International Journal of Physics»Articles

Article

To Principles of Quantum Mechanics Development

1Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072

2M.V.Lomonosov Moscow State University, Moscow, 119899, RF

3Belarusian State University, Nezavisimosti Ave., 4, Minsk, 220030, RB


International Journal of Physics. 2014, 2(5), 129-145
DOI: 10.12691/ijp-2-5-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Dmitri Yerchuck, Alla Dovlatova, Felix Borovik, Yauhen Yerchak, Vyacheslav Stelmakh. To Principles of Quantum Mechanics Development. International Journal of Physics. 2014; 2(5):129-145. doi: 10.12691/ijp-2-5-2.

Correspondence to: Dmitri  Yerchuck, Heat-Mass Transfer Institute of National Academy of Sciences of RB, Brovka Str.15, Minsk, 220072. Email: dpy@tut.by

Abstract

New insight on the principles of the quantum physics development is given. The quite different behavior of quantum microworld mechanical systems in comparison with classical mechanical macroworld systems is attributed to the drastical change of the role of the gravitation field on the dynamics of microworld mechanical systems, for which it seems to be vanishing in com- parison with the role of the gravitation field on the dynamics of macroworld mechanical systems, for which it is decisive. The conclusion on the status of the second main postulate of quantum mechanics is given. Its formulation in all textbooks has to be represented in the form of the proved statement, since the hypothesis of Schrödinger on the existence of the field scalar function, being to be observable quantity, just charge density, is strictly mathematically proved. It is shown, that the field scalar function, being to be the solution of the corresponding nonstationary in general case Schrödinger equation and being to be the function the only of coordinates and time, actually describes the state of the atomic system, more strictly its corpuscular aspect. The atomic system is considered from the positions of the field theory, that is, it is the association of elementary particles with corresponding fields. The given fields being to be the media for the particles’ propagation are responsible for the wave aspect in the characteristic of atomic systems. The wave aspect is described by the independent scalar wave-function which was also introduced in quantum physics by Schrödinger, althogh the given fact seems to be unknown to the wide circle of the readers. The second main postulate being to be mathematically strictly grounded in Schrödinger formulation of quantum nechanics, in the popular probabilistic form of quantum nechanics cannot be proved for the general case, although the probabilistic theatise, proposed by Born is true in a number of special cases, quite correctly indicated by Dirac. The possible ways of the development of quantum theory, based on clear understanding of the origin of corpuscular-wave dualism and based on the fundamental both now mathemtically grounded main postulates are analysed.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Landau L.D, Lifshitz E.M, Quantum Mechanics, Moscow, Nauka, 1989, 768 pp.
 
[[2]  Kramers H A, Quantum Mechanics, North-Holland, Amsterdam, 1958
 
[[3]  Bohm A, Quantum Mechanics: Foundations and Applications, Springer-Verlag, N.-Y., Berlin, Heidelberg, Tokyo, 1986, M., Mir, 1990, 720 pp.
 
[[4]  Davydov A.S, Quantum Mechanics, Moscow, Nauka, 1973, 703 pp.
 
[[5]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, Symmetry of Differential Equations and Quantum Theory, 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490.
 
Show More References
[6]  R.Feynman, R.Leyton, M.Sands, Feynman Lections on Physics, V.8, Quantum Mechanics (I), M., 1966, 269 pp.
 
[7]  E.Vichman, Berklee Course of Physics, V.4, Quantum Physics, p.263, M., 391 pp.
 
[8]  Dmitry Yearchuck, Yauhen Yerchak, Alla Dovlatova, Quantum-mechanical and Quantum-electrodynamic Equations for Spectroscopic Transitions, Optics Communications, 2010; 283: 3448-3458.
 
[9]  Yearchuck D, Yerchak Y, Red'kov V, Quantum Mechanical Analogue of Landau{Lifshitz Equation, Doklady NANB, 2007; 51 (N 5): 57-64.
 
[10]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Erste Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 361.
 
[11]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Zweite Mitteilung), Annalen der Physik (Fierte Folge), 79 (1926) 489.
 
[12]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Dritte Mitteilung), Annalen der Physik (Fierte Folge), 80 (1926) 437-490.
 
[13]  SchrÄodinger E, Quantisierung als Eigenwertproblem (Vierte Mitteilung), Annalen der Physik (Fierte Folge), 81 (1926) 109-139.
 
[14]  SchrÄodinger E, Die Naturwissenschaften, 14 (1926) 664.
 
[15]  SchrÄodinger E, ÄUber das VerhÄaltnis der Heisenberg-Born-Jordanschen Quantenmechanick zu der meinen, Annalender Physik (Fierte Folge), 79 (1926) 734-756.
 
[16]  SchrÄodinger E, An Undulatory Theory of the Mechanics of Atoms and Molecules, Physical Review, 28, N 6 (1926) 1049-1070.
 
[17]  A.Dovlatova and D.Yerchuck, Concept of Fully Dually Symmetric Electrodynamics, 7th International Conference on Quantum Theory and Symmetries (QTS7), J.Physics: Conference Series, 343 (2012) 012133, 23 pp.
 
[18]  Dirac P.A.M, Quelques Problemes de Mecanique Quantique, Ann.Inst. Henri Poincare, 1931, T.1, fase 4, pp 357-400.
 
[19]  Rainich G Y, Electrodynamics in the General Relativity Theory, Trans.Am.Math.Soc., 27 (1925) 106-136.
 
[20]  Heaviside Oliver, Electrical Papers, V.1, Macmillan and Co., London, New York, 1892; 594 pp, Heaviside Oliver, Some Properties of Maxwell Equations, Phil.Trans.Roy.Soc.A, 1893; 183:423-430, Heaviside Oliver, Electromagnetic Theory, London, The Electrician Printing and Publishing Company Limited, 1893; 466 pp.
 
[21]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, To Principles of Quantum Theory Construction, to be published.
 
[22]  Dmitri Yerchuck, Alla Dovlatova, Andrey Alexandrov, "Boson Model of Quantized EM-Field and Nature of Photons", 2nd International Conference on Mathematical Modeling in Physical Sciences, 1-5 September, 2013, Prague, Czechia, Journal of Physics: Conference Series, 490 (2014).
 
[23]  Abdelhak Djouadi, The Higgs mechanism and the origin of mass, The 8-th Int.Conf. on Progress in Theor.Phys., AIP Conf.Proc., 1444 (2012) 45-57.
 
[24]  D.Yearchuck, A.Alexandrov and A.Dovlatova, To Nature of Electromagnetic Field, Appl.Math.Comput.Sci., 3, N 2 (2011) 169-200.
 
[25]  Born M, Z.f.Phys. 38 (1926) 803; 40 (1926) 167; Experiment and Theory in Physics, Cambridge University Press, 1943, p.23.
 
[26]  Dirac P.A.M, On the Theory of Quantum Mechanics, Proc.Roy.Soc.A, 112 (1926) 661-677.
 
[27]  Dirac P.A M, The Quantum Theory of Emission and Absorption of Radiation, Proc.Roy.Soc.,A, 114 (1927) 243-265.
 
[28]  SchrÄodinger E, Die gegenwÄartige Situation in der Quantenmechanik, Die Naturwissenschaften, 50 (1935) 844-849.
 
[29]  SchrÄodinger E, Berl.Ber., I6.April I93I.
 
[30]  SchrÄodinger E, Annales de l'Institut H. Poincare, 269 (Paris, 1931).
 
[31]  SchrÄodinger E, Cursos de la universidad internacional de verano en Santander, I, 6o (Madrid, Signo, I935).
 
[32]  Dirac P.A.M, The Physical Interpretation of the Quantum Dynamics, Proc.Roy.Soc.A, 113 (1927) 621-641.
 
[33]  Dmitri Yerchuck, Yauhen Yerchak, Alla Dovlatova, Vyacheslav Stelmakh, Felix Borovik, The Photon Concept and the Physics of Quantum Absorption Process, in press.
 
[34]  Misochko O V, Nonclassical states of lattice excitations: squeezed and entangled phonons, Phys.-Usp., 56 (2013) 868.
 
[35]  Lee K. C., Sprague M R, Sussman B J, Nunn J, Langford N K, Jin X.-M., Champion T, Michelberger P, Reim K F, England D, Jaksch D, Walmsley I A, Entangling Macroscopic Diamonds at Room Temperature, Science, 334 (2011) 1253-1256.
 
[36]  Dempster A J, Batho H F, Phys.Rev.,30 (1927) 644.
 
[37]  Scully M O, Zubairy M S, Quantum Optics, Cambridge University Press, 1997, 650 pp.
 
[38]  Dmitri Yerchuck, Felix Borovik, Alla Dovlatova, Andrey Alexandrov, Concept of Free Acoustic Field, British Journal of Applied Science and Technology, 4, N 15 (2014) 2169-2180.
 
[39]  Su W.-P., Schrie®er J.R, Heeger A.J, Soliton Excitations in Polyacetylene, Phys.Rev.B, 1980; 22: 2099-2111.
 
[40]  Lee K. C., Sussman B J, Sprague M R, Michelberger P, Reim K F, Nunn J, Langford N K, Bustard P J, Jaksch D and Walmsley I A, Macroscopic Non-Classical States and Terahertz Quantum Processing in Room-Temperature Diamond, Nature Photonics, 6 (2012) 41-44.
 
[41]  Dodin I.Y, Geometric view on noneikonal waves, Physics Letters A 378 (2014) 1598-1621.
 
[42]  Born M, Jordan P, Zur Quantenmechanik, Zeitschrift fÄur Physik, 34 (1925) 858-888.
 
[43]  Born M, Heisenberg W, Jordan P, Zur Quantenmechanik II, Zeitschrift fÄur Physik, 35 (1926) 557-615.
 
Show Less References

Article

Electronic Circuit Simulation of the Lorenz Model With General Circulation

1Department of Physics, Prabhu Jagatbandhu College, Andul Howrah, India

2High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India


International Journal of Physics. 2014, 2(5), 124-128
DOI: 10.12691/ijp-2-5-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
D. C. Saha, Anirban Ray, A. Roy Chowdhury. Electronic Circuit Simulation of the Lorenz Model With General Circulation. International Journal of Physics. 2014; 2(5):124-128. doi: 10.12691/ijp-2-5-1.

Correspondence to: A.  Roy Chowdhury, High Energy Physics Division, Department of Physics, Jadavpur University, Kolkata, India. Email: asesh_r@yahoo.com

Abstract

The nonlinear dynamics of the Lorenz model of general circulation is investigated with the help of analogue electronic circuits. The structure of the attractor is obtained for the various values of the systems parameters. Existence of two external potential terms in the equation leads to some new and interesting features. The data so generated is collected through the use of NI-6009 USB, analogue to digital converter. This was then used to compute the bifurcation pattern, parametric Lyapunov diagrams, Lyapunov exponents. The system clearly showed a non-periodic doubling route to chaos. This is farther substantiated by the simple variation of Lyapunov exponent in bi-parametric space of forcing parameter for the system. These external forcing is actually very important to settle the various issue arising in the long time behavior.

Keywords

References

[[[[[[[[[[[[[[[[
[[1]  S. H. Strogatz, Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity), 1st Edition, Studies in nonlinearity, Westview Press, 2001.
 
[[2]  T.Matsumoto, A chaotic attractor from chua’s circuit, Circuits and Systems, IEEE Transactions on 31 (12) (1984) 1055-1058.
 
[[3]  L. O. CHUA, Chua’s circuit: An overview ten years later, Journal of Circuits, Systems and Computers 04 (02) (1994) 117-159.
 
