##### You are here:

International Journal of Physics

## Article

# Consideration and the Refinement of Some Laws and Concepts of Classical Electrodynamics and New Ideas in Modern Electrodynamics

^{1,}

^{1}B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS Ukraine, 47 Lenin Ave., Kharkov, 61164, Ukraine

*International Journal of Physics*.

**2014**, 2(6), 231-263

**DOI:**10.12691/ijp-2-6-8

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

F.F. Mende. Consideration and the Refinement of Some Laws and Concepts of Classical Electrodynamics and New Ideas in Modern Electrodynamics.

*International Journal of Physics*. 2014; 2(6):231-263. doi: 10.12691/ijp-2-6-8.

Correspondence to: F.F. Mende, B.I. Verkin Institute for Low Temperature Physics and Engineering, NAS Ukraine, 47 Lenin Ave., Kharkov, 61164, Ukraine. Email: mende_fedor@mail.ru

## Abstract

^{2}/c

^{2}terms. The permittivity and permeability of materials media are shown to be independent of frequency. The notions magnetoelectrokinetic and electromagnetopotential waves and kinetic capacity have been introduced. It is shown that along with the longitudinal Langmuir resonance, the transverse resonance is possible in nonmagnetized plasma, and both the resonances are degenerate. A new notion scalar-vector potential is introduced, which permits solution of all present-day problems of classical electrodynamics. The use of the scalar-vector potential makes the magnetic field notion unnecessary.

## Keywords

## References

[1] | R. Feynman, R. Leighton, M. Sends, Feynman lectures on physics, М:, Mir, Vol.6, 1977. | ||

[2] | V.V. Nicolsky, T.I. Nicolskaya, Electrodynamics and propagation of radio waves, Moscow, Nauka,1989. | ||

[3] | J. Jackson, Classical Electrodynamics, Mir, Moscow, 1965. | ||

[4] | F.F. Mende, A.I. Spitsyn, Surface impedance in superconductors, Kiev, Naukova Dumka, 1985. | ||

[5] | F. F. Mende, On refinement of equations of electromagnetic induction, – Kharkov, deposited in VINITI, No 774-B88 Dep., 1988. | ||

[6] | A. F. Aleksandrov, L.S. Bogdankevich, A. A. Rukhdze, Oscillations and waves in plasma media, Moscow University Publishers, 1990. | ||

[7] | L. D. Landau, E.M. Lifshits, Electrodynamics of continuous media. Moscow. 1973. | ||

[8] | V. L. Ginzburg, The propagation of electromagnetic waves in a plasma. - M .: Science. 1967. | ||

[9] | A. I. Akhiezer, Plasma Physics Nauka, Moscow, 1974. | ||

[10] | L. A. Artsimovich As every physicist should know about plasma. M .: Atomizdat, 1976. | ||

[11] | F. F. Mende, Role and place of the kinetic inductance of charges in classical electrodynamics, Engineering Physics, №11, 2012. | ||

[12] | F. F. Mende, Transverse Plasma Resonans Mode in an Nonmagnetized Plasma and Its Practical Applications, American Journal of Electrical and Electronic Engineering, Vol. 2, No. 5, (2014), 152-158 . | ||

[13] | F.F. Mende, On refinement of certain laws of classical electrodynamics, arXiv.org/abs/physics/0402084. | ||

[14] | F. F. Mende, Are there errors in modern physics. Kharkov, Constant, 2003. | ||

[15] | F. F. Mende, Conception of the scalar-vector potential in contemporary electrodynamics, arXiv.org/abs/physics/0506083. | ||

[16] | F. F. Mende, Transversal plasma resonance in a nonmagnetized plasma and possibilities of practical employment of it, arXiv.org/abs/physics/0506081. | ||

[17] | F. F. Mende, Consistent electrodynamics and the threat of nuclear Space terrorism. Kharkov NTMT, 2008. | ||

[18] | F. F. Mende New electrodynamics. Revolution in the modern physics. Kharkov, NTMT, 2012. | ||

[19] | F. F. Mende, Electric kinetic capacity. Engineering Physics, №3, 2013. | ||

[20] | V. V.Nicolsky, T. I. Nicolskaya, Electrodynamics and propagation of radio waves, Moscow, Nauka, 1989. | ||

[21] | W. F. Edwards, C. S. Kenyon, D. K. Lemon, Continuing investigation into possible electric arising from steady conduction current, Phys. Rev. D 14, 922, 1976. | ||

[22] | Roser W.G.V. Second-Order Electric Field due to a Conducting Curent. American Journal of Physics, 1962, v. 30, №7, p. 509-511. | ||

[23] | Don A. Baker. Second-Order Electric Field due to a Conducting Curent. American Journal of Physics, 1964, v.32, № 2, p. 153-157. | ||

[24] | F. F. Mende, On secondary electric fields excited at direct currents flowing through superconductors. – Kharkov, deposited in VINITI 05.11.92. No. 3182-B92. Dep., 1992. | ||

[25] | F. F. Mende, Experimental corroboration and theoretical interpretation of dependence of charge velocity on DC flow velocity through superconductors. Proceedings International Conference “Physics in Ukraine”, Kiev 22-27 June, 1993. | ||

[26] | F. F. Mende, A New Tipe of Contact Potential Difference and Electrification of Superconducting Coils and Tori, American Journal of Electrical and Electronic Engineering, Vol. 2, No. 5, 2014, 146-151. | ||

## Article

# Carl Sagan’s Conjecture of a Message in π

^{1,}

^{1}B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom

*International Journal of Physics*.

