedimensional Multichain Qubit Systems, Chem. Phys. Lett., 511 (2011) 151-155.
 
[13]  Yerchuck D, Dovlatova A, Quantum Optics Effects in Quasi-One-Dimensional and Two-Dimensional Carbon Materials, Journal of Physical Chemistry C, 116, N 1 (2012) 63-80.
 
[14]  A.Dovlatova and D.Yerchuck, Concept of Fully Du- ally Symmetric Electrodynamics, 7th International Con- ference on Quantum Theory and Symmetries (QTS7), J.Physics: Conference Series, 343 (2012) 012133, 23 pp.
 
[15]  D.Yearchuck, A.Alexandrov and A.Dovlatova, To Nature of Electromagnetic Field, Appl. Math. Comput. Sci., 3, N 2 (2011) 169-200.
 
[16]  Andre Angot, Complements de Mathematiques, Paris, 1957, 778
 
[17]  Baryshevsky V.G, Time-Reversal-Violating Optical Gy- rotropy, arXiv: hep-ph/9912438v3 23 Feb 2000.
 
[18]  Rainich G Y, Electrodynamics in the General Relativity Theory, Trans. Am. Math. Soc., 27 (1925) 106-136.
 
[19]  Strazhev V.I, Tomilchick L.M, Electrodynamics with Magnetic Charge, Minsk, Nauka i Tekhnika, 1975, 336 pp.
 
[20]  Arbab A. I., The Unified Quantum Wave Equation, Hadronic Journal, 33, (2010) 707-716.
 
[21]  Arbab A. I., Derivation of Dirac, Klein-Gordon, Schr¨odinger, Diffusion and Quantum Heat Transport Equations from a Universal Quantum Wave Equation, EPL, 92 (2010) 40001.
 
[22]  Arbab A. I., The Quaternionic Quantum Mechanics, Ap- plied Physics Research, 3, N 2 (2011) 160-170.
 
[23]  Arbab A. I., Phys.Essay, 24 (2011) 254.
 
[24]  Arbab A. I., Yassein F. A., A New Formulation of Quan- tum Mechanics, Journal of Modern Physics, 3 (2012) 163-169.
 
[25]  Arbab A. I., Yassein F. A., A New Formulation of Electrodynamics, Journal of Electromagnetic Analysis and Applications, 2, N 8 (2010) 457.
 
[26]  Dmitri Yerchuck, Alla Dovlatova, Felix Borovik, Yauhen Yerchak, Vyacheslav Stelmakh, To Principles of Quan- tum Mechanics Development, International Journal of Physics, 2, N 5 (2014) 129-145.
 
[27]  V.N. Mishra, K. Khatri, L.N. Mishra, On SimultaneousApproximation for Baskakov-Durrmeyer-Stancu type op- erators, Journal of Ultra Scientist of Physical Sciences, 24, N (3)A, (2012) 567-577.
 
[28]  V.N. Mishra, H.H. Khan, K. Khatri, L.N. Mishra, Hy- pergeometric Representation for Baskakov-Durrmeyer- Stancu Type Operators, Bulletin of Mathematical Analy- sis and Applications, 5, N 3 (2013) 18-26.
 
[29]  Prashantkumar Patel, and Vishnu Narayan Mishra, Rate of Convergence of Modified Baskakov-Durrmeyer Type Operators for Functions of Bounded Variation, Journal of Difference Equations, Volume 2014, Article ID 235480, 6 pages.
 
Show Less References

Article

The Wave Properties of Matter: The Physical Aspect

1The State University of Management, Moscow, Russia


International Journal of Physics. 2014, 2(6), 189-196
DOI: 10.12691/ijp-2-6-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Liudmila B. Boldyreva. The Wave Properties of Matter: The Physical Aspect. International Journal of Physics. 2014; 2(6):189-196. doi: 10.12691/ijp-2-6-2.