[[4]  R. Madan, Chua’s Circuit: A Paradigm for Chaos, Journal of circuits, systems, and computers, World Scientific, 1993.
 
[[5]  T. Carroll, L. M. Pecora, Synchronizing chaotic circuits, Circuits and Systems, IEEE Transactions on 38 (4) (1991) 453-456.
 
Show More References
[6]  L. M. Pecora, T. L. Carroll, Driving systems with chaotic signals, Phys. Rev. A 44 (1991) 2374-2383. URL http://link.aps.org/doi/10.1103/PhysRevA.44.2374
 
[7]  L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64 (1990) 821-824. URL http://link.aps.org/doi/10.1103/PhysRevLett.64.821
 
[8]  K. Cuomo, A. Oppenheim, S. H. Strogatz, Synchronization of lorenz-based chaotic circuits with applications to communications, Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on 40 (10) (1993) 626-633.
 
[9]  K. M. Cuomo, A. V. Oppenheim, Circuit implementation of synchronized chaos with applications to communications, Phys. Rev. Lett. 71 (1993) 65-68. URL http://link.aps.org/doi/10.1103/PhysRevLett.71.65
 
[10]  E. M. Bollt, Review of chaos communication by feedback control of symbolic dynamics, International Journal of Bifurcation and Chaos 13 (02) (2003) 269-285.
 
[11]  E. S´anchez, M. A. Mat´ıas, Experimental observation of a periodic rotating wave in rings of unidirectionally coupled analog lorenz oscillators, Phys. Rev. E 57 (1998) 6184-6186. URL http://link.aps.org/doi/10.1103/PhysRevE.57.6184
 
[12]  O. Gonzales, G. Han, J. de Gyvez, E. Sinencio, Lorenz-based chaotic cryptosystem: a monolithic implementation, Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on 47 (8) (2000) 1243-1247.
 
[13]  E. N. Lorenz, Irregularity: a fundamental property of the atmosphere*, Tellus A 36A (2) (1984) 98-110. URL http://dx.doi.org/10.1111/j.1600-0870.1984.tb00230.x
 
[14]  H. Broer, C. S. A, R. Vitolo, Bifurcations and strange attractors in the lorenz-84 climate model with seasonal forcing, Nonlinearity 15 (4) (2002) 1205.
 
[15]  L. van Veen, Baroclinic flow and the lorenz-84 model, International Journal of Bifurcation and Chaos 13 (08) (2003) 2117-2139.
 
[16]  E. N. Lorenz, Compound windows of the hnon-map, Physica D: Nonlinear Phenomena 237 (13) (2008) 1689-1704. URL http://www.sciencedirect.com/science/article/pii/S0167278907004198.
 
[17]  J. A. C. Gallas, Structure of the parameter space of the h´enon map, Phys. Rev. Lett. 70 (1993) 2714-2717. URL http://link.aps.org/doi/10.1103/PhysRevLett.70.2714
 
[18]  C. Masoller, A. Schifino, L. Romanelli, Regular and chaotic behavior in the new lorenz system, Physics Letters A 167 (2) (1992) 185-190.
 
[19]  C. Masoller, A. S. Schifino, L. Romanelli, Characterization of strange attractors of lorenz model of general circulation of the atmosphere, Chaos, Solitons & Fractals 6 (0) (1995) 357-366, complex Systems in Computational Physics.
 
[20]  A. Schifino, C. Masoller, Analitical study of the codimension two bifurcations of the new Lorenz system, in: E. Tirapegui,W. Zeller (Eds.), Instabilities and Nonequilibrium Structures V, Vol. 1 of Nonlinear Phenomena and Complex Systems, Springer Netherlands, 1996, pp. 345-348.
 
[21]  R. Gilmore, M. Lefranc, The Topology of Chaos: Alice in Stretch and Squeezeland, Wiley, 2008. URL http://books.google.co.in/books?id=XuXDrtthXHcC
 
Show Less References

Article

The Magnetism as an Electric Angle-effect

1Donaustr. 22, 30519 Hannover


International Journal of Physics. 2014, 2(4), 118-123
DOI: 10.12691/ijp-2-4-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hans-Joerg Hochecker. The Magnetism as an Electric Angle-effect. International Journal of Physics. 2014; 2(4):118-123. doi: 10.12691/ijp-2-4-5.

Correspondence to: Hans-Joerg  Hochecker, Donaustr. 22, 30519 Hannover. Email: jo.hoer@yahoo.de

Abstract

The magnetic force can be described very simply as a result of relative velocities of electric charges. Transformations in inertial reference systems are very well described by special relativity. However, magnetism nevertheless is simply regarded as given. There isn't an explanation for the emergence of magnetism yet. I have found a quite simple way to explain the emergence of magnetism, that is, I have discovered, how the electric field changes so that magnetism is created. I would like to introduce this idea here.

Keywords

References

[[1]  A. Einstein, Zur Elektrodynamik bewegter Körper Annalen der Physik 17, 891-921 (1905).
 
[[2]  Dieter Meschede: Gerthsen Physik. 23. Auflage, Springer, Berlin/Heidelberg/New York 2006.
 
[[3]  PAM Dirac: The Quantum Theory of the Electron. In: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. A, Nr. 778, 1928, S. 610-624.
 
[[4]  James Clerk Maxwell, A Dynamical Theory of the Electromagnetic Field, Royal Society Transactions 155, 1865, Seiten 459-512.
 

Article

Dark Energy, Exponential Expansion, CMB, Wave/Particle Duality All Result from Lorentz-Covariance of Boltzmann’s Transport Equation

1B&E Scientific Ltd, Seaford BN25 4PA, UK


International Journal of Physics. 2014, 2(4), 112-117
DOI: 10.12691/ijp-2-4-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Arne Bergstrom. Dark Energy, Exponential Expansion, CMB, Wave/Particle Duality All Result from Lorentz-Covariance of Boltzmann’s Transport Equation. International Journal of Physics. 2014; 2(4):112-117. doi: 10.12691/ijp-2-4-4.

Correspondence to: Arne  Bergstrom, B&E Scientific Ltd, Seaford BN25 4PA, UK. Email: arne.bergstrom@physics.org

Abstract

The Boltzmann transport equation is the rigorous continuity equation for the angular flux f(r, t, v) of photons at positions r, time t, moving in direction v, and interacting with a surrounding medium by localized collisions. This equation is not necessarily Lorentz-covariant, but can be specialized to a Lorentz-covariant equation describing the propagation of a photon distribution through space. However, this requirement of Lorentz-covariance of the Boltzmann transport equation then leads to a wave-particle duality, in which an ensemble of photons behave as waves, but in which each individual photon interferes only with itself. Applied on cosmological scales, this requirement of Lorentz-covariance of the Boltzmann transport equation also leads to an apparent quantum multiplication, which could explain the existence of the huge amounts of the mysterious “dark energy” that appears to permeate the universe. In addition, it also requires the universe to appear subjected to an exponential expansion as observed, similar to a perspective distortion in time, and then also as a consequence to appear surrounded by a cosmic microwave background radiation (CMB) with an exact Planck spectrum, as observed.

Keywords

References

[[[[[[[[[[[[[[[
[[1]  F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln”, Helvetica Physica Acta 6, 110 (1933). F. Zwicky, “On the Masses of Nebulae and of Clusters of Nebulae”, Astrophys. J. 86, 217 (1937).
 
[[2]  V. Rubin, D. Burstein, W. K. Ford, and N. Thonnard, “Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties”, Astrophys. J. 289, 81 (1985).
 
[[3]  S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, et al., “Measurements of Ω and Λ from 42 High-Redshift Supernovae”, Astrophys. J. 517, 565 (1999).
 
[[4]  A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, et al., “Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant”, Astron. J. 116, 1009 (1998).
 
[[5]  http://en.wikipedia.org/wiki/Planck_(spacecraft) retrieved 2014-06-16.
 
Show More References
[6]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), pp. 223, 232.
 
[7]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145 (1975).
 
[8]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[9]  A. Bergstrom, “Is CMB just an observational effect of a universe in accelerated expansion?”, International Journal of Physics 1, 133 (2013).
 
[10]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 235.
 
[11]  J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941), p. 550.
 
[12]  A. M. Weinberg and E. P. Wigner, The Physical Theory of Neutron Chain Reactors (Univ. of Chicago Press, 1958), p. 236.
 
[13]  R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics (Addison-Wesley, 1965), Vol III, pp. 1.1-1.9.
 
[14]  P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, 1991), p 9.
 
[15]  J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the Accelerating Universe”, Ann. Rev. Astron. Astrophys. 46 385 (2008).
 
[16]  M. Kemp, The Science of Art: Optical Themes in Western Art from Brunelleschi to Seurat (Yale University Press, 1990).
 
[17]  P. S. Wesson, “Olbers's paradox and the spectral intensity of the extragalactic background light”, Astrophys. J. 367, 399 (1991).
 
[18]  G. D. Starkman and D. J. Schwarz, “Is the universe out of tune?”, Sci. Am. 293(2), 48 (2005).
 
[19]  D. J. Fixsen, E. S. Gheng, J. M. Gales, J. C. Mather, R. A. Shafer, and E. L. Wright, “The cosmic microwave background spectrum from the full COBE FIRAS data set”, Astrophys. J. 473, 576 (1996).
 
[20]  M. Brooks, “13 things that do not make sense”, NewScientist, 19 March 2005.
 
Show Less References

Article

Optical Transitions in Quantum Dots

1Faculty of the Sciences, FUNDAPL Laboratory, University of Blida.1, Algeria

2Faculty of the technology, LATSI Laboratory, University of Blida.1, Algeria


International Journal of Physics. 2014, 2(4), 109-111
DOI: 10.12691/ijp-2-4-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
A. Benahmed, A. Aissat, M. A. Benammar. Optical Transitions in Quantum Dots. International Journal of Physics. 2014; 2(4):109-111. doi: 10.12691/ijp-2-4-3.

Correspondence to: A.  Benahmed, Faculty of the Sciences, FUNDAPL Laboratory, University of Blida.1, Algeria. Email: moumenephysique@yahoo.fr

Abstract

The analysis of the electronic states of a quantum dot of InAs grown on a GaAs substrate has been studied for different geometries. We did the calculation with each type of geometry we based on the Schrödinger equation for stationary particle and we used "Comsol" for calculations. We calculated energy values as a function of each of the parameters: length, width and thickness of the wetting layer where other parameters are held constant.

Keywords

References

[[[
[[1]  H. Mathieu :« Physique des Semiconducteurs et des Composants Electronique», 6eme édition, pp (616-62 Paris, 2009).
 
[[2]  COMSOL Multiphysics Model Library copyright 1998-2008 by COMSOL AB.
 
[[3]  RF Module User’s Guide. 1998-2012 COMSOL-Protected by U.S. Patents 7, 519, 518; 7, 596, 474; and 7, 623, 991. Patents pending.
 
[[4]  R. Chau, B. Doyle, S. Datta, J. Kavalieros and K. Zhang, Integrated nanoelectronics for the future, Nature Materials 6 (2007) 810.
 
[[5]  A. Abdelali: «Rôle du rayonnement dans l’élaboration et l’étude nanoagrégats semi-conducteur de ZnS », mémoire de magister, université de Mentouri Constantine.
 
Show More References
[6]  P. M. Petroff, K. H. Schmidt, G. Medeiros-Ribeiro, A et J. Kotthaus, Size quantization and zero dimensional e in self assembled semiconductor quantum dots,Jpn. Jl. Appl Phys. 36, Part 1, 4068 (1997).
 