**2014**, 2(6), 264-266

**DOI:**10.12691/ijp-2-6-9

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Arne Bergstrom. Carl Sagan’s Conjecture of a Message in π.

*International Journal of Physics*. 2014; 2(6):264-266. doi: 10.12691/ijp-2-6-9.

Correspondence to: Arne Bergstrom, B&E Scientific Ltd, Seaford BN25 4PA, United Kingdom. Email: arne.bergstrom@physics.org

## Abstract

*Contact*, the astrophysicist Carl Sagan hypothesized an alien message to be buried somewhere deep inside the numerical representation of the transcendental number π. The present article looks for markers that might possibly support such a hypothesis, and surprisingly finds a sequence of seven successive zeros (actually seven successive nines rounded off) at a depth of 3256 digits into the representation of 2π in the special case of base ten. Finding such a sequence of zeros within the first 1000 digits has a probability of 1 in 10000. No such occurrences happen even remotely for 2π at any base other than ten, nor even remotely in corresponding representations of other common transcendental numbers, such as

*e*, which appear in physical applications. In π, this occurrence thus also remarkably appears at a depth that is a multiple of the same power of two as bits in a computer byte, which thus makes it even more enigmatic. Still, these effects are most probably just numerical coincidences without physical relevance.

## Keywords

## References

[1] | C. Sagan, Contact, (Century Hutchinson Ltd, 1986). | ||

[2] | H. S. M. Coxeter, Non-Euclidean Geometry (Univ. Toronto Press 1942, reissued 1998 by Mathematical Assoc. of America). | ||

[3] | http://en.wikipedia.org/wiki/ Elliptic_geometry retrieved 2014-11-02. | ||

[4] | http://en.wikipedia.org/wiki/Hyperbolic_geometry retrieved 2014-11-02. | ||

[5] | M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, P. DeMarco, Maple 7 Programming Guide (Waterloo Maple, 2001). | ||

[6] | http://www.exploratorium.edu/pi/pi_archive/Pi10-6.html http://www.piday.org/million/ retrieved 2014-11-02. | ||

[7] | U.-G. Meissner et al., “Life on earth – An accident? Chiral symmetry and the anthropic principle”, International Journal of Modern Physics E 23, 1461005 (2014). | ||

## Article

# Outstanding Outcomes from a Recent Theory of Gravity

^{1,}

^{1}51 A, S.P. 57 Accesso a M. 03017 Morolo Italy

*International Journal of Physics*.

**2014**, 2(6), 267-276

**DOI:**10.12691/ijp-2-6-10

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Sandro Antonelli. Outstanding Outcomes from a Recent Theory of Gravity.

*International Journal of Physics*. 2014; 2(6):267-276. doi: 10.12691/ijp-2-6-10.

Correspondence to: Sandro Antonelli, 51 A, S.P. 57 Accesso a M. 03017 Morolo Italy. Email: antonelli41@live.it

## Abstract

## Keywords

## References

[1] | Ferrarese, G.: Lezioni di Relatività Generale, chap.1,, §5 and §7. Pitagora Editrice, Bologna, 2001; also for details.: Ferrarese, G.., Stazi, L.: Lezioni di Meccanica Razionale vol.1 Ch.1,4.7 Pitagora Ed., Bologna, 1989. | ||

[2] | Cattaneo, C., Introduction à la Théorie Macroscopique des Fluides Relativistes, Lectures held at the Collège de France, italian translation, Pitagora Ed. Bologna, 1980. | ||

[3] | Ferrarese, G., “Compatibility Conditions in Relativistic Continuum Dynamics”, in “Advances in modern continuum dynamics, Proc. of the Int. Conf. At Elba Island””, G.Ferrarese Ed., Bologna, Pitagora, 1992, pp.161-172. | ||

[4] | Ferrarese, G., Stazi, L., Lezioni di Meccanica Razionale vol 2 chap.VIII, §1.9-10, Pitagora Ed., Bologna, 1989, pp. 591-598.(cf. also Ferrarese,G.: Lezioni di Meccanica superiore, Veschi. Roma, 1968-off printing.) | ||

[5] | Ferrarese, G., Stazi, L., “Il teorema di Lagrange nei fluidi perfetti relativistici”, Rendiconti di Matematica 3, 1989, pp. 409-421. | ||

[6] | Ferrarese, G., Stazi, L., Lezioni di Meccanica Razionale vol 2 chap.VIII, §3.2, Pitagora Ed., Bologna, 1989, pp. 616-619. | ||

[7] | Sokolnikoff, I.S., Tensor Analysis, Chap. 6, §105, Wiley, New York, 1951. | ||

[8] | Tailherer, M., “A Critical reading on the theory of gravitational wave propagation”, Journal of Physical & Natural Sciences, Vol.1, Issue 1, 2007 . [Online]. www.scientificjournals.org/journals2007/articles/1085.pdf. | ||

[9] | Ohanian, H.C., Ruffini, R., Gravitation and Spacetime, Chap. 6.6; 5.2. W.W. Norton & Company, 1994. | ||

[10] | Weisberg J. M., Taylor, J. H., “Relativistic binary pulsar B1913+16: thirty years of observations and analysis”, arXiv: astro-ph/0407149 v1, 2004. [Online]. | ||

[11] | Peters, P.C., Mathews, J., “Gravitational radiation for point masses in a keplerian orbit”, Physical Review, 131, 1963, 435-440. | ||