Correspondence to: Liudmila  B. Boldyreva, The State University of Management, Moscow, Russia. Email: boldyrev-m@yandex.ru

Abstract

The aim of the paper is to show that there is a physical process which could underlie the wave properties of matter. A comparison has been drawn between the properties of a pair of electrically unlike virtual particles created by a quantum entity in the physical vacuum and the characteristics of the quantum entity wave function. Analogies were revealed between the spin precession frequency of pair of virtual particles and the wave function frequency, between the size of the electric dipole produced by a pair of virtual particles and the wave function wavelength, and also between the angle of spin precession of pair of virtual particles and the wave function phase. It is shown that quantum correlations of quantum entities may be caused by spin correlations (by spin supercurrents) between virtual particles created by the quantum entities in the physical vacuum. It is shown that the wave properties of a quantum entity are due to precession of spin of pair of virtual particles created by the quantum entity in the physical vacuum.

Keywords

References

[1]  De Broglie, L.V, “A Tentative Theory of Light Quanta,” Philosophical Magazine, 47. 446, 1924.
 
[2]  Wichmann, E.H, Quantum Physics. Berkeley physics course, v. IV, McGraw-Hill Book company, 1971.
 
[3]  Sinha K.P., Sudarshan E.C.G. and Vigier J.P, “Superfluid Vacuum Carrying Real Einstein De Broglie Waves”, Phys. Lett. 114A, No. 6, 298-300, 1986.
 
[4]  Mandl F. and Shaw G, Quantum Field Theory, John Wiley & Sons, Chichester UK, revised edition, 56, 176, 1984/2002.
 
[5]  Sedov L.I, A Course in Continuum Mechanics, v. 1-4, Wolters-Noordhoff, 1971-1972.
 
Show More References
[6]  Boldyreva L.B, What does this give to physics: attributing the properties of superfluid 3He-B to physical vacuum? Moscow, KRASAND, 2012.
 
[7]  Boldyreva L.B, “Quantum correlations – Spin supercurrents”, International Journal of Quantum Information, 12, No. 1, 1450007 (13 pp.), 2014.
 
[8]  Born M, Einstein’s Theory of Relativity, Dover Publications, New York, 1962.
 
[9]  Purcell E.М, Electricity and Magnetism. Berkeley physics course, v. 2, McGraw-Hill Book company, 1965.
 
[10]  Thomas L.T, “The Kinematics of an Electron with an Axis,” Philosophical Magazine 3 (1), 1-22, 1927.
 
[11]  Kroemer H. and Kittel C, Thermal Physics (2nd ed.), W. H. Freeman company, 1980.
 
[12]  Lamoreaux, S.K, “Demonstration of the Casimir Force in the 0.6 to 6μm Range,” Phys. Rev. Lett. 78, 5-8, 1997.
 
[13]  Capasso F, Munday J.N. and Parsegian V.A, “Measured long-range repulsive Casimir-Lifshitz forces,” Nature, 457, 170-173, 2009.
 
[14]  Biberman L., Sushkin N. and Fabrikant V, “Diffraction of successively travelling electrons,” Reports of the Academy of Sciences of USSR, LXVI, No.2, 185-186, 1949.
 
[15]  Belinskii A.V, “Quantum nonlocality and the absence of a priori values for measurable quantities in experiments with photons,” Physics Uspekhi, 46, 877-881, 2003.
 
[16]  Čerenkov P.A, “Visible radiation produced by electrons moving in a medium with velocities exceeding that of light,” Phys. Rev. 52, 378, 1937.
 
Show Less References

Article

The Critical Error in the Formulation of the Special Relativity

1Mechanical Department, DAH (S & P), Beirut, Lebanon


International Journal of Physics. 2014, 2(6), 197-201
DOI: 10.12691/ijp-2-6-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Radwan M. Kassir. The Critical Error in the Formulation of the Special Relativity. International Journal of Physics. 2014; 2(6):197-201. doi: 10.12691/ijp-2-6-3.