[7]  C. Charles: «Propriétés électroniques, optiques et dynamiques de boites quantiques auto-organisées et couplées sur substrat InP », thèse doctorat, Institut National des Sciences Appliquées de Rennes, 27 juin 2006.
 
[8]  U. Banin, Y. Cao, D. Katz et O. Millo, Identification of atomic-like electronic states inindium arsenide nanocrystal quantum dots, Nature 400, 542 (1999).
 
Show Less References

Article

Analysis of the Performances of Sealed Timing Resistive Plate Chambers (tRPCs)

1Max-Planck Institute for Nuclear Physics, Heidelberg, Germany


International Journal of Physics. 2014, 2(4), 105-108
DOI: 10.12691/ijp-2-4-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Khokon Hossen. Analysis of the Performances of Sealed Timing Resistive Plate Chambers (tRPCs). International Journal of Physics. 2014; 2(4):105-108. doi: 10.12691/ijp-2-4-2.

Correspondence to: Khokon  Hossen, Max-Planck Institute for Nuclear Physics, Heidelberg, Germany. Email: hossen@mpi-hd.mpg.de

Abstract

Resistive Plate Chambers (RPCs) were introduced by R. Santonico and R. Cardarelli in 1981, are gas ionization chambers made with resistive electrodes separated by precision spacers. Typical gas gap ranges from a few hundred micrometers to several millimeters wide. Timing Resistive Plate Chambers (tRPCs) were introduced in 2000 by P.Fonte, A. Smirnitsky and M.C.S Williams and since then it has reached Time Resolutions better than 50 ps (σ) with efficiencies above 99% for Minimum Ionizing Particle (MIP). In this research paper, we described the main features of gas detectors and the different types of RPCs and their properties. We described the main results that we have got during the operating the sealed tRPCs built in the laboratory.

Keywords

References

[[
[[1]  P.Fonte, A. Smirnitsky and M.C.S Williams, NIM, A 443, (2000), 201.
 
[[2]  Oxford Physics, C4: Particle Physics Major Option Particle Detectors.
 
[[3]  William R. Leo, Techniques for Nuclear and Particle Physics Experiments.
 
[[4]  http://consult.cern.ch/writeup/magboltz/.
 
[[5]  P. Fonte, V. Peskov, B.D. Ramsey, “Streamers in MSGC's and other gaseous detectors” 1-13.
 
Show More References
[6]  Nicholas Tsoulfanidis, Measurement and Detection of Radiation, Second Edition.
 
[7]  http://root.cern.ch/drupal/.
 
Show Less References

Article

A Functional Model of Measurement in Quantum Theory

1Diel Software Beratung und Entwicklung, Seestr. 102, 71067 Sindelfingen, Germany


International Journal of Physics. 2014, 2(4), 96-104
DOI: 10.12691/ijp-2-4-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hans H. Diel. A Functional Model of Measurement in Quantum Theory. International Journal of Physics. 2014; 2(4):96-104. doi: 10.12691/ijp-2-4-1.

Correspondence to: Hans  H. Diel, Diel Software Beratung und Entwicklung, Seestr. 102, 71067 Sindelfingen, Germany. Email: diel@netic.de

Abstract

The measurement problem of quantum theory (QT) is the unsolved problem of how the probabilistic predictions of QT are turned into definite measurement results. A related question is whether a measurement in QT implies a collapse of the wave function and what the collapse of the wave function exactly means. Theories proposed on these subjects have not found general agreements among physicists. This paper proposes a solution to the QT measurement problem in terms of a functional model of the measurement process. A functional model describes the process of the dynamic evolution of a physical system. The model assumes that the interactions between the measured QT object and the measurement apparatus are "normal" interactions which adhere to the laws of quantum field theory.

Keywords

References

[[[[[[[[[
[[1]  Baumann, K., Sexl, R., Die Deutungen der Quantentheorie, Vieweg Verlag, Braunschweig/Wiesbaden, 1984.
 
[[2]  Cramer, J., “The Transactional Interpretation of Quantum Mechanics”, Rev Mod Phys 58, 647-688, 1986.
 
[[3]  Wikipedia on Measurement Problem, http://en.wikipedia.org/w/index.php?title=Measurement problem.
 
[[4]  Maudlin, T., “Three Measurement Problems”, Topoi-Int Rev Philos 14, 1995.
 
[[5]  Everett III, H., “Relative State' formulation of Quantum Mechanics”, Rev Mod Phys 29, 454, 1957.
 
Show More References
[6]  Feynman, R.P., QED: The Strange Theory of Light and Matter, Princeton University Press, Princeton, 1985.
 
[7]  Diel, H., “The Formulation of Temporal Relationships with Physics Theories”, Pensee Journal, Vol 75, No. 12; Dec 2013.
 
[8]  Wikipedia on Objective collapse theory, 2014.
 
[9]  Feynman, R.P., Hibbs, A.R., Quantum Mechanics and Path Integrals, McGraw Hill, New York, 2005.
 
[10]  Diel, H., “A Functional Interpretation of Quantum Theory”, in Proceedings of ICCQMNP Barcelona, 2013.
 
[11]  Dyson, F. J., Advanced Quantum Mechanics, arXiv:quant-ph/0608140v1, 2006.
 
[12]  Ryder, L.H., Quantum Field Theory, Cambridge University Press, Cambridge, 1985.
 
[13]  Griffiths, D., Einfuehrung in die Elementarteilchenphysik.
 
[14]  Mandl, F., Shaw, G., Quantenfeldtheorie, AULA Verlag, Wiesbaden, 1993.
 
Show Less References

Article

The Rest Mass of a Particle in a Field and a General Mass Equation

1Department of Mathematics, Faculty of Science, Ain-Shams University, Cairo, Egypt


International Journal of Physics. 2014, 2(3), 86-95
DOI: 10.12691/ijp-2-3-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Mohamed Ahmed Hassan. The Rest Mass of a Particle in a Field and a General Mass Equation. International Journal of Physics. 2014; 2(3):86-95. doi: 10.12691/ijp-2-3-4.

Correspondence to: Mohamed  Ahmed Hassan, Department of Mathematics, Faculty of Science, Ain-Shams University, Cairo, Egypt. Email: el_hmam.1113@Yahoo.com

Abstract

Using a modified version of the mass vector model, Hassan (1997), we explain that the particle mass decreases (increases) if the particle in attractive (repulsive) field. The concepts of the free rest mass and the rest mass in a field are introduced. We conclude that the mass of a particle in a field changes according to the rule , where is the rest mass of the particle in the field. This result is consistent with the existence of the Higgs field through the space and it causes existing particles to acquire mass. The confined theory is explained. General mass equations of a particle and of a composite particle in terms of different four forces of nature are obtained. Some applications of the general mass equation of composite particle (nucleus) are presented and discussed.

Keywords

References

[[
[[1]  Hassan, M. A., “A vector analog for the mass- Model and predictions,” Proc INSA, A63 (6). 437-456. Jul. 1997.
 
[[2]  Thomson, J. J., “On the Electric and Magnetic Effects produced by the Motion of Electrified Bodies, Philosophical Magazine, 5 11 (68). 229-249. 1881
 
[[3]  Waghmare, Y. R., Introductory Nuclear Physics, Oxford &IBH publishing Co, New Delhi, 1981.
 
[[4]  Griffiths, D., Introduction to Elementary Particles, Harper &Row, New York, 1987.
 
[[5]  ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett., B716 (1). 1-29. Sep. 2012.
 
Show More References
[6]  Biswas, S., Roy, P., and Dutt-Mazumder, A. K., “ρ-ω mixing and spin dependent CSV potential”, Indian J. Phys, 85(7). 1185-1189. Jul. 2011.
 
[7]  Clemmow P. C., An Introduction To Electromagnetic Theory, Cambridge University Press, Cambridge, 1973.
 
Show Less References

Article

Study of Electrocapillarity in Dielectrics Using Palm Oil

1Department. of Physics, Federal University, Ndufu-Alike – Ikwo,

2Department of Industrial Physics, Ebonyi State University, P.B.M 53, Abakaliki, Nigeria


International Journal of Physics. 2014, 2(3), 83-85
DOI: 10.12691/ijp-2-3-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
Nwodo A. N, Ugwu E.I. Study of Electrocapillarity in Dielectrics Using Palm Oil. International Journal of Physics. 2014; 2(3):83-85. doi: 10.12691/ijp-2-3-3.

Correspondence to: Ugwu  E.I, Department of Industrial Physics, Ebonyi State University, P.B.M 53, Abakaliki, Nigeria. Email: ugwuei@yahoo.com

Abstract

This paper presents analytical and experimental study of electrocapillarity in dielectrics under the frame work of parallel plates using palm oil.. First, Mathematical approach was used to derive an expression relating capillary ascent with the applied field. The results obtained from the experiment and that of the analytical results were compared with the expected results from the equation relating the liquid ascent and the applied field obtained from Lippmann equation, where it was observed that there is no evidence of linear relation between the height of the capillary rise of oil in the tube and the applied field.

Keywords

References

[[[[[[[[[
[[1]  E Colgate; H.Matsumoto; J Vac Sci. Technol., (1990), An investigation of ectrowetting- based microstructure J.Voc. Sci. Technol. A8, 3625-3633
 
[[2]  Berge, B (1993) Electrocapilarity and wetting of insulator film by water, C.R Acad. Sci. Paris Ser II., (1993), 317, 157-163
 
[[3]  Pollack; M.G and Fair R.B.,; A.D Shenderov, (2000), Electrowetting –based actuation of Liquid droplet for microfluidic application, Appl. Phys. let. 77, 1725-1726.
 
[[4]  Prins, M.; Welters W.J and Weekamp W.J. (2001), Fluid controlling multichannel structures by electrocapillarity pressure, Science 291, 277-280.
 
[[5]  Lienemann J, Greiner A.; Korvink J.G., (2006), Modeling Simulation, and optimization of Electrowetting, IEEE, Tran. Comp-Aided Des Intgr. Cir. Syst., 25, 234-247.
 
Show More References
[6]  P.Zhou; C.W.Wu, Micro and Nanosystem, (2009), 1, 57-62
 
[7]  X.Shan; H. (1993), Lattice Boltzmann simulating flows with multiple phase and components Phys. Rev. E, 47, 1815-1819
 
[8]  Asberg, A. J, Kponen, A, Merikoski, D and Timnen, J, (2002),lattice Boltzmann simulation of Capillary rise dynamics, J.Stat.Phys 107, 143-153
 
[9]  H.Li; J.Li; Y. Chen; H.Fang, Comput. Phys. (2007),Lattice Boltzmann model simulation of elrctrowetting-on- dielectric in a rough wall channel. Compt. Science, http://arcxiv.org/abs/0708.4182v
 
[10]  Haung,H, Thome D.T, Schaap, M.G and Sukop M.C, (2007), Propsed approximation for contact angles in Shan-and Shen-typemulticomponet multiphase lattice Boltzmann models, Phys. Rev E, 76, 066701
 
[11]  Lin, P, (1978), “Some Electrocapiillary-Type Behaviour of Gold Electrode, J. Electrochem. Soc; 194, pp 1077-1098
 
[12]  Kata, E (1991). Electrocapillarity in dielectrics, MacMillan, India Press, Madras.
 
[13]  Chen, J.H and Hsieh, W.H,. (2006), Electrowetting-induced capillary flow in a parallel-plate Channel, J. Colloid. Interface Sci., (2006), 296, 276-283.
 