[12] | Herzog,T.H.,Kwiat,P.G., et al., Phys. Rev. Letters, 75: 3034, 1995. | ||

[13] | Gasiorowicz,S., Quantum Physics, 3th edition, Ch. 20.2 , Wiley, N.Y., 2003. | ||

[14] | Loinger, A., “GW’s towards fundamental principles of GR”, arXiv:physics/0709.0490 v1,2007, and references therein. See also arXiv:astro-ph/9904207 ,1999. [Online]. | ||

[15] | Maggiore, M., Gravitational Waves, vol. 1, §6.2.3, OUP Oxford, 2007, pp. 313.322-326. | ||

[16] | Kar, S., Sengupta, S.: The Raychaudhuri equations: A brief review, arXiv:gr-qc/061123 v1, 2006. [Online]. | ||

## Article

# Cubic Atom and Crystal Structures

^{1}Wayne State University, 42 W Warren Ave, Detroit

^{2}Shanghai Jiaotong University, Shanghai, China

^{3}Northwestern University, 633 Clark St, Evanston, IL 60208

*International Journal of Physics*.

**2014**, 2(6), 277-281

**DOI:**10.12691/ijp-2-6-11

**Copyright © 2014 Science and Education Publishing**

**Cite this paper:**

Zhiliang Cao, Henry Gu Cao. Cubic Atom and Crystal Structures.

*International Journal of Physics*. 2014; 2(6):277-281. doi: 10.12691/ijp-2-6-11.

Correspondence to: Zhiliang Cao, Wayne State University, 42 W Warren Ave, Detroit. Email: williamcao12252000@yahoo.com

## Abstract

## Keywords

## References

[1] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Configuration of Particles.” International Journal of Physics 1.6 (2013): 151-161. | ||

[2] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and Topology of Nuclei.” International Journal of Physics 2, no. 1 (2014): 15-22. | ||

[3] | Zhiliang Cao, Henry Gu Cao, Wenan Qiang, Unified Field Theory and Topology of Atom, American Journal of Modern Physics. Vol. 4, No. 4, 2015, pp. 1-7. | ||

[4] | Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298. | ||

[5] | Cao, Zhiliang, and Henry Gu Cao. “Unified Field Theory and the Hierarchical Universe.” International Journal of Physics 1.6 (2013): 162-170. | ||

[6] | Cao, Zhiliang, and Henry Gu Cao. “Non-Scattering Photon Electron Interaction.” Physics and Materials Chemistry 1, no. 2 (2013): 9-12. | ||

[7] | Cao, Zhiliang, and Henry Gu Cao. “SR Equations without Constant One-Way Speed of Light.” International Journal of Physics 1.5 (2013): 106-109. | ||

[8] | Cao, Henry Gu, and Zhiliang Cao. “Drifting Clock and Lunar Cycle.” International Journal of Physics 1.5 (2013): 121-127. | ||

[9] | Mehul Malik, Mohammad Mirhosseini, Martin P. J. Lavery, Jonathan Leach, Miles J. Padgett & + et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5. | ||

[10] | H. T. Yuan, M. B. Saeed, K. Morimoto, H. Shimotani, K. Nomura, R. Arita, Ch. Kloc, N. Nagaosa, Y. Tokura, and Y. Iwasa. Zeeman-Type Spin Splitting Controlled with an External Electric Field. Nat. Phys. 2013, 9, 563-569. | ||

[11] | A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel. “Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field.” Phys. Rev. B 84, 165325-2011, October. | ||

[12] | D. Kekez, A. Ljubiic & B. A. Logan. An upper limit to violations of the Pauli exclusion principle. Nature 348, 224-224 (1990). | ||

[13] | Zoran Hadzibabic. Quantum gases: The cold reality of exclusion. Nature Physics 6, 643-644 (2010). | ||

[14] | June Kinoshita. Roll Over, Wolfgang? Scientific American 258, 25-28 (1988). | ||

[15] | Tony Sudbery. Exclusion principle still intact. Nature 348, 193-194 (1990). | ||

[16] | R. C. Liu, B. Odom, Y. Yamamoto & S. Tarucha. Quantum interference in electron collision. Nature 391, 263-265 (1998). | ||

[17] | George Gamow. The Exclusion Principle. Scientific American 201, 74-86 (1959). | ||

[18] | B. Poirier, Chem. Phys. 370, 4 (2010). | ||

[19] | A. Bouda, Int. J. Mod. Phys. A 18, 3347 (2003). | ||

[20] | P. Holland, Ann. Phys. 315, 505 (2005). | ||

[21] | P. Holland, Proc. R. Soc. London, Ser. A 461, 3659 (2005). | ||

[22] | G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, “Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities,” Comput. Theor. Chem. (in press). | ||

[23] | D. Babyuk and R. E. Wyatt, J. Chem. Phys. 124, 214109 (2006). | ||

[24] | Jeremy Schiff and Bill Poirier. Quantum mechanics without wavefunctions. THE JOURNAL OF CHEMICAL PHYSICS 136, 031102 (2012). | ||

[25] | J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1932). | ||

[26] | D. Bohm, Phys. Rev. 85, 166 (1952). | ||

[27] | P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993). | ||

[28] | R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005). | ||

[29] | H. Everett III, Rev. Mod. Phys. 29, 454 (1957). | ||

[30] | M. F. González, X. Giménez, J. González, and J. M. Bofill, J. Math. Chem. 43, 350 (2008). | ||

[31] | Oganessian, Yu. T. et al. (2002). Results from the first 249Cf+48Ca experiment. JINR Communication (JINR, Dubna). http://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf. | ||