Correspondence to: Radwan  M. Kassir, Mechanical Department, DAH (S & P), Beirut, Lebanon. Email: radwan.elkassir@dargroup.com

Abstract

The perception of events in two inertial reference frames in relative motion was analyzed from the perspective of the Special Relativity postulates, leading to the Lorentz transformation equations for the time and space coordinate in the relative motion direction. Yet, straightforward inconsistencies were identified upon examining the conversion of the time interval between two co-local events in the traveling reference frame. The approach used in the Special Relativity formulation to get around the identified inconsistencies was revealed. Subsequent mathematical contradictions in the Lorentz transformation equations, disproving the Special Relativity predictions, were shown.

Keywords

References

[1]  Einstein, A, “Zur elektrodynamik bewegter Körper.” Annalen der Physik, 322. 891-921. 1905.
 
[2]  Nimtz, G, “Tunneln mit Überlichtgeschwindigkeit,” DLR Nachrichten, 90. 1998.
 
[3]  Nimtz G, “Evanescent modes ar not necessarily Einstein causal,” The European Physical Journal, B7. 523. 1999.
 
[4]  Cahill R.T, Kitto K, “Michelson-Morley experiments revisited and the Cosmic Background Radiation preferred frame,” Apeiron, 10 (2). 104-117. 2003.
 
[5]  Cahill R.T, “A new light-speed anisotropy experiment: absolutemotion and gravitational waves detected,” Progress in Physics, 4. 73-92. 2006.
 
Show More References
[6]  Beckmann, P, Einstein Plus Two (Golem Press, 1987).
 
[7]  Hatch, R, Escape from Einstein (Kneat Kompany 1992).
 
[8]  Dingle, H, Science at the Crossroads (Martin Brian and O’keeffe, 1972).
 
[9]  Kelly, A, Challenging Modern Physics: Questioning Einstein's Relativity Theories (Brown Walker Press, 2005).
 
[10]  Wang, L. J, “Symmetrical Experiments to Test the Clock Paradox,” in Physics and Modern Topics in Mechanical and Electrical Engineering (ed Nikos Mastorakis), 45 (World Scientific and Engineering Society Press, 1999).
 
[11]  Eckardt, H, “An Alternative Hypothesis for Special Relativity,” Progress in Physics, 2. 56-65. Apr. 2009.
 
[12]  Mansouri R, Sexl R.U, "A test theory of special relativity. I: Simultaneity and clock synchronization," General. Relat. Gravit. 8 (7). 497-513. 1977.
 
[13]  Mansouri R, Sexl R.U, "A test theory of special relativity: II. First order tests," General. Relat. Gravit, 8 (7). 515-524. 1977.
 
[14]  Hsu, J.-P, Hsu, L, “A Broader View of Relativity,” World Scientific. ISBN 981-256-651-1. 2006.
 
[15]  von Ignatowsky, W, "Das Relativitätsprinzip," Archiv der Mathematik und Physik, 17 (1). 1911.
 
[16]  Feigenbaum, M. J, "The Theory of Relativity-Galileo's Child," arXiv: 0806. 1234. 2008.
 
[17]  Cacciatori, S, Gorini, V, Kamenshchik, A, "Special relativity in the 21st century," Annalen der Physik, 520 (9-10). 728-768. 2008. arXiv: 0807. 3009.
 
[18]  Kassir, R.M, “On Lorentz Transformation and Special Relativity: Critical Mathematical Analyses and Findings,” Physics Essays, 27 (1). 16-25. Mar. 2014.
 
[19]  Kassir, R.M, “On Special Relativity: Root cause of the problems with Lorentz transformation,” Physics Essays, 27 (2). 198-203. Jun. 2014.
 
[20]  Einstein, A, “Einstein's comprehensive 1907 essay on relativity, part I, english translations, in American Journal of Physics, 45. 1977,” Jahrbuch der Radioaktivitat und Elektronik, 4. 1907.
 
Show Less References