[14]  Kang K.H.; Kangn I.S and Lee,C.M, (2003), Wetting Tension Due to Coulombic Interaction in Charge- Related Wetting phenomena Langmuir Vol. 19, No. 13, 2003, 548-513.
 
Show Less References

Article

An Element in a Paradigm Shift? – Could Population II Stars Actually be Younger than Population I stars?

1B&E Scientific Ltd, BN25 4PA, United Kingdom


International Journal of Physics. 2014, 2(3), 78-82
DOI: 10.12691/ijp-2-3-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Arne Bergstrom. An Element in a Paradigm Shift? – Could Population II Stars Actually be Younger than Population I stars?. International Journal of Physics. 2014; 2(3):78-82. doi: 10.12691/ijp-2-3-2.

Correspondence to: Arne  Bergstrom, B&E Scientific Ltd, BN25 4PA, United Kingdom. Email: arne.bergstrom@physics.org

Abstract

Recent astronomical observations have indicated the existence of supermassive black holes at the centres of most, perhaps all, galaxies, and also that immensely powerful relativistic jets of protons and electrons may occasionally emanate from some such supermassive black holes. Together these observations suggest a possible mechanism for alternative star formation, which may require a revision of the traditional classification of stars into a more recent Population I and a more ancient Population II. Rather than assumedly being members of an older generation of stars preceding Population I, maybe many Population II stars could perhaps actually be younger than Population I stars, with their lower metallicity being an effect of their much more recent creation from the pristine hydrogen left by such relativistic jets.

Keywords

References

[[[[[[[[[[[
[[1]  T. Kuhn, The Structure of Scientific Revolutions (Kindle edition, 2012).
 
[[2]  A. Bergstrom, “Relativistic invariance and the expansion of the universe”, Nuovo Cimento 27B, 145 (1975).
 
[[3]  A. Bergstrom, “Lorentz-covariant quantum transport and the origin of dark energy”, Phys. Scr. 83, 055901 (2011).
 
[[4]  A. Bergstrom, “Is CMB just an observational effect of a universe in accelerated expansion?”, International Journal of Physics, Vol. 1, No. 6, 133-137 (2013).
 
[[5]  J. Frieman, M. Turner, and D. Huterer, “Dark Energy and the Accelerating Universe”, Ann. Rev. Astron. Astrophys. 46 385 (2008). See also en.wikipedia.org/wiki/Cosmological_constant.
 
Show More References
[6]  G. Larsson-Leander, Astronomi och Astrofysik, 2nd Ed (Liber, Stockholm, 1977).
 
[7]  B. Carr, “The cosmic microwave background and particle physics”, Ann. Rev. Astr. Astroph. 32 531 (1994).
 
[8]  V. Bromm & R. Larson, “The first stars”, Ann. Rev. Astr. Astroph. 42 79 (2004).
 
[9]  R. Schödel, T. Ott, R. Genzel, R. Hoffmann, et al, “A star in a 15.2-year orbit around the supermassive black hole at the centre of the Milky Way“, Nature 419 694 (2002).
 
[10]  A. Wehrle, et al, https://science.nrao.edu/science/ Decadal%20Survey/rac/Wehrle_AGN_jets_GCT.pdf/view, retrieved 2012-05-23.
 
[11]  R. Powell, http://www.atlasoftheuniverse.com/globular.html, retrieved 2012-05-28.
 
[12]  A. Burkert & S. Tremaine, “A correlation between central supermassive black holes and the globular cluster systems of early-type galaxies”, Astroph. J. 720 516 (2010).
 
[13]  H. Decauwer, E. Jehin, G. Parmentier, P. Magain, “Abundance correlations in mildly metal-poor stars”, Astron. & Astroph. 433 285 (2005).
 
[14]  E. Jehin, P. Magain, C. Neuforge, et al, “Field halo stars: the globular cluster connection”, Astron. & Astroph. 330 L33 (1998).
 
[15]  A. Frebel, et al, “Discovery of HE-1523-0901, a strongly r-process enhanced metal-poor star with detected uranium”, Astroph. J. 660 L117 (2007).
 
[16]  Fields, B. D., “The Primordial Lithium Problem”, Ann. Rev. Nucl. & Particle Sc. 61, 47 (2011).
 
Show Less References

Article

Assessment of Ambient Magnetic Field Exposure Emitted from Underground Transmission Lines in Some Areas of Riyadh

1Department of Physics, College of Science Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia


International Journal of Physics. 2014, 2(3), 76-77
DOI: 10.12691/ijp-2-3-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
AL-rajhi, M.A.. Assessment of Ambient Magnetic Field Exposure Emitted from Underground Transmission Lines in Some Areas of Riyadh. International Journal of Physics. 2014; 2(3):76-77. doi: 10.12691/ijp-2-3-1.

Correspondence to: AL-rajhi, M.A., Department of Physics, College of Science Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Kingdom of Saudi Arabia. Email: rajhi.mai9@gmail.com

Abstract

The purpose of this work is to measure the magnetic emitted from underground transmission lines and camper with international limit. The measurements of magnetic field were performed with the aid of TRIAXIAL ELF Magnetic Field Meter. The level of magnetic field were found in the range 1 to 197 with mean value of 51.6 ± 44.2 mG. The survey of magnetic field measurements revealed that the level of radiation dose found to be far below than the standard dose limit for the public exposure set by the International Commission on Non-Ionizing Radiation Protection ICNIRP 830.

Keywords

References

[[[[[[[[[
[[1]  AL-rajhi, M.A. (2006), Evaluation of the Risks of Very Low Frequency and Non-Ionizing Electromagnetic Radiations Emitted by Electric Current of 50/60 Hz, its Biological Effects, and Organizations of Legislating Exposure, Journal of King Abdulaziz University, Science, Volume: 18 Issue: 1.
 
[[2]  AL-rajhi, M.A. (2008), Magnetic Field Irradiative Pollutions due to Technical Faults in the Internal Electrical Wiring in Buildings, Journal of King Abdulaziz University, Science, Volume: 18 Issue: 1.Volume: 20 Issue: 2.
 
[[3]  AL-rajhi, M.A. (2008), Radioactive Pollution by the Electric and Magnetic Fluxes Resulting from the Domestic and Offices Appliances, Journal of King Abdulaziz University, Science, Volume: 20 Issue: 2.
 
[[4]  Coogan, P. R., Clapp, R. W., Newcomb, P. A., Wenzl, T. B., Bogda, G., Mittendorf, R., Baron, J. A. and Longnecker, M.P. (1996) Occupational exposure to 60 Hz magnetic fields and risk of breast cancer in women. Epidemiology 7, 459-464.
 
[[5]  Davanipour, Z., Sobel, E., Bowman, J. D., Qian, Z. and Will, A. D. (1997) Amylotrophic lateral sclerosis and occupational exposure to electromagnetic fields. Bioelectrictromagnetics 18, 28-35.
 
Show More References
[6]  EMF RAPID (Electric and Magnetic Fields Research and Public Information Dissemination) Program (1998) EMF Science Review Symposium: Breakout Group Reports for InVivo and Clinical Research Findings. National Institute for Environmental Health Sciences, Research Triangle Park, NC.
 
[7]  Floderus, B., Persson, T., Stenlund, C., Wennberg, A., Ost, A. and Knave, B. (1993) Occupational exposure to electromagnetic fields in relation to leukemia and brain tumors: A casecontrol study in Sweden. Cancer, Causes and Control 4, 465-476.
 
[8]  George G. Karady , Carlos V. Nunez , William Frix , Kate B. Maracas ,Arthur J. Kroese .A novel magnetic field management method for undergroundpower cables. Electric Power Systems Research 31 (1994) 103-110.
 
[9]  George G. Karady, Carlos V. Nunez , William Frix , Kate B. Maracas ,Arthur J. Kroese . A novel magnetic field management method for underground power cables, Electric Power Systems Research 31 (1994) 103-110.
 
[10]  ICNIRP, General Approach to Protection against Non-Ionizing Radiation. Health Phys.Vol. 82, pp. 540-548, 2002.
 
[11]  ICNIRP,Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields (up to 300 GHz)”, International Commission on Non-Ionizing Radiation Protection Health Physics, Vol. 74, No.4, 494-522, 1998.
 
[12]  Portier, C. J. and Wolfe, M. S. (Eds.) (1998) Assessment of Health Effects from Exposure to Power-line Frequency Electric and Magnetic Fields: Working Group Report National Institute for Environmental Health Sciences, Research Triangle Park, NC.
 
[13]  Savitz, D. A. and Loomis, D. P. (1995) Magnetic field exposure in relation to leukemia and brain cancer mortality among electric utility workers. American Journal of Epidemiology 141, 123-134.
 
[14]  Theriault, G., Goldberg, M.Miller, A. B. et al. (1994) Cancer risks associated with occupational exposure to magnetic fields among electric utility workers in Ontario and Quebec, Canada and France 1970–1989. American Journal of Epidemiology139, 550-572.
 
Show Less References

Article

On Mathematical Foundations of Quantum Collisions and Nuclear Reactions and Outcome of Certain Physical Phenomena from Them

1Institute for Nuclear Research of NASU, prospekt Nauki, Kiev, Ukraine


International Journal of Physics. 2014, 2(2), 41-75
DOI: 10.12691/ijp-2-2-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
V.S. Olkhovsky. On Mathematical Foundations of Quantum Collisions and Nuclear Reactions and Outcome of Certain Physical Phenomena from Them. International Journal of Physics. 2014; 2(2):41-75. doi: 10.12691/ijp-2-2-4.

Correspondence to: V.S.  Olkhovsky, Institute for Nuclear Research of NASU, prospekt Nauki, Kiev, Ukraine. Email: olkhovsky@mail.ru

Abstract

I. Analytical structure of the non-relativistic unitary and non-unitary S-matrix is reviewed for the cases of any interactions with any motion equations inside a sphere of radius a, enclosed by centrifugal and rapidly decreasing (exponentially or by the Yukawian law or by the more rapidly decreasing) potentials. Some kinds of the symmetry conditions are imposed. The Schroedinger equation for the particle motion in the external region where r > a and the completeness of the correspondent wave functions are assumed. The connection of the obtained results with the causality is examined. Partially some analytical properties for the multi-channel S-matrix are reviewed and the sum rules for mean compound-nucleus time delays and the density of compound-nucleus levels. Sometimes (as physical manifestations of the profound general methodic and in very good consistent accordance with the experiment) observable physical effects, such as parity violation enhancement and time resonances or explosions, are appeared. Finally a scientific program of future search is presented as a clear continuation and extension of the obtained results. II. It is already known the appearance of time advance (due to distortion by the non-resonant background) instead of the expected time delay in the region of a compound-nucleus resonance in the center-of-mass (C-) system. Here at the same conditions we study cross sections and durations of the neutron-nucleus scattering in the laboratory (L-) system. Here it is shown that such time advance is a virtual paradox but in the L-system the time-advance phenomenon does not occur and only the trivial time delay is observed. At the same time the transformations from C-system into the L-system appeared to be different from the standard kinematical transformations because in the C-system the motion of a compound nucleus is absent but it is present in the L-system. We analyze the initial wave-packet motion (after the collision origin) and the cross section in the laboratory (L-) system. Also here (as physical revelations of profound general methodic and in very good consistent accordance with the experiment) several results of the calculated cross sections for the neutron-nucleus in comparison with the experimental data in the L-system at the range of one or two overlapped compound resonances are presented. It is shown in the space-time approach that the standard kinematical transformations of cross sections from the C-system to the L-system are not valid because it is necessary to consider the center-of-mass motion in the L-system. Finally on a correct self-consistent base of the space-time description of the nuclear processes in the laboratory system with 3 particles in the final channel, it is shown the validity of the former approach, obtained for the space-time description of the nuclear processes with 2-particle channels earlier.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Bogolyubov N.N., private communication: mathematics now become partly the range of the theoretical physics (for instance, the quantum collision theory).
 