[32] | Nash, Clinton S. (2005). “Atomic and Molecular Properties of Elements 112, 114, and 118”. Journal of Physical Chemistry A 109 (15): 3493-3500. | ||

[33] | K.Umemoto, S.Saito, Electronic configurations of superheavy elements, Journal of the physical society of Japan, vol.65, no.10, 1996, p.3175-3179. | ||

[34] | Hartmut M. Pilkuhn, Relativistic Quantum Mechanics, Springer Verlag, 2003. | ||

[35] | E.Loza, V.Vaschenko. Madelung rule violation statistics and superheavy elements electron shell prediction. http://arxiv-web3.library.cornell.edu/abs/1206.4488 | ||

[36] | Froese Fischer, Charlotte (1987). “General Hartree-Fock program”. Computer Physics Communication 43 (3): 355-365. | ||

[37] | Abdulsattar, Mudar A. (2012). “SiGe superlattice nanocrystal infrared and Raman spectra: A density functional theory study”. J. Appl. Phys. 111 (4): 044306. | ||

[38] | Hinchliffe, Alan (2000). Modelling Molecular Structures (2nd ed.). Baffins Lane, Chichester, West Sussex PO19 1UD, England: John Wiley & Sons Ltd. p. 186. | ||

[39] | Szabo, A.; Ostlund, N. S. (1996). Modern Quantum Chemistry. Mineola, New York: Dover Publishing. | ||

[40] | Levine, Ira N. (1991). Quantum Chemistry (4th ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 403. | ||

[41] | Christophe L. Guillaume, Eugene Gregoryanz, Olga Degtyareva, Malcolm I. McMahon, Michael Hanfland, Shaun Evans, Malcolm Guthrie, Stanislav V. Sinogeikin & H-K. Mao. Cold melting and solid structures of dense lithium. Nature Physics 7, 211-214 (2011). | ||

[42] | Neaton, J. B. & Ashcroft, N. W. Pairing in dense lithium. Nature 400, 141-144 (1999). | ||

[43] | Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174-178 (2000). | ||

[44] | Shimizu, K., Ishikawa, H., Takao, D., Yagi, T. & Amaya, K. Superconductivity in compressed lithium at 20?K. Nature 419, 597-599 (2002). | ||

[45] | Tamblyn, I., Raty, J. & Bonev, S. Tetrahedral clustering in molten lithium under pressure. Phys. Rev. Lett. 101, 075703 (2008). | ||

[46] | Matsuoka, T. & Shimizu, K. Direct observation of a pressure-induced metal-to-semiconductor transition in lithium. Nature 458, 186-189 (2009). | ||

[47] | Lazicki, A., Fei, Y. & Hemley, R. High pressure differential thermal analysis measurements of the melting curve of lithium. Solid State Commun. 150, 625-627 (2010). | ||

[48] | Hernández, E., Rodriguez-Prieto, A., Bergara, A. & Alfè, D. First-principles simulations of lithium melting: Stability of the bcc phase close to melting. Phys. Rev. Lett. 104, 185701 (2010). | ||

[49] | Datchi, F., Loubeyre, P. & LeToullec, R. Extended and accurate determination of the melting curves of argon, helium, ice (H2O), and hydrogen (H2). Phys. Rev. B 61, 6535-6546 (2000). | ||

[50] | Gregoryanz, E., Goncharov, A. F., Matsuishi, K., Mao, H. K & Hemley, R. J. Raman spectroscopy of hot dense hydrogen. Phys. Rev. Lett. 90, 175701 (2003). | ||

[51] | Börje Johansson, Wei Luo,Sa Li & Rajeev Ahuja. Cerium; Crystal Structure and Position in The Periodic Table. Scientific Reports 4, Article number: 6398. | ||

[52] | Koskenmaki, D. C. & Gschneidner, K. A., Jr Cerium in: Handbook on the physics and chemistry of rare earths, Vol. 1, eds Gschneidner K. A., & Eyring L. (Amsterdam, North-Holland), pp 337-377 (1978). | ||

[53] | Johansson, B. The a-? transition in cerium is a Mott transition. Philos. Mag. 30, 469-482 (1974). | ||

[54] | Gustafson, D. R., McNutt, J. D. & Roellig, L. O. Positron annihilation in ?- and a-cerium. Phys. Rev. 183, 435-440 (1969). | ||

[55] | Kornstädt, U., Lässer, R. & Lengeler, B. Investigation of the?-a phase transition in cerium by Compton scattering. Phys. Rev. B 21, 1898-1901 (1980). | ||

[56] | Rueff, J. P. et al. F-state occupancy at the ?-a phase transition of Ce-Th and Ce-Sc alloys. Phys. Rev. Lett. 93, 067402 (2004). | ||

[57] | Loa, I., Isaev, E. I., McMahon, M. I., Kim, D. Y. & Johansson, B. Lattice dynamics and superconductivity in cerium at high pressure. Phys. Rev. Lett. 108, 045502 (2012). | ||

[58] | Lashley, J. C. et al. Tricritical phenomena at the? right arrow a transition in Ce0.9-xLaxTh0.1 alloys. Phys. Rev. Lett. 97, 235701 (2006). | ||

[59] | Allen, J. W. & Martin, R. M. Kondo volume collapse and the ? right arrow a transition in Cerium. Phys. Rev. Lett. 49, 1106-1110 (1982). | ||

[60] | Szotek, Z., Temmerman, W. M. & Winter, H. Self-interaction corrected, local spin density description of the? right arrow a transition in Ce. Phys. Rev. Lett. 72, 1244-1247 (1994). | ||

[61] | Peng Tan, Ning Xu & Lei Xu. Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization. Nature Physics 10, 73-79 (2014). | ||

[62] | Ostwald, W. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung. Z. Phys. Chem. 22, 289-330 (1897). | ||

[63] | Alexander, S. & McTague, J. Should all crystals be bcc? Landau theory of solidification and crystal nucleation. Phys. Rev. Lett. 41, 702-705 (1978). | ||

[64] | Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical evidence for bcc ordering at the surface of a critical fcc nucleus. Phys. Rev. Lett. 75, 2714-2717 (1995). | ||

[65] | Ten Wolde, P. R., Ruiz-Montero, M. J. & Frenkel, D. Numerical calculation of the rate of crystal nucleation in a Lennard-Jones system at moderate undercooling. J. Chem. Phys. 104, 9932-9947 (1996). | ||

[66] | Shen, Y. C. & Oxtoby, D. W. bcc symmetry in the crystal-melt interface of Lennard-Jones fluids examined through density functional theory. Phys. Rev. Lett. 77, 3585-3588 (1996). | ||

[67] | Auer, S. & Frenkel, D. Crystallization of weakly charged colloidal spheres: A numerical study. J. Phys. Condens. Matter 14, 7667-7680 (2002). | ||

[68] | Moroni, D., ten Wolde, P. R. & Bolhuis, P. G. Interplay between structure and size in a critical crystal nucleus. Phys. Rev. Lett. 94, 235703 (2005). | ||

[69] | Russo, J. & Tanaka, H. Selection mechanism of polymorphs in the crystal nucleation of the Gaussian core model. Soft Matter 8, 4206-4215 (2012). | ||

[70] | Pusey, P. N. & van Megen, W. Phase behaviour of concentrated suspensions of nearly hard colloidal spheres. Nature 320, 340-342 (1986). | ||

## Article

# The Effect of Gamma Irradiation on the Structural Properties of Porous Silicon

^{1}Department of Physics, College Of Science, Mosul University, Mosul, IRAQ

*International Journal of Physics*.

**2015**, 3(1), 1-7

**DOI:**10.12691/ijp-3-1-1

**Copyright © 2015 Science and Education Publishing**

**Cite this paper:**

Ismail Khalaf Abbas, Laith Ahmed Najam, Abd UlKahliq AuobSulaiman. The Effect of Gamma Irradiation on the Structural Properties of Porous Silicon.

*International Journal of Physics*. 2015; 3(1):1-7. doi: 10.12691/ijp-3-1-1.

Correspondence to: Laith Ahmed Najam, Department of Physics, College Of Science, Mosul University, Mosul, IRAQ. Email: prof.lai2014@gmail.com

## Abstract

_{2}H

_{5}OH (1:4). The effect of increase of γ-ray intensity (50Gy and 100Gy) on the structural properties of porous silicon has been studied using SEM, AFM, XRD and Raman spectrum. The SEM images before irradiation shows high density and randomly distributed of pores that cover all of the surface which have different size and spherical shape. After irradiation by 50Gy, the pores seems more obvious, discriminate and larger diameters. The initial elementary pores on the PSi surface decrease with the increasing of radiation intensity to 100Gy, as a result of formation of new pores with in the initial layer of Psi. The AFM images show that the roughness of the samples increase with irradiation. XRD spectrum before irradiation did not show clearly any featured peaks while the spectra after irradiation show the presence of different peaks but the most important distinctive was <111> peaks at ( 2θ = 28.12) which give indication that the structure is cubic. An extremely symmetric band shape were recognized from Raman spectra of the samples after and before irradiation.

## Keywords

## References

[1] | Ma., Concepc, N., Arenas, Marina Vega, OmarMartnez and Oscar H. Salinas, (2011), “Nanocrystalline Porous Silicon: Structural, Optical, Electrical and Photovoltaic Properties crystalline properties and uses", prof. Sukumar, Bash (Ed), ISBN:251, intecech. | ||

[2] | N., Naderi, M.R., Hashim, (2012), “Effect of Surface Morphology on Electrical Properties of Electrochemically-Etched Porous Silicon Photodetectors ", Int. J. Electrochem. Sci., 7, p.11512-11518. | ||

[3] | KasraBehzad, Wan Mahmood Mat Yunus, ZainalAbidinTalib, AzmiZakaria and AfarinBahrami, (2013), "Effect of Preparation Parameters on Physical, Thermal and Optical Properties of n-type Porous Silicon ", Int. J. Electrochem. Sci., 7, p.8266-8275. | ||

[4] | Hasan, H. H.,(2013), "study of characteristics of porous silicon by electrochemical etching ", Eng. and Tech. Journal, Vol.31, No.1. | ||

[5] | N., Jeyakumaran, B., Natarajan, S., Ramamurthy and V., Vasu, (2007), "Structural and optical properties of n- type porous silicon– effect of etching time", IJNN, Vol.3, No.1. | ||

[6] | Ma, S.Y., Zhang, B.R. and Qin, G.G., (1997), "Effects Of Y-Ray Irradiation On Photoluminescence Spectra From S & Rich Silicon Oxide", Materials Research Bulletin, Vol.32, No.10, p.1427-1433. | ||

[7] | Bisi, O., Ossicini, S., Pavesi, L., (2000), "porous silicon: a quantum sponge structure for silicon based optoelectronics, surface science", reports 38, p. 1-126. | ||

[8] | Khaldun, A., Salman, Z., Hassan, Khalid Omar, (2012), “Effect of Silicon Porosity on Solar Cell Efficiency", Int. J. Electrochem. Sci., p.7 376-386. | ||