[[2]  Landau L.D., private communication: a new good method in physics is better than any effect because the good method can bring us to some or even many new effects which can in a new way explain the experimental data.
 
[[3]  V.S.Olkhovsky, Time as a quantum observable, canonically conjugate to energy. Time analysis of quantum processes of tunneling and collisions (nuclear reactions) [LAP LAMBERT Academic publishing, 177 pages, 2012].
 
[[4]  Heisenberg,W., Die “beobachtbaren Groessen” in der Theorie der Elementarteilchen, Zs.f. Phys. A Hadrons and Nuclei, 120(1943)513, 673-702.
 
[[5]  Heisenberg,W., Der mathamatische Rahman der Quantentheorie der Wellnfelder, Zs.Naturforsch. Teil A, 1(1946) 608.
 
Show More References
[6]  Hu, Ning, Application of the Heisenberg’s S-matrix theory for the resonance scattering and nuclear reactions, Phys.Rev., 74(1948)131-140.
 
[7]  Van Kampen,N., The S-matrix and the causality condition. I. The electromagnetic field., Phys.Rev., 89(1953)1072-1079.
 
[8]  Van Kampen,N., The S-matrix and the causality condition. II. Non-relativistic particles., 91 (1953)1267-1276.
 
[9]  Olkhovsky, V.S. and Tsekhmistrenko,Yu.V., On the analytical structure of the S-function of elastic scattering in the case of infinite potentials, Ukrainian Physical Journal, 6(1961)149-156 (in Ukrainian, abstract in English; partially in English); see also Theor.and Math.Physics, 147(2006)539-551, Appendix 1, pp.547-549.
 
[10]  Olkhovsky,V.S., To the study of properties of the unitary and non-unitary S-matrix on the base of caysality and the completeness conditions for wave functions, Teor.Matem.Fiz, 20(1974) 211-222.
 
[11]  Nikolayev,M.V., and Olkhovsky,V.S., On the analytical Structure of the S-matrix for some classes of potentials, Teor.Mat.Fiz., 31(1977)214.
 
[12]  Nikolayev,M.V., and Olkhovsky,V.S., On Completeness of Radial Equation Solutions and S-matrix Singularities in case of Complex Potentials, Lett.al Nuovo Cimento, 8(1973)703-707.
 
[13]  Olkhovsky,V.S., and Zaichenko,A.K., Analytical properties and resonance structure of the S-matrix in case of non-central and parity-violating interactions, Nuovo Cim., A63(1981)155-170.
 
[14]  Baldo,M., and Olkhovsky,V.S., Analytical properties of the S-matrix for interactions with Yukawa-potential tails, Theor. Mathem.Phys., 147 (2006)539-551
 
[15]  Olkhovsky,V.S., On the analytic properties of the S-matrix for the unknown interactions surrounded by centrifugal and rapidly decreasing potentials, Central Eur. J. Phys., 2011,v.9, N1,13-44.
 
[16]  Saavedra,I., Dispersion relations, “causal” inequalities and the completeness of the set of eigen-states in non-relativistic potential scattering, Nucl.Phys., 29(1962)137-152; Completeness, unitarity, and dispersion relations in potential scattering, Nucl.Phys., 87(1966) 267-272.
 
[17]  R.Newton, Scattering Theory of Waves and Particles, McGRAW-HILL BOOK COMPANY, New Yorl–San Francisco–St.Louis–Toronto–London–Sydney, 1969.
 
[18]  Gasymov, M.G., On the expansion over eigen functions og non-self-adjoint boundary-value problem for the differential equation with a singularity in zero, Doklady AN SSSR, 165(1965)261-264.
 
[19]  Bertero, M., and Dillon,G., An outline of scattering theory for absorptive potentials, Nuovo Cim., A2(1971)1024-1038.
 
[20]  V.De Alfaro, and T.Redge, Potential scattering, North-Holland Publish.Company, Amsterdam, 1965.
 
[21]  E.C. Titchmarsh, The Theory of Functions, Oxford University Press, 1939.
 
[22]  Jost, R., Uber die falschen Nullstellen der Eigenwerte der S-matrix, Helv.Phys.Acta, XX (1947)256-266.
 
[23]  Ma, S., Phys.Rev., On a General Condition of Heisenberg foe the S-matrix, 71(1947) 195-200.
 
[24]  I.S.Gradstein and I.M.Ryzhik: Tables of Integrals, Sums, Series, and Products (Moscow, Fizmatgiz,1963) [in Russian]; English translat.: Tables of Integrals, Sums, Series, and Products, Acad.Press, New York(1965).
 
[25]  A.S.Davydov, Theory of atomic nucleus, Fizmatgiz, Moscow (in Russian), 1958.
 
[26]  Simonius,M., Overlapping resonances and unitarity of the scattering S-matrix, Nucl.Phys., A218(1974)53-60.
 
[27]  Olkhovsky,V.S., Nucl.Phys., A425 (1984)445-457 D’Arrigo,A., Giardina,G., Olkhovsky,V.S., et al, Internat. J. Mod. Phys., E2(1993)809-820.
 
[28]  Smith, F.T., Phys.Rev., 118 (1960) 349; Phys.Rev.,119 (1960) 2098.
 
[29]  Lyuboshitz, V.L., Phys.Lett.,B, 72N1(1977)41; Lyuboshitz, V.L., Sov.J.Nucl.Phys., 27(1978)502; Lyuboshitz, V.L., JETP Lett.,28:1(1978)32;
 
[30]  Baz’, A.I.,JETP Lett.,27:2(1978)132-135}.
 
[31]  V.S.Olkhovsky, Time as a quantum observable, canonically conjugate to energy. Time analysis of quantum processes of tunneling and collisions (nuclear reactions) [LAP LAMBERT Academic publishing, 177 pages, 2012]
 
[32]  Gosset, J., Gutbrod, H., Meyer, W. et al, Phys.Rev.,C16(1977)629.
 
[33]  Westfall, G., Sexstro, R., Poskanzer, A. et al, Phys.Rev.,C17 (1978)1368.
 
[34]  Cumming, J., Haustein, P.,Ruth, T. et al, Phys.Rev., C17( 1978) 1632.
 
[35]  Kaufman, S., Steinberg, E., Phys.Rev.,C17(1980)167.
 
[36]  Fortney, D., Porile, N., Phys.Rev.,C21(1980)2511.
 
[37]  Sandoval, A.,Gutbrod, H., Meyer, W. et al, Phys.Rev., C21(1980)1321.
 
[38]  Danielewicz, P., Pan, O., Phys.Rev.,C46(1992)2002.
 
[39]  Alba, R., Coniglione, R., Del Zoppo, A. et al,Phys. Lett., B322 (1994)38.
 
[40]  Chen, K., Fraenkel, Z., Friedlander, G., et al, Phys.Rev., 166 (1968) 949.
 
[41]  Amsden, Antony A., Goldhaber, Alfred S., Harlow, Francis H., and Rayford, Nix J., Phys.Rev., C17 (1978)2080-2096.
 
[42]  Izumo, Ko, Araseki, H., Progr. Theor. Phys., 69 (1983)158-170.
 
[43]  Goto, T., Yamaguchi, K. and Sudo, N., Progr. Theor. Phys., 64 (1980)1-17.
 
[44]  Olkhovsky,V.S., Dolinska,M.D., Omelchenko,S.A., Central Eur. J. Phys., 4(2006)1-18;
 
[45]  Olkhovsky,V.S., Dolinska,M.D., Omelchenko, S.A., Central Europ. J.Phys.,9:N4(2011) 1131-1133.
 
[46]  Westfall, G.D., Gosset, J., Johansen, J. et al, Phys.Rev. Lett., 18: 37(1976) 1202.
 
[47]  Gosset, J., Kapusta, J.I.,Westfall, G.D., Phys.Rev.,C18(1978)844.
 
[48]  Prilepsky, Yu., Shmonin, V.,Acta Phys.Polon.B 18(1987)729.
 
[49]  Olkhovsky, V.S., Sov. J. Part. Nucl.,151(1984)30-148.
 
[50]  Olkhovsky, V.S., Doroshko, N.L., Europhys. Lett., 18 (1992) 483.
 
[51]  D’ Arrigo, A., Doroshko, N.L., Eremin, N.V., Olkhovsky, V.S. et al, Nucl. hys., A, 549 (1992)375.
 
[52]  D’Arrigo, A., Doroshko, N.L., Eremin, N.V., Olkhovsky, V.S. et al, Nucl. Phys., A, 564 (1993)217.
 
[53]  Kelkar, N.G., J. Phys. G: Nucl. Par. Phys., 29 (2003) L 1-L 8.
 
[54]  Kelkar, N.G., Nowakowski, M. and Khemchandani, K.P., Nucl. Phys., A 724 (2003) 357; Kelkar, N.G., Nowakowski, M. and Khemchandani, K.P. and Jain, B.K., Nucl. Phys., A730 (2004) 121.
 
[55]  Kelkar, N.G., Khemchandani, K.P. and Jain, B.K., J. Phys. G: Nucl. Part. Phys., 32: 3 (2006) L 19.
 
[56]  Prokopets, G.A., Nuclear Physics (Russia), volume 74 (2011), p. 740-746.
 
[57]  Eremin, N.V., Giardina, G., Olkhovsky, V.S., Omelchenko, S.A., Mod. Phys. Lett., A, 9 (1994) 2849.
 
[58]  Olkhovsky, V.S., Dolinska, M.E., Omelchenko, S.A. and Romanyuk, M.V., Internat. J. Mod. Phys. E, 19: 5-6 (2010), рр. 1212-1219.
 
[59]  Olkhovsky, V.S., Dolinska, M.E., Omelchenko, S.A., arXiv. 1101. 5541v1 [nucl-th], Jan. 2011; Appl. Phys. Let., 99 (2011) 244103 (1-3).
 
[60]  Olkhovsky, V.S., Dolinska, M.E., Omelchenko, S.A., On the cross section and duration of the neutron- nucleus scattering with a resonance, distorted by a non-resonant background, in the center-of-mass system and laboratory system, Proc. of the 4-th Internat.Conf. Current Problems in Nuclear Physics and Atomic Energy (NPAE-2012, sept. 3-7, 2012, Kyiv, Ukraine), Kyiv 2013, pp. 198-201.
 
[61]  Olkhovsky, V.S., Sov. J. Particles Nucl.(Engl. Transl.);(United States), 1984, v. 15, (2), p. 130-148; Olkhovsky, V.S., Time as a Quantum Observable, Canonically Conjugated to Energy, and Foundations of Self-Consistent Time Analysis of Quantum Processes, Advances in Math. Phys., vol. 2009 (2009), аrticle ID 859710, 83 pages.
 
[62]  Olkhovsky, V.S., Doroshko, N.L., Lokotko, T.I., On the cross section and duration of the neutron-nucleus scattering with two overlapped resonances in the center-of-mass system and laboratory system, Proc. of the 4-th Internat. Conf. Current Problems in Nuclear Physics and Atomic Energy (NPAE-2012, sept. 3-7, 2012, Kyiv, Ukraine), Kyiv 2013, pp. 192-197.
 