[9] | Klug, H. P., (1954), "crystallite size and lattice strains, in X-ray diffraction procedures", Newyork:wiley – intersience: kluge H.P. and Alex and er. L.E., p. 656-657. | ||

[10] | Mingyuan, Ge, JiepenRony, Xin Fang, Any Zhang yunhao Luand Choywu, Zhou, (2013), "Scalable preparation of porous silicon nanoparticles and their application for Lithium ion battery anodes", Nano Res., 6 (3), p. 174-181. | ||

[11] | Paillard, V., Puech, P., Laguna, M.A., Carkes, R.,Kohn, B. Huisken, F., (1999), "improved one phonon confinement model for an accurate size determination of silicon nanocrystal", J.Appl.Phys. Vol.86, No.4, p.1921-1924. | ||

[12] | Beeman, D., Tsur., Thorpe, MF, (1985), "structural information from the Raman spectrum of amorphous silicon", phys. Review, B., Vol.32, p.874-878. | ||

[13] | Sui, Z., Leong, PP., Herman, IP., (1992), "raman analyses of light emitting porous silicon", Applied Phys. Lett., Vol.60, p.2086-2088. | ||

[14] | He, y., Yin, Cy., Cheng, G., Wang, L., Liu, X., Hu, Gy., (1994), "the structures and properties of nano sized crystalline silicon films", J. Appl., Phys., Vol.75, p.797-803. | ||

## Article

# First Step to Ellipsometry

^{1}Material Science Research Lab, S.G.T.B. Khalsa College, University of Delhi, Delhi, India

*International Journal of Physics*.

**2015**, 3(1), 8-11

**DOI:**10.12691/ijp-3-1-2

**Copyright © 2015 Science and Education Publishing**

**Cite this paper:**

Yashika Gupta, P. Arun. First Step to Ellipsometry.

*International Journal of Physics*. 2015; 3(1):8-11. doi: 10.12691/ijp-3-1-2.

Correspondence to: P. Arun, Material Science Research Lab, S.G.T.B. Khalsa College, University of Delhi, Delhi, India. Email: arunp92@physics.du.ac.in

## Abstract

## Keywords

## References

[1] | W.McGahan, B.Johs and J.A.Woollam, “Technique for ellipsometric measurement of the thickness and optical constants of thin absorbing film”, Thin Solid Films 234, (1993) 443. | ||

[2] | M. Oikkonen. “Ellipsometric studies on Zinc Sulfide thin films grown by atomic layer epitaxy", J Appl. Phys. 62, (1987) 1385. | ||

[3] | S.Lee, J.Hong, “Comparison of various parameterization models for optical functions of amorphous materials: Application of sputtered Titanium Dioxide thin films", Jpn J Appl. Phys., 39 (2000) 241. | ||

[4] | D.Franta, D. Necas, J. Ohlidal, M.Hrdlicka, M.Pavlista, M. Frumar, M. Ohlidal, “Combined method of spectroscopic ellipsometry and photometry as an efficient tool for the optical characterization of chalcogenide thin films", J Optoelect. Adv. Mater., 11 (2009) 1891. | ||

[5] | A.K.Ghatak and K. Thyagarajan, “Optoelectronics", Cambridge University Press (London 1989). | ||

[6] | R.M.A.Azzam and N.M.Bashara, ``Ellipsometry and Polarized Light", Elsevier (Amsterdam, 1977). | ||

[7] | H.Fujiwara, “Spectroscopic Ellipsometry Principles and Application”, John Wiley (NY 2007). | ||

[8] | K.V.Popov, A.V. Tikhonravov, J.Campmany, E. Bertran, S.Boch, A. Canillas, “Spectroscopic ellipsometric characterization of transparent thin film amorphous electronic materials: Integrated Analysis”, Thin Solid Films, 313 (1998) 379. | ||

[9] | T.E.Jenkins, “Multiple angle of incidence ellip -sometry", J Phys. D:Appl. Phys., 32 (1999) R45-R56 | ||

[10] | F.A. Jenkins and H.E. White, “Fundamentals of Optics, (4th ed.), McGraw-Hill, Inc. (NY, 1981). | ||

## Article

# The Direction of Time and the Dynamical Evolution of the World

^{1,}

^{1}Diel Software Entwicklung und Beratung, Seestr. 102, 71067 Sindelfingen, Germany

*International Journal of Physics*.

**2015**, 3(1), 12-16

**DOI:**10.12691/ijp-3-1-3

**Copyright © 2015 Science and Education Publishing**

**Cite this paper:**

Hans H. Diel. The Direction of Time and the Dynamical Evolution of the World.

*International Journal of Physics*. 2015; 3(1):12-16. doi: 10.12691/ijp-3-1-3.

Correspondence to: Hans H. Diel, Diel Software Entwicklung und Beratung, Seestr. 102, 71067 Sindelfingen, Germany. Email: diel@netic.de

## Abstract

## Keywords

## References

[1] | Barbour J. The End of Time. Oxford University Press, 2001. | ||

[2] | Basieux P. Die Architektur der Mathematik. Rowohlt Taschenbuch Verlag, Hamburg, 2000. | ||

[3] | Everett H. III Relative State' formulation of Quantum Mechanics. Rev Mod Phys 29, 454, 1957 | ||

[4] | Frisch M. Causal Models and the Asymmetry of State Preparation. in EPSA Philosophical Issues in the Sciences, vol.2, eds. M. Suárez, M. Dorato, and M. Redei, 2010. | ||

[5] | Frisch M. Laws in Physics. European Review, Volume 22, pp S33-S49, 2014. | ||

[6] | Horwich P. Asymmetries in Time. MIT Press, Cambridge Ma, 1987. | ||

[7] | Lemons D S. A Student’s Guide to Entropy. Cambridge University Press, Cambridge UK, 2013. | ||

[8] | Maudlin T. Philosophy of Physics - Space and Time. Princeton University Press, 2012. | ||

[9] | Maudlin T. Three Measurement Problems. Topoi-Int Rev Philos 14, 1995. | ||

[10] | Penrose R. The Road to Reality. Vintage Books, New York, 2005. | ||

[11] | Price H. Time's and Archimedes' Point. Oxford University Press, 1996. | ||

[12] | Smolin L Time Reborn. From the Crisis in Physics to the Future of the Universe. Houghton Mifflin Harcourt, New York, 2013. | ||

[13] | Stewart I Seventeen Equations that Changed the World. Profile Books, London, 2012. | ||

[14] | Weinberg S. The Quantum Theory of Fields, Volume 1, Foundations. Cambridge University Press, 2005. | ||

[15] | Zeh H D. Physik ohne Realitaet: Tiefsinn oder Wahnsinn. Springer Verlag, Heidelberg, 2012. | ||

## Article

# Ether, Dark Matter and Topology of the Universe

^{1,}

^{1}Department of Physics, Inria Saclays, Saclays, France

*International Journal of Physics*.

**2015**, 3(1), 17-28

**DOI:**10.12691/ijp-3-1-4

**Copyright © 2015 Science and Education Publishing**

**Cite this paper:**

Thierry DELORT. Ether, Dark Matter and Topology of the Universe.

*International Journal of Physics*. 2015; 3(1):17-28. doi: 10.12691/ijp-3-1-4.

Correspondence to: Thierry DELORT, Department of Physics, Inria Saclays, Saclays, France. Email: tdelort@yahoo.fr

## Abstract

^{st}part (PART I) we propose that a substance, called ether-substance, fills and constitutes all what is called “vacuum” in the Universe. We assume that it has a mass and consequently it could be the nature of dark matter. Modelling it as an ideal gas, we obtain the flat rotation curve of spiral galaxies. Using a very simple model of thermal transfer between baryonic particles and ether-substance, we obtain the baryonic Tully-Fisher’s law. So we introduce a new concept of ether, different from the pre-relativistic concept of ether, and we called “Cosmology based on ether” (CBE) Cosmology based on this new concept. In this CBE, topology of the Universe is much simpler and more attractive than topologies proposed by the Standard Cosmological model (SCM) (whose some fundamental aspects are kept in CBE). We propose 2 models in CBE. The first one does not need dark energy nor cosmological constant, and does not need the complex mathematics of General Relativity, contrary to SCM (and to the 2

^{nd}model of CBE). Nonetheless, we obtain in the 1

^{st}model of CBE a very simple Hubble’s constant, in 1/t, t age of the Universe, and many cosmological observations that were previously explained only by the SCM. Moreover we interpret in both models of CBE the Referential in which fossil radiation is isotropic. CBE is, as SCM, compatible with Special and General Relativity, despite that it is based on a new concept of ether. In the 2

^{nd}part, (Part II), we will study some problems raised by the Part I (motion of galaxies in the space, concentration of ether-substance around stars…).

## Keywords

## References

[1] | Stacy Mc Gaugh, A Novel Test of Modified Newtonian Dynamics with Gaz rich Galaxies, Physical Review Letter, open archives arXiv. | ||

[2] | Thierry Delort, Théories d’ or 6^{e} édition, Editions Books on Demand, Paris (2013). | ||

[3] | T. Delort, Theory of Ether, Physics Essays 13, 4 (2000). | ||

[4] | T. Delort, Applications of Theory of Ether, Physics Essays 17,3 (2004). | ||

[5] | D.J Raine,E.G Thomas, An introduction to the science of Cosmology, Institute of physics, London (2001). | ||

[6] | J.V Narlikar, An introduction to Cosmology, Cambridge University press, Cambridge (2002). | ||

[7] | A. Aspect, P.Grangier, G.Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm-Gedanken experiment: A new violation of Bell’s inequalities, Phys.Rev.letter (1982). | ||

[8] | G. A Tammann and B. Reindl, Astronomy and Astrophysics 549(2013) (on arXiv). | ||

[9] | P. Kroupa, M. Pawlowski, M. Milgrom, The failures of the standard model of Cosmology require a new paradigm, International Journal of Physics D21 (2012). | ||

[10] | M. Milgrom, A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis, Astrophysical Journal 270 (1983). | ||

[11] | Perlmutter et al, Discovery of a supernova explosion at half the age of the universe, Nature 391, 51-54 (1998). | ||

[12] | D. R Alves, C. A Nelson, The rotation curve of the Large Magellanic cloud and the implications for Microlensing, The astrophysical journal (October 2000). | ||

[13] | T. Delort, Ether,dark matter and topology of the Universe, open archives vixra, Internet archives. | ||

## Article

# Gravitational Mass Defect

^{1,}

^{1}B.I. Verkin Institute for Low Temperature Physics and Engineering NAS, Ukraine, Lenin Ave., Kharkov, Ukraine

*International Journal of Physics*.

**2015**, 3(1), 29-31

**DOI:**10.12691/ijp-3-1-5

**Copyright © 2015 Science and Education Publishing**

**Cite this paper:**

F. F. Mende. Gravitational Mass Defect.

*International Journal of Physics*. 2015; 3(1):29-31. doi: 10.12691/ijp-3-1-5.