[63]  The JEFF – 3.1.1. Nuclear Data Library, OECD NEA/NEA 2009; EXFOR 13759.002, J.A. Harvey, D.C. Larson, ORNL, 1974.
 
[64]  Brusegan, A., Rohr, G., Shelley, R., Macavero, E., Van Der Vorst, C., Poortmans, F., Mewissen, I., Vanpraet, G., Very high resolution transmission measurements and resonance parameters of Ni 58 and Ni60, 1994.
 
[65]  Olkhovsky, V.S., Zaichenko, A.K., Phys. Lett. B 272 (1991) 183-185.
 
[66]  D’ Arrigo, A., Fazio, G., Giardina, G. et al. Progress of Theor. Phys. 87 (1992) 1359-1365.
 
[67]  Kopylov, G.I., Podgoretskij, M.I., Sov. J. Nucl. Phys. 15 (1972) 219-223.
 
[68]  M.L. Goldberger, K.M. Watson, Collision Theory. Wiley J. & Son Inc., 1964.
 
[69]  A.I. Baz, Ya.B. Zel’ dovich, A.M. Perelomov, Scattering, Reaction in Non-Relativistic Quantum Mechanics. Jerusalem, 1969.
 
[70]  Rosenfeld, L., Nucl. Phys. 70 (1965) 1-27.
 
Show Less References

Article

Effect of Space Charge Rotation with Kapchinskiy-Vladimirskiy Distribution Function in Quadrapole

1Research School of Plasma Physics and Nuclear Fusion, Tehran-Iran

2Physics Department, Azad Islamic University, Central Tehran Branch, Tehran, Iran

3Physic Department, Azad Islamic Yazd University, Yazd, Iran & School of Particles and Accelerators, Institute for Research in Fundamental Sciences (IPM), ehran, Iran


International Journal of Physics. 2014, 2(2), 37-40
DOI: 10.12691/ijp-2-2-3
Copyright © 2014 Science and Education Publishing

Cite this paper:
N. Morshedian, A. Aminzadeh, N. Abtahi, S. Atashbar Tehrani. Effect of Space Charge Rotation with Kapchinskiy-Vladimirskiy Distribution Function in Quadrapole. International Journal of Physics. 2014; 2(2):37-40. doi: 10.12691/ijp-2-2-3.

Correspondence to: N.  Morshedian, Research School of Plasma Physics and Nuclear Fusion, Tehran-Iran. Email: nmorshed@aeoi.org.ir

Abstract

The effect of space charge rotation has been studied in Vlasov-Poisson potential function with KV distribution in quadrupole. Effective potential varies due to rotation and the related parameter has been obtained based on focusing and defocusing of beam particles. The changed beam plasma frequencies have been calculated in the frame of laboratory coordinates. Also the new Hamiltonian of the system has been derived and finally the equipotential lines, electric and magnetic fields have been obtained. The magnetic field remains without any changing, but the electric field and equipotential lines changed in static qudrupole. The result of rotational space charge in static quadrupole is comparable with rotation of quadrupole system.

Keywords

References

[[[[[[[[[[
[[1]  M. Venturini and R. L. Gluckstern, Phys. Rev. ST Accel Beams,3, 034203 (2000).
 
[[2]  A.V.Fedotov and I.Hofmann, Phys. Rev. ST Accel Beams,5, 024202 (2002).
 
[[3]  A.V.Fedotov, I.Hofmann, R.L. Glucksteam, and H.Okamoto, Phys.Rev.ST Accel Beams,6, 094201 (2003).
 
[[4]  M.Aslaninejad, I.Hofmann, Phys. Rev. ST Accel Beams,6, 124202 (2003),J. Padhye, V. Firoiu, D. Towsley, "A stochastic model of TCP Reno congestion avoidance and control", Univ. of Massachusetts, Tech. Rep. 99-02, (1999).
 
[[5]  H.Qin, M. Chung and R.C.Davidson. Phys. Rev. Lett,103, 224802 (2009).
 
Show More References
[6]  H. Qin and R. C. Davidson, Phys. Rev. Lett. 110, no. 6, 064803 (2013).
 
[7]  Klaus Wille, The Physics of, for supporing him financially for this project Particle Accelerators an introduction.
 
[8]  I. Hofmann, Phys. Rev. E,57, 4713 (1998).
 
[9]  R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scienti_c, Singapore, 2001).
 
[10]  V A Lebedev and S A Bogacz, JINST 5 P10010 (2010).
 
[11]  R.C. Fernow et al., Possible demonstration of ionization cooling using absorbers in a solenoidal field, in Proceedings of Beam Dynamics and Technology Issues for Muon Collider, Montauk New York U.S.A.,October 1520 1995 AIP Conf. Proc. 372 146 (1996).
 
[12]  T.L. Barklow et al., Commissioning experience with the SLC arcs, SLAC-PUB-5056 (1989); T.L. Barklow, P. Emma, P. Krejcik and N.J. Walker, Review of lattice measurement techniques at the SLC, SLAC-PUB-5695 (1991).
 
[13]  D. Sagan and D. Rubin, Linear analysis of coupled lattices,Phys. Rev. ST Accel. Beams 2 074001 (1999).
 
[14]  D.A. Edwards and L.C. Teng, IEEE Trans. Nucl. Sci. 20 885 (1973).
 
[15]  I. Borchardt, E. Karantzoulis, H. Mais and G. Ripken, Z. Phys. C 39 339 (1988).
 
Show Less References

Article

Neutrino Oscillations in Four-dimension Space

1Department of Physics, Faculty of science, Mazandaran University, Babolsar, Iran


International Journal of Physics. 2014, 2(2), 34-36
DOI: 10.12691/ijp-2-2-2
Copyright © 2014 Science and Education Publishing

Cite this paper:
Hossein Rahbar. Neutrino Oscillations in Four-dimension Space. International Journal of Physics. 2014; 2(2):34-36. doi: 10.12691/ijp-2-2-2.

Correspondence to: Hossein  Rahbar, Department of Physics, Faculty of science, Mazandaran University, Babolsar, Iran. Email: h.rahbar@umz.ac.ir

Abstract

Friedmann -Robertson- Walker (FRW) background used to study the oscillations of neutrino in four-dimension space. The Cauchy-Lorentz and Gaussian distribution in the base of this background used to obtain the probability of the neutrino oscillations. Finally, we pay attention to the case of associated incoherence damping coefficient of oscillation between flavors.

Keywords

References

[[[[[[[[[[[[
[[1]  J. A. Wheeler and K. Ford, Geons, "Black Holes and Quantum foam" A life in physics (1998) and references therein.
 
[[2]  R. M. Wald,Phys.Rev.D 21 (1980) 2742.
 
[[3]  N. E. Mavromatos, "lecture notes in physics", vol. 669, springer-verleg, Berlin (2005) p. 245.
 
[[4]  Y. Tanaka, Chaos, Soliton and Fractals 23 (2005) 33-41.
 
[[5]  Y. Tanaka, Y. Mizuno and T. Kado, Chaos, Soliton and Fractals 24 (2005) 407-422.
 
Show More References
[6]  Y. Tanaka, Y. Mizuno T. Kado and H. A. Zhao, Chaos Soliton and Fractals 31 (2007) 1054-1075.
 
[7]  P. C. Stavrinos, A. P. Kouretsis and M. Stathakopoulos, Gen Relativ Gravit 40 (2008)1403-1425.
 
[8]  A.Studenikin and A.Ternov, Phys.Lett.B, 608,107(2005), hep-ph/0412408; E.Lobanov, Phys.Lett.B, 608(2005) 136.
 
[9]  V.B.Berestetskii, E.M.Lifschitz and P.Pitaevskii, "Quantum electrodynamics" (Moscow, Nauka, 1989), pp.108-112.
 
[10]  C.S.Lim and W.J.Marciano, Phys.Rev.D 37 (1988)1368.
 
[11]  See pp.477-478 in Ref.[1].
 
[12]  F. Benatti and R. Floreanini, Phys. Rev. D 64 (2001) 085015.
 
[13]  N. E. Mavromatos and S. Sarkar, Phys. Rev. D 74 (2006) 036007.
 
[14]  D. Oriti, arXiv:gr-qc/0311066v1 (2003).
 
[15]  M. Dvornikov, J. Maalampi, arxiv: 0809. 0963v1[hep-ph]5 sep 2008.
 
[16]  H.Maiwa and S.Naka, arXiv:hep-ph/0401143v3 (2004).
 
[17]  N. D. Birrell and P. c. W. Davies, Cambridge, UK: University press (1982) p 340.
 
Show Less References

Article

Analysis on Hawking Radiation and Steady State Universe by Siva’s Theories

1Adviser- Centre for Innovation & Discovery, Bheemunipatnam-, India

2Employee of Jindal Steel & Power Ltd, Angul, India


International Journal of Physics. 2014, 2(2), 30-33
DOI: 10.12691/ijp-2-2-1
Copyright © 2014 Science and Education Publishing

Cite this paper:
Siva Prasad Kodukula. Analysis on Hawking Radiation and Steady State Universe by Siva’s Theories. International Journal of Physics. 2014; 2(2):30-33. doi: 10.12691/ijp-2-2-1.

Correspondence to: Siva  Prasad Kodukula, Adviser- Centre for Innovation & Discovery, Bheemunipatnam-, India. Email: sivkod@gmail.com

Abstract

Every black hole will have a singularity at its center. The mass ‘M’ and Horizon radius ‘R’ are inter related by an equation M3 = 2.914× 1038 R. As long as it remains as a stable black hole the mass ‘M’ & Horizon Radius ‘R’ will remain constant with M = 6.58×105 Kgs and R = 9.767×10-22 mts. This is the hole connecting all the singularities of the universe. These are always constant for all black holes of the universe. Heavy black holes will lose mass through this hole and will be pumped to other locations of universe to keep the density of the matter created in steady state with the expansion of the universe. The mass loss calculated is 4.953083423× 105 Kg/sec. The mass loss is almost same as that of life time of black hole in Hawking Radiation. Thus the mass loss of black hole is not through hawking radiation it is through the singularity point of black hole.

Keywords

References

[[[[[[[[
[[1]  Adam R. Brown, “Tensile Strength and the Mining of Black Holes” Phys. Rev. Lett. 111, 211301 (2013). http://arxiv.org/abs/1207.3342. [Accessed March. 1, 2014].
 
[[2]  George, F R Ellis. “Astrophysical black holes may radiate but they do not evaporate.” arXiv: 1310.4771v2 [gr-qc] 20 Oct 2013 Available: http://arxiv.org/pdf/1310.4771.pdf. [Accessed March. 2, 2014].
 
[[3]  Hawking,S.W., “Particle creation by Black holes”. commun. 43, 199 -220 (1975) maths.phys. Available: http://arxiv.org/pdf/hep-th/9203052.pdf. [Accessed March. 2, 2014].
 
[[4]  Hawking, S.W. & Penrose. The Nature of space and Time, Princeton University press, pp. 38-60, 1998.
 
[[5]  Kodukula, S.P., Double Relativity Effect &Film Theory of the Universe. Raleigh,NorthCorolina:Lulu.com, pp 13-32, 50, 2009.
 
Show More References
[6]  Kodukula S.P,Heart of the God with Grand proof Equation - A classical approach to quantum theory. Raleigh, NorthCorolina:Lulu.com, pp3-9, 6, 2009.
 
[7]  Kodukula, S.P, “Derivation of Siva’s Constant of Physics”, International Journal of Advancements in Research & Technology’, 2(1), Jan. 2013. Available: http://www.ijoart.org/docs/Derivation-of-Sivas-Constant-K-of-Physics.pdf. [Accessed March. 1, 2014].
 
[8]  Kodukula, S.P, “Siva’s Classical Equation for Space Time and Matter”, International Journal of Advancements in Research & Technology’, 2(8), Aug. 2013. Available: http://www.ijoart.org/docs/Sivas-Classical-Equation-for-Space-Time-and-Matter.pdf. [Accessed March. 1, 2014].
 
[9]  Kodukula. S.P, “Siva's Theory of Quantum Gravity”. American Journal of Modern Physics, 3(1), 16-19. Jan. 2014. [Accessed March. 1, 2014].
 
[10]  Kodukula,S.P,“Siva’s Equation for Singularity of Black Holes”. International Journal of Astrophysics and Space Science,1(4),16-19. 2013.
 
[11]  Kodukula, S.P, “New Discovery about Prediction of a Particle ‘K-Suryon’ as Basic Building Block of Mass”. International Journal of physics, 2(1), 12-14. 2013,
 
[12]  Timothy A. Davis et al., “A black-hole mass measurement from molecular gas kinematics in NGC4526” arXiv:1301.7184v1 [astro-ph.CO] 30 Jan 2013 Available: http://arxiv.org/pdf/1301.7184.pdf [Accessed March. 2, 2014].
 
[13]  H. Bondi & T. Gold, “The Steady State Theory of the Expanding Universe” Monthly Notices of Royal Astronomical Society, Vol.108, (1948). Available: http://adsabs.harvard.edu/full/1948MNRAS.108..25B [Accessed April 5,2014].
 
Show Less References

Article

Using Gamma-Ray to Determine the Homogeneity of Some Building Materials

1Department of Physics, College of Science, University of Mosul, Iraq

2Department of Physics, College of Education, University of Mosul, Iraq


International Journal of Physics. 2014, 2(1), 23-29
DOI: 10.12691/ijp-2-1-5
Copyright © 2014 Science and Education Publishing

Cite this paper:
Laith A. Najam, Ahmed K. Mheemeed, Isra.a M. Hassan. Using Gamma-Ray to Determine the Homogeneity of Some Building Materials. International Journal of Physics. 2014; 2(1):23-29. doi: 10.12691/ijp-2-1-5.

Correspondence to: Laith  A. Najam, Department of Physics, College of Science, University of Mosul, Iraq. Email: dr_laithahmed@yahoo.com

Abstract

In this paper, we use a narrow collimated beam of mono- energetic gamma rays emitted from the radioactive source 137Cs (662 keV) and the system of measuring gamma rays UCS-20 associated with the sodium iodide detector NaI (Tl) to determine the homogeneity of the building materials, Granite, Marble, Cement, Ceramic and Bricks. The homogeneity test was determined from the percentage difference between the transmitted intensity of gamma-rays and the linear attenuation coefficient at different positions for each sample of the material then the percentage of standard deviation was checked.

Keywords

References

[[[[[
[[1]  Lilley J (2001) Nuclear physics principles and application. Wiley, University of Manchester, New York.
 
[[2]  Suleiman WA, Ali S A (2005) Using beta-particle for measuring the homogeneity of rubber compound and studying the effect of compression, temperature and pressure on its homogeneity and mechanical properties. Raf J Sci 16(1):115-121.
 
[[3]  Ali S A, Suleiman W A (2006) The effect of mixing time on the homogeneity and mechanical specifications for rubber mixtures. Raf J Sci 17(1): 103-110.
 
[[4]  Moreir A C, Appoloni C R, Oliveira M V, Fernandes C P (2007) Structural Characterization of Titanium Porous Foams by Gamma Ray Transmission and X-Rays Microtomography, International Nuclear Atlantic Conference, INAC Sontos, SP, Brazel September 30 to October 5.
 
[[5]  Mheemeed A K, Hasan I H, Al-Jomaily F M(2012) Gamma-ray absorption using rubber-lead mixtures as radiation protection shields. J Radioanal Nucl Chem 291:653-659.
 
Show More References
[6]  Eaves G (1964) Principles of radiation protection, Iliffe Books Ltd, London.
 
[7]  Mavi B (2012) Experimental investigation of γ-ray attenuation coefficients for granites. Annals of Nuclear Energy 44:22-25.
 
[8]  Jameel H, Al-dayel O, Al-horayess O, Al-ajyan T (2010) Gamma ray shielding from white sand. Energy Power Eng 2(1): 6-9.
 
[9]  El-Taher A (2007) Comparative study of attenuation and scattering of gamma-rays through two intermediate rocks. Indian J Pure Appl Phys 45:198-203.
 
[10]  Murbut A, Namah A, Taki A (2000) Measurement of gamma-ray attenuation in compressed soil sample. Sci J Iraqi At Energy Comm 2(2):46-52.
 
Show Less References

Article

Unified Field Theory and Topology of Nuclei

1Wayne State University, 42 W Warren Ave, Detroit

2Shanghai Jiaotong University, Shanghai, China

3Deerfield High School, Deerfield, IL 60015


International Journal of Physics. 2014, 2(1), 15-22
DOI: 10.12691/ijp-2-1-4
Copyright © 2014 Science and Education Publishing

Cite this paper:
Zhiliang Cao, Henry Gu Cao. Unified Field Theory and Topology of Nuclei. International Journal of Physics. 2014; 2(1):15-22. doi: 10.12691/ijp-2-1-4.

Correspondence to: Zhiliang  Cao, Wayne State University, 42 W Warren Ave, Detroit. Email: williamcao12252000@yahoo.com

Abstract

Even though all isotopes for each element are well studied, the structures of their nuclei are still unknown. This paper examines the topology and stability of ground state isotopes of major elements. According to Unified Field Theory (UFT), a proton has the shape of an octahedron. The nuclei result from protons and neutrons piling up. Since the strong forces are along the axes of the octahedron of protons and neutron, the structure of ground state isotopes of any given element can be logically induced. Only two of three axes of the octahedron nucleus have strong interactive forces internally. The structure starts with one or two base squares and accumulates smaller squares along the axis of the base squares in both directions. The possible proton base structures are square shaped. For example, the Technetium nucleus has one proton too many to be symmetrical. Therefore, no stable isotopes of Technetium can be found.

Keywords

References

[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[[1]  Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109.
 
[[2]  Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127.
 
[[3]  Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298. doi: 10.11648/j.ajmp.20130206.14.
 
[[4]  Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
 
[[5]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161.
 
Show More References
[6]  Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170.
 
[7]  S.R. Beane, P.F.Bedaque,K. Orginos, M.J. Savage, Phys. Rev. Lett. 97 (2006) 012001, hep-lat/0602010.
 
[8]  N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007).
 
[9]  Noriyoshi Ishii, PoS LAT2009:019, 2009.
 
[10]  T. Yamazaki, Y. Kuramashi, A. Ukawa, Phys. Rev. D81:111504, 2010, arXiv: 0912.1383 [hep-lat].
 
[11]  H.M. Muller, S.E. Koonin, R. Seki, U. van Kolck, Phys. Rev. C61, 044320 (2000).
 
[12]  D. Lee, B. Borasoy, Th Schaefer, Phys. Rev. C 70, 014007 (2004).
 
[13]  E. Epelbaum, H. Krebs, D. Lee, U. Meissner, Eur. Phys. J. A45, 335-352, 2010.
 
[14]  D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009), arXiv: 0804.3501 [nucl-th].
 
[15]  Yukawa, Proc. Math. Soc. Jap 17 (1935) 48.
 
[16]  V.G. Stoks et al, Phys. Rev. C49 (1994) 2950.
 
[17]  R.B. Wiringa et al, Phys. Rev. C51 (1995) 38.
 
[18]  R. Machleidt, Phys. Rev. C63 (2001) 0240041.
 
[19]  H. Kamada et al, Phys. Rev. C64 (2001) 044001, S. Pieper, Nucl. Phys. A751 (2005) 516.
 
[20]  S. Weinberg, Nucl. Phys. B363 (1991) 3.
 
[21]  C. Ordonez et al, Phys. Rev. C 53 (1996) 2086.
 
[22]  E. Epelbaum, W. Glockle, U.G. Meissner, Nucl. Phys. A671 (2000) 295. 14.
 
[23]  I. Montvay and G. Munster, Quantum Fields on a Lattice, Cambridge Univ. Press (1994).
 
[24]  F. de Soto, J. Carbonell, C. Roiesnel, Ph. Boucaud, J.P. Leroy, O. Pene, Nucl. Phys. B Proc. Suppl. 164 (2007) 252.
 
[25]  Y. Saad Iterative method for sparse linear systemManchester University Press (2000).
 
[26]  F. de Soto, J. Carbonell, C. Roiesnel, Ph. Boucaud, J.P. Leroy, O. Pene, Eur. Phys. J A31, 777 (2007); hep-lat/0610084.
 
[27]  F. de Soto, J. Carbonell, C. Roiesnel, Ph. Boucaud, J.P. Leroy, O. Pene, Nucl. Phys. A 790 (2007) 410; hep-lat/0610086.
 
[28]  T. Nieuwenhuis, J.A. Tjon, Phys. Rev. Lett. 77 (1996) 814.
 
[29]  J. Polonyi, J. Shigemitsu, Phys.Rev. D38 (1988) 3231; I. Lee, J. Shigemitsu and R.E. Shrock, Nucl. Phys. B330 (1990) 225; I. Lee, J. Shigemitsu and R.E. Shrock, Nucl. Phys. B334 (1990) 265.
 
[30]  P. Gerhold, K, Jansen, JHEP 0710:001, 2007, hep-lat 0707.3849.
 
[31]  P. Gerhold, K. Jansen, JHEP 1004:094, 2010, [hep-lat] 1002.4336.
 
[32]  von Weizsäcker, C. F. (1935). “Zur Theorie der Kernmassen”. Zeitschrift für Physik (in German) 96 (7-8): 431-458.
 
[33]  Bailey, D. “Semi-empirical Nuclear Mass Formula”. PHY357: Strings & Binding Energy. University of Toronto. Retrieved 2011-03-31.
 
[34]  Krane, K. (1988). Introductory Nuclear Physics. John Wiley & Sons. p. 68.
 
[35]  Wapstra, A. H. (1958). “Atomic Masses of Nuclides”. External Properties of Atomic Nuclei. Springer. pp. 1-37.
 
[36]  Rohlf, J. W. (1994). Modern Physics from a to Z0. John Wiley & Sons.
 
[37]  “Technetium: technetium(I) fluoride compound data”. OpenMOPAC.net. Retrieved 2007-12-10.
 
[38]  Jonge, F. A. A.; Pauwels, EK (1996). “Technetium, the missing element”. European Journal of Nuclear Medicine 23 (3): 336-44.
 
[39]  Holden, N. E. “History of the Origin of the Chemical Elements and Their Discoverers”. Brookhaven National Laboratory. Retrieved 2009-05-05.
 
[40]  Yoshihara, H. K. (2004). “Discovery of a new element 'nipponium': re-evaluation of pioneering works of Masataka Ogawa and his son Eijiro Ogawa”. Atomic spectroscopy (Spectrochim. Acta, Part B) 59 (8): 1305-1310.
 
[41]  van der Krogt, P. “Elentymolgy and Elements Multidict, “Technetium”“. Retrieved 2009-05-05.
 
[42]  Emsley 2001, p. 423.
 