Correspondence to: F. F. Mende, B.I. Verkin Institute for Low Temperature Physics and Engineering NAS, Ukraine, Lenin Ave., Kharkov, Ukraine. Email: mende_fedor@mail.ru

## Abstract

^{48}J. In this case of its nucleus of galaxy was rejected the mass equal to 5,9 • 10

^{7}of the masses of the sun. At present are not known the physical mechanisms, which can explain such immense explosions. In the article is examined the new physical phenomenon, gravitational mass defect, which can explain the phenomenon indicated. This phenomenon leads to the fact that the summary mass of bodies before and after the collisions differ. Indicated we will call mass defect gravitational mass defect and it can serve as a reason for explosions in the nuclei of galaxies.

## Keywords

## References

[1] | J. P. Pskov. New andsupernovae, Moscow, 1985. | ||

[2] | D. Yu. Tsvetkov. Supernovae, SAI, Moscow, 2001. | ||

[3] | S. B. Popov. How toexplodegrown thingiants?, SAI, Moscow, 2011. | ||

[4] | T. A. Agekyan. Stars, galaxy, metagalaxy. Publ. Science, 1981. | ||

[5] | F. F.Mende. Problemsof modern physicsand their solutions, PALMARIUM Academic Publishing, 2012. | ||

## Article

# Free- free Scattering Theory of the Elastic Scattering of an Electron

^{1}Central Department of Physics, Tribhuvan University, Kirtipur, Nepal

*International Journal of Physics*.

**2015**, 3(1), 32-39

**DOI:**10.12691/ijp-3-1-6

**Copyright © 2015 Science and Education Publishing**

**Cite this paper:**

Kishori Yadav, Jeevan Jyoti Nakarmi. Free- free Scattering Theory of the Elastic Scattering of an Electron.

*International Journal of Physics*. 2015; 3(1):32-39. doi: 10.12691/ijp-3-1-6.

Correspondence to: Jeevan Jyoti Nakarmi, Central Department of Physics, Tribhuvan University, Kirtipur, Nepal. Email: nakarmijeevan@gmail.com

## Abstract

*l*= -1, i.e, absorption of a photon (inverse Bremsstrahlung), The differential scattering cross section of an electron depends upon the fourth power of the wavelength (λ

^{4}) and the intensity of the Laser field The certain values of laser parameters the differential scattering cross section of scattered electron decreases with increase in scattering angle and attains a minimum value of 0.1

*barn*and further increase in scattering angle also increases in differential scattering cross section and attains a maximum value of 0.3 barn.

## Keywords

## References

[1] | M. Vos, R.P. McEachran, E. Weigold, R.A. Bonham, Elastic electron scattering cross sections at high momentum transfer, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 300, (2013), 62-67. | ||

[2] | D. Bote, F. Salvat, A. Jablonski, C.J. Powell,The effect of inelastic absorption on the elastic scattering of electrons and positrons in amorphous solids,Journal of Electron Spectroscopy and Related Phenomena, 175, 1-3, (2009), 41-54. | ||

[3] | A. Jablonski, Analytical applications of elastic electron backscattering from surfacesProgress in Surface Science, 74, 1–8, (2003), 357-374. | ||

[4] | H. Aouchiche, C. Champion, D. Oubaziz,Electron and positron elastic scattering in gaseous and liquid water: A comparative stud,Radiation Physics and Chemistry, 77, 2, (2008), 107-114. | ||

[5] | C.J. Powell, A. Jablonski, Effects of elastic-electron scattering on measurements of silicon dioxide film thicknesses by X-ray photoelectron spectroscopy, Journal of Electron Spectroscopy and Related Phenomena, 114(2001), 1139-1143. | ||

[6] | Francesc Salvat, Aleksander Jablonski, Cedric J. Powell, elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules, Computer Physics Communications, 165, 2, 15 (2005), 157-190. | ||

[7] | R. Moreh,On deviations from theory of electron–atom elastic scattering cross sections,Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 279, (2012), 49-52. | ||

[8] | Wolfgang S.M. Werner, Christian Tomastik, Thomas Cabela, Gerald Richter, Herbert StöriElectron inelastic mean free path measured by elastic peak electron spectroscopy for 24 solids between 50 and 3400 eV,Surface Science, 470, 1,2, 2000, 123-L128. | ||

[9] | G Csanak, C J Fontes, M K Inal and D P Kilcrease, The creation, destruction and transfer of multipole moments in electron scattering by ions,2012 J. Phys. B: At. Mol. Opt. Phys. 45 105202. | ||

[10] | A Jablonski, Angular distribution of elastic electron backscattering from surfaces: determination of the electron inelastic mean free path, 2014 J. Phys. D: Appl. Phys. 47 055301. | ||

[11] | V I Kelemen, M M Dovhanych and E Yu Remeta, Differential cross sections for elastic electron scattering by ytterbium atoms in the energy range 2–2000 eV: I. Real optical potential part approximation, 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035204. | ||

[12] | B. J. Choudhury, Note on Kroll and Watson's low-frequency result for the multiphoton bremsstrahlung process, Phys. Rev. A 11,( 1975) 2194. | ||

## Someone is Doing on SciEP

## Statistics of This Journal

**Article Downloads:**
124625

**Article Views:**
397804

## Sponsors, Associates, and Links

To list your link on our website, please
click here
or
contact us

1st FIGO Africa Regional Congress of Gynecology and Obstetrics