[43]  Armstrong, J. T. (2003). “Technetium”. Chemical & Engineering News. doi:10.1021/cen-v081n036.p110. Retrieved 2009-11-11.
 
[44]  Nies, K. A. (2001). “Ida Tacke and the warfare behind the discovery of fission”. Retrieved 2009-05-05.
 
[45]  Weeks, M. E. (1933). “The discovery of the elements. XX. Recently discovered elements”. Journal of Chemical Education 10 (3): 161-170.
 
[46]  Zingales, R. (2005). “From Masurium to Trinacrium: The Troubled Story of Element 43”. Journal of Chemical Education 82 (2): 221-227.
 
[47]  Heiserman 1992, p. 164.
 
[48]  Segrè, Emilio (1993). A Mind Always in Motion: the Autobiography of Emilio Segrè. Berkeley, California: University of California Press. pp. 115-118.
 
[49]  Perrier, C.; Segrè, E. (1947). “Technetium: The Element of Atomic Number 43”. Nature 159 (4027): 24.
 
[50]  Emsley, J. (2001). Nature's Building Blocks: An A-Z Guide to the Elements. New York: Oxford University Press. pp. 422-425.
 
[51]  “Chapter 1.2: Early Days at the Berkeley Radiation Laboratory”. The transuranium people: The inside story. University of California, Berkeley & Lawrence Berkeley National Laboratory. 2000. p. 15.
 
[52]  Merrill, P. W. (1952). “Technetium in the stars”. Science 115 (2992): 479-89 [484].
 
[53]  Dan O'Leary “The deeds to deuterium” Nature Chemistry 4, 236 (2012). doi:10.1038/nchem.1273. “Science: Deuterium v. Diplogen”. Time. 19 February 1934.
 
[54]  Hartogh, Paul; Lis, Dariusz C.; Bockelée-Morvan, Dominique; De Val-Borro, Miguel; Biver, Nicolas; Küppers, Michael; Emprechtinger, Martin; Bergin, Edwin A. et al. (2011). “Ocean-like water in the Jupiter-family comet 103P/Hartley 2”. Nature 478 (7368): 218-220.
 
[55]  Hersant, Franck; Gautier, Daniel; Hure, Jean-Marc (2001). “A Two-dimensional Model for the Primordial Nebula Constrained by D/H Measurements in the Solar System: Implications for the Formation of Giant Planets”. The Astrophysical Journal 554: 391.
 
[56]  Nomenclature of Inorganic Chemistry. Chemical Nomenclature and Structure Representation Division, IUPAC. Retrieved 2007-10-03.
 
[57]  Hébrard, G.; Péquignot, D.; Vidal-Madjar, A.; Walsh, J. R.; Ferlet, R. (7 Feb 2000), Detection of deuterium Balmer lines in the Orion Nebula
 
[58]  Weiss, Achim. “Equilibrium and change: The physics behind Big Bang Nucleosynthesis”. Einstein Online. Retrieved 2007-02-24.
 
[59]  IUPAC Commission on Nomenclature of Inorganic Chemistry (2001). “Names for Muonium and Hydrogen Atoms and their Ions” (PDF). Pure and Applied Chemistry 73 (2): 377-380.
 
[60]  “Cosmic Detectives”. The European Space Agency (ESA). 2 April 2013. Retrieved 2013-04-15.
 
[61]  Lucas, L. L. and Unterweger, M. P. (2000). “Comprehensive Review and Critical Evaluation of the Half-Life of Tritium”. Journal of Research of the National Institute of Standards and Technology 105 (4): 541.
 
[62]  Nuclide safety data sheet: Hydrogen-3. ehso.emory.edu.
 
[63]  Zerriffi, Hisham (January 1996). “Tritium: The environmental, health, budgetary, and strategic effects of the Department of Energy's decision to produce tritium”. Institute for Energy and Environmental Research. Retrieved 2010-09-15.
 
[64]  Jones, Greg (2008). “Tritium Issues in Commercial Pressurized Water Reactors”. Fusion Science and Technology 54 (2): 329-332.
 
[65]  ublette, Carey (2006-05-17). “Nuclear Weapons FAQ Section 12.0 Useful Tables”. Nuclear Weapons Archive. Retrieved 2010-09-19.
 
[66]  Whitlock, Jeremy. “Section D: Safety and Liability – How does Ontario Power Generation manage tritium production in its CANDU moderators?” Canadian Nuclear FAQ. Retrieved 2010-09-19.
 
[67]  “Tritium (Hydrogen-3) – Human Health Fact sheet”. Argonne National Laboratory. August 2005. Retrieved 2010-09-19.
 
[68]  Serot, O.; Wagemans, C.; Heyse, J. (2005). “New Results on Helium and Tritium Gas Production From Ternary Fission”. International conference on nuclear data for science and technology. AIP Conference Proceedings 769: 857-860.
 
[69]  Fa WenZhe & Jin YaQiu (December 2010). “Global inventory of Helium-3 in lunar regoliths estimated by a multi-channel microwave radiometer on the Chang-E 1 lunar satellite”.
 
[70]  Slyuta, E. N.; Abdrakhimov, A. M.; Galimov, E. M. (March 12-16, 2007). “The Estimation of Helium-3 Probable Reserves in Lunar Regolith”. 38th Lunar and Planetary Science Conference. p. 2175.
 
[71]  Cocks, F. H. (2010). “3He in permanently shadowed lunar polar surfaces”. Icarus 206 (2): 778-779.
 
[72]  Oliphant, M. L. E.; Harteck, P.; Rutherford, E. (1934). “Transmutation Effects Observed with Heavy Hydrogen”. Proceedings of the Royal Society A 144 (853): 692-703.
 
[73]  “Lawrence and His Laboratory: Episode: A Productive Error”. Newsmagazine Publication. 1981. Retrieved 2009-09-01.
 
[74]  Osheroff, D. D.; Richardson, R. C.; Lee, D. M. (1972). “Evidence for a New Phase of Solid He3”. Physical Review Letters 28 (14): 885-888.
 
[75]  Osheroff, D. D.; Gully, W. J.; Richardson, R. C.; Lee, D. M. (1972). “New Magnetic Phenomena in Liquid He3 below 3 mK”. Physical Review Letters 29 (14): 920-923.
 
[76]  Leggett, A. J. (1972). “Interpretation of Recent Results on He3 below 3 mK: A New Liquid Phase?”. Physical Review Letters 29 (18): 1227-1230.
 
[77]  Leawoods, Jason C.; Yablonskiy, Dmitriy A.; Saam, Brian; Gierada, David S.; Conradi, Mark S. (2001). “Hyperpolarized 3He Gas Production and MR Imaging of the Lung”. Concepts in Magnetic Resonance 13: 277-293.
 
[78]  Simpson, J.A.; Weiner, E.S.C. (1989). “Hydrogen”. Oxford English Dictionary 7 (2nd ed.). Clarendon Press.
 
[79]  “Hydrogen”. Van Nostrand's Encyclopedia of Chemistry. Wylie-Interscience. 2005. pp. 797-799.
 
[80]  Emsley, John (2001). Nature's Building Blocks. Oxford: Oxford University Press. pp. 183-191.
 
[81]  Stwertka, Albert (1996). A Guide to the Elements. Oxford University Press. pp. 16-21.
 
[82]  Wiberg, Egon; Wiberg, Nils; Holleman, Arnold Frederick (2001). Inorganic chemistry. Academic Press. p. 240.
 
[83]  “Magnetic susceptibility of the elements and inorganic compounds”. CRC Handbook of Chemistry and Physics (81st ed.). CRC Press.
 
[84]  Palmer, D. (13 September 1997). “Hydrogen in the Universe”. NASA. Retrieved 2008-02-05.
 
[85]  Presenter: Professor Jim Al-Khalili (2010-01-21). “Discovering the Elements”. Chemistry: A Volatile History. 25:40 minutes in. BBC. BBC Four.
 
[86]  “Hydrogen Basics — Production”. Florida Solar Energy Center. 2007. Retrieved 2008-02-05.
 
[87]  Rogers, H.C. (1999). “Hydrogen Embrittlement of Metals”. Science 159 (3819): 1057-1064.
 
[88]  Christensen, C.H.; Nørskov, J.K.; Johannessen, T. (9 July 2005). “Making society independent of fossil fuels — Danish researchers reveal new technology”. Technical University of Denmark. Retrieved 2008-03-28. [dead link].
 
[89]  “Dihydrogen”. O=CHem Directory. University of Southern Maine. Retrieved 2009-04-06.
 
[90]  Carcassi, M.N.; Fineschi, F. (2005). “Deflagrations of H2–air and CH4–air lean mixtures in a vented multi-compartment environment”. Energy 30 (8): 1439-1451.
 
[91]  Committee on Alternatives and Strategies for Future Hydrogen Production and Use, US National Research Council, US National Academy of Engineering (2004). The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. National Academies Press. p. 240.
 
[92]  Patnaik, P (2007). A comprehensive guide to the hazardous properties of chemical substances. Wiley-Interscience. p. 402.
 
[93]  Clayton, D.D. (2003). Handbook of Isotopes in the Cosmos: Hydrogen to Gallium. Cambridge University Press.
 
[94]  Millar, Tom (December 10, 2003). “Lecture 7, Emission Lines — Examples”. PH-3009 (P507/P706/M324) Interstellar Physics. University of Manchester. Retrieved 2008-02-05.
 
[95]  Stern, David P. (2005-05-16). “The Atomic Nucleus and Bohr's Early Model of the Atom”. NASA Goddard Space Flight Center (mirror). Retrieved 2007-12-20.
 
[96]  “Beryllium: Beryllium (I) Hydride compound data”. bernath.uwaterloo.ca. Retrieved 2007-12-10.
 
[97]  Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. p. 14.48.
 
[98]  Jakubke, Hans-Dieter; Jeschkeit, Hans, eds. (1994). Concise Encyclopedia Chemistry. trans. rev. Eagleson, Mary. Berlin: Walter de Gruyter.
 
[99]  Puchta, Ralph (2011). “A brighter beryllium”. Nature Chemistry 3 (5): 416.
 
[100]  Behrens, V. (2003). “11 Beryllium”. In Beiss, P. Landolt-Börnstein – Group VIII Advanced Materials and Technologies: Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials 2A1. Berlin: Springer. pp. 1-11.
 
[101]  Hausner, Henry H (1965). “Nuclear Properties”. Beryllium its Metallurgy and Properties. University of California Press. p. 239.
 
[102]  Ekspong, G. (1992). Physics: 1981–1990. World Scientific. pp. 172 ff.
 
[103]  Emsley 2001, p. 56.
 
[104]  “Beryllium: Isotopes and Hydrology”. University of Arizona, Tucson. Retrieved 10 April 2011.
 
[105]  Whitehead, N; Endo, S; Tanaka, K; Takatsuji, T; Hoshi, M; Fukutani, S; Ditchburn, Rg; Zondervan, A (Feb 2008). “A preliminary study on the use of (10)Be in forensic radioecology of nuclear explosion sites”. Journal of environmental radioactivity 99 (2): 260-70.
 
[106]  Boyd, R. N.; Kajino, T. (1989). “Can Be-9 provide a test of cosmological theories?”. The Astrophysical Journal 336: L55.
 
[107]  Dye, J. L. (1979). “Compounds of Alkali Metal Anions”. Angewandte Chemie International Edition 18 (8): 587-598.
 
[108]  James, A. M.; Lord, M. P. (1992). Macmillan's chemical and physical data. London: Macmillan.
 
[